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Abstract

While the functionality and healthy food value of red rice have increased its popularity, such

that market demand for it is expected to rise, most strains suffer from low grain yield. To per-

form diversity and population structure analyses of red rice germplasm, therefore, becomes

essential for improving yields for commercial production. In this study, fifty red rice germ-

plasm from the Bangladesh Rice Research Institute (BRRI) genebank were characterized

both morphologically and genetically using fifty simple sequence repeat (SSR) markers.

Overall, 162 alleles were detected by the markers with the detected allele number varying

from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm

diagnostic tool. The highest and lowest polymorphic information content (PIC) indices were

0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was

moderate, varying from 0.05 to 0.78 (average: 0.35). While phylogenetic cluster analysis of

the fifteen distance-based agro-morphological traits divided the germplasm into five clusters

(I, II, III, IV and V), a similar SSR analysis yielded only three major groups (I, II, and III), and

a model-based population structure analysis yielded four (A, B, C and D). Both principal

component and neighbors joining tree analysis from the population structure method

showed the tested germplasm as highly diverse in structure. Moreover, an analysis of

molecular variance (AMOVA), as well as a pairwise FST analysis, both indicated significant

differentiation (ranging from 0.108 to 0.207) among all pairs of populations, suggesting that

all four population structure groups differed significantly. Populations A and D were the most

differentiated from each other by FST. Findings from this study suggest that the diverse

germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detec-

tion of economically desirable trait loci/genes for use in future molecular breeding programs.

Introduction

Rice is the main food for more than half of the world’s population and is the staple food for the

people of Bangladesh, constituting over 91% of the food grain production, and providing 62%

of the caloric as well 46% of the protein intake in the average daily diet [1]. The rice production
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area in Bangladesh is approximately 11.4 million hectares (ha) producing 51.64 million tons of

rice annually [2].

Bangladesh has three major rice crops, Aman, Aus, and Boro, which are grown during

three overlapping seasons and with a large number of varieties suitable for various agro-eco-

logical and climatic niches [3]. The Aus growing season usually starts in March-April, is har-

vested in July-August, and has an average yield of 2.00 t/ha, which is lower than the other two

crops. More than 30% of Aus rice in Bangladesh are a red variety, which characteristically has

limited yield. In Bangladesh, high temperatures during the Aus growing season increase plant

height but decrease growth duration in rice. Solar radiation is also lower in Aus versus Boro

growing seasons, resulting in lower Aus yields. Traditional red rice varieties also typically have

weak stems, low tillering ability, long droopy leaves, turn yellow during grain development,

and become logged at maturity. However, farmers still plant them widely because they can be

grown under low inputs and produce a reasonable yield under the seasonal environmental

conditions to which modern varieties are not adapted. Nonetheless, this limited yield makes

farmers less interested in cultivating red rice despite its high medicinal value and use as a func-

tional food.

Modern breeding techniques could improve the yield of red rice to overcome this problem.

Successful breeding for crop improvement, however, depends on genetic variability in the

parents [4], such that a lack of genetic variability would have the potential to significantly limit

breeding progress and/or yield and quality crop improvements [5]. Increased knowledge into

the genetic diversity of any germplasm collection, therefore, enhances the possibility of crop

improvement and the development of superior cultivars.

Very few studies, however, have investigated the genetic diversity of Aus rice in Bangladesh

[6–8]. While more comprehensive research into genetic variability, as well as the population

configuration, of Aus varieties would inform germplasm utilization for rice breeding, research

into morphological and agronomic variation will also be needed for any future breeding pro-

gram. Simple sequence repeats (SSRs)—a form of both allele-specific and co-dominant molec-

ular marker—has shown considerable potential for determining genetic variability and any

significant levels of allelic polymorphism [9, 10]. Moreover, to identify diverse crop genotypes

using phenotypic as well as genotypic markers is more beneficial than conventional

approaches [11]. For instance, SSRs have been used for genetic variability assessment, molecu-

lar characterization, genotypic identification, and population structure estimations in multiple

previous investigations of rice genetics [12–18]. SSR markers have also proven useful for diver-

sity studies [10, 19], construction of linkage maps [20, 21], and for QTL analysis [21, 22] in

rice.

Clustering a large number of germplasms represents a simple and effective process for

assessing the genetic variability of germplasm [23], along with other statistical approaches such

as population structures [24], principal component analysis (PCA) [25], principal coordinate

analysis (PCoA) [26], and AMOVA. Structure analysis of natural populations by molecular

markers is also commonly utilized globally for diverse crops, such as rice [27, 28], apple [29],

peanut [30], sweet sorghum [31], wheat [32], and cucumber [32].

Cultivars developed using natural populations and germplasm can have unique target char-

acteristics for attaining high yields and stress tolerance. Analyzing genetic structures, as well as

identifying allelic variation among and/or within a population, represents an important

approach for the design of a molecular breeding program [33]. Analyzing population struc-

tures, then, is a prerequisite for association analysis and is considered a key for avoiding red

herrings while constraining the association analysis of any germplasm [23, 24, 34].

This study uses red rice to perform a diversity analysis using both morphological and

molecular approaches. In general, red (and black) rice are staple foods that an increasing
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number of consumers are demanding due to their documented health-promoting benefits

[35]. These include the provision of anthocyanin, which is beneficial not only as an antioxidant

[36–39] and anti-inflammatory [40] but has also been linked to anti-carcinogenic properties

[41, 42]. These rices may also be helpful for the prevention or cure of diseases caused by vita-

min A and B deficiencies [43]. Besides its high functional food value, the pericarp of red rice

has a high measured content for total soluble phenolic compounds (81%) and antioxidant

properties [44]. Comparative soluble phenolic compound levels of only 38–60% have been

observed in light brown rice grains [44, 45].

Commercial availability of red rice in markets is limited, however, by a lack of improved

varieties at the producer level. Few farmers cultivate this rice using local varieties, due to low

yields, long durations, and susceptibility to lodging [18]. Moreover, although some of the local

red upland rice germplasm have been collected from different regions in Bangladesh and con-

served in the BRRI genebank, studies to date on the genetic diversity of this invaluable upland

red rice collection using molecular markers in Bangladesh have been inadequate. Given that

this collection provides an invaluable genetic resource of pre-breeding materials useable for

varietal improvement [46], the present study set out to characterize the genetic variability, as

well as the population structure, using fifty polymorphic SSR markers on fifty red rice germ-

plasm grown at upland conditions in Bangladesh.

Materials and methods

Plant materials

Rice germplasm, including Aus, Aman and Boro rice cultivated throughout Bangladesh, have

been collected and conserved by the Bangladesh Rice Research Institute (BRRI) genebank. To

date, approximately 8,200 germplasm have been preserved by the BRRI genebank, of which

1,500 are Aus rice, with more than 30% of those considered red rice. For this study, we culti-

vated fifty red rice germplasm—collected by BRRI from the sites noted in Fig 1 and designated

as red due to their red-colored pericarp (see Fig 2)—in upland conditions during the Aus

growing season in Bangladesh.

Agro-morphological characterization

All experiments described here were conducted at the Bangladesh Rice Research Institute in

Gazipur, Bangladesh during the March to June Aus rice growing season in 2015. Fifty red rice

germplasm were seeded directly under upland conditions in two 5 m x 3 m plot replicated tri-

als. Production practices, including fertilizers, intercultural operations, pest control, and grain

harvesting, were conducted according to standard methods.

Fifteen agro-morphological traits—leaf area index, culm diameter, effective tiller number,

days to flowering, plant height, days to maturity, five panicles weight, filled grains per panicle,

unfilled grains per panicle, grain length, grain breadth, 1000 grain weight, length-breadth

ratio, and yield per hill—were recorded. Genetic diversity was worked out for the principal

component analysis [47] and Mahalanobis’ generalized distance (D2) analysis [48]. All multi-

variate analyses were performed using the GENSTAT 5.5 program.

Molecular characterization

We used fifty well-distributed SSRs for the diversity analysis; position (cM), repeat motifs, and

chromosomal positions for the SSR markers can be found in the rice genome database [49].

Most of these markers were obtained from a panel of fifty standard SSR markers, which has

been proposed by CGIAR for rice diversity analysis [50]. DNA was extracted from the young
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leaves of 14-day-old plants using the miniscale method [51]. The total PCR reaction was per-

formed using the standard procedure. The 10 μL of each PCR product, with 2μL of a loading

dye, were analyzed using 8% polyacrylamide gel electrophoresis in a 1 × TBE buffer, run at 75

V for between 2.0–2.5 h depending upon the allele size. The gels were then stained, using

ethidium bromide solution (0.5 mg/mL), for 25 min and exposed to UV light using a molecu-

lar imager gel documentation unit (XR System, Uvitec Cambridge, France) for visualization.

Data analysis

The band-size for each of the markers was scored using the AlphaEaseFC 4.0 software. Using

PowerMarker version 3.25 [52], summary statistics included the following: the number of

alleles, the major allele size and its frequency, gene diversity, and the polymorphism informa-

tion content (PIC) value. For the unrooted phylogenic tree, the genetic distance was calculated

using MEGA 6 based on Nei’s unbiased pairwise [53, 54]. Binary form for allele frequency was

prepared using PowerMarker software and used for dendrogram construction by NTSYS-pc

Fig 1. Map of geographic location of germplasm collection.

https://doi.org/10.1371/journal.pone.0196096.g001
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software [25]. The unweighted pair grouping method using arithmetic average (UPGMA) was

used to determine a similarity matrix following the Dice coefficient with the SAHN

subprogram.

Population STRUCTURE for germplasm was determined using STRUCTURE, (version

2.3.4) [24, 55]. The number of clusters (K) investigated, in this study, ranged from one to fif-

teen, with five replications for analysis of each K value. The model following admixture and

Fig 2. Selection of tested red rice among the tested germplasm showing colored pericarp pattern.

https://doi.org/10.1371/journal.pone.0196096.g002

Fig 3. Principal component analysis (PCA) of fifty red rice germplasm based on morphological traits.

https://doi.org/10.1371/journal.pone.0196096.g003
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correlated allele frequency with a 5,000 burn period and a run length of 50,000 were used for

conducting model-based structure analysis. Output of analysis was collected using the

STRUCTURE harvester [56] and identified 4 as the best K value based on the LnP(D) and

Evanno’s ΔK [57]. Principal components analysis (PCA) analysis was conducted also using the

STRUCTURE software. In order to summarize the major patterns of variation within the

multi-locus dataset, an analysis of molecular variance (AMOVA) using GenAlEx V6.5 [26]

was also performed.

Results

Morphological diversity

Analysis of variance (ANOVA) demonstrated significant variation among fifty red rice

germplasm for all fifteen agro-morphological traits. Using PCA, we observed that the first

axis mainly accounted for the variation in the germplasm (27.89%) followed by second axis

(18.41%). Our results also showed that the first six components with vector values >1

accounted for 80.08% of total variation, with components PCA3, PCA4, and PCA5 contrib-

uting 11.26%, 9.77%, and 6.08%, respectively. Using the first two components, Fig 3 shows

the distribution pattern of five groups. Based on the non-hierarchal clustering method,

using Mahalanobis’ D2 statistic, the fifty red rice germplasm with fifteen agro-morphologi-

cal traits grouped into five clusters (I, II, III, IV, V) (see Table 1). The clustering pattern also

revealed that germplasms constellated into the same clusters did not originate from similar

geographic regions. The maximum number of germplasm (16) were grouped in cluster IV,

followed by thirteen in cluster V, ten in cluster I, eight in cluster II, and the minimum (3) in

cluster III.

Fig 4 displays the frequency distribution of twelve quantitative morphological traits among

the five groups of populations obtained from cluster analysis. The Group3 population showed

the highest plant height, while the Group5 population showed the lowest plant height. The

greatest variation was observed in filled grain per panicle among the groups, with the Group3

population showing the highest number of filled grain per panicle. Yield is the most important

trait for breeding purposes. The Group3 population showed the highest yield per hill while

Group4 showed the lowest (Fig 4). These results revealed that significant variation existed

between the five groups of red rice germplasm generated from different ecological origins in

Bangladesh. Overall, the yield per hill, panicle length, days to maturity, plant height, and leaf

area index were 3.40–15.45 g, 17.90–26.30 cm, 90–128 days, 95–138 cm, and 30.43–85.56 cm2,

respectively.

Average intra- and inter-cluster distance for the entire germplasm based on phenotypic

traits was determined. Considerable variation occurred in intra-cluster distances (ranging

from 0.65 in cluster II to 1.24 in cluster III), indicating wider diversity prevailing among germ-

plasm within clusters. The germplasm under cluster III (1.24) was the most heterogeneous;

germplasm under cluster II (0.65) was comparatively homogenous or less diverse. Inter-cluster

distances ranged from 3.70 to 16.31, ranging from a maximum in clusters IV and III (16.31),

clusters III and I (14.98), and clusters V and III (12.23), indicating a wider genetic diversity

among the germplasm between these groups. In contrast, we observed the lowest inter-cluster

distance between clusters I and IV (3.70) and clusters I and V (4.49), indicating a narrower,

genetically close, diversity. In general, the germplasm comprising clusters IV and III were

more diverse than those of clusters I and IV. Overall, cluster IV had the highest inter-cluster

distances compared to other clusters, indicating wider genetic germplasm diversity within

cluster IV relative to others.
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Table 1. List of red rice germplasm including geographic location and clustering group based on morphology and model based STRUCTURE analysis.

SL No. Genotypes Acc. No. Location Group Based by STRUCTURE Analysis Cluster Group by Morphology

1 Dharial 18 Dhaka I V

2 Dular 22 Dhaka I V

3 Hashikalmi 30 Dhaka III IV

4 Panbira 50 Dhaka I II

5 Pashpai 51 Dhaka II IV

6 Pukhi 55 Dhaka III V

7 Surjamukhi 60 Dhaka I II

8 Laksmilata 67 Dhaka III IV

9 Kalamanik 68 Dhaka III V

10 Burikatari 150 Tangail II IV

11 Manikmodhu 572 Rangpur III I

12 Kadamoni 573 Rangpur III V

13 Honumanjata 574 Rangpur IV V

14 Begunbahar 651 Brahmanbaria II V

15 Noyantara 654 Brahmanbaria I II

16 Matichak 1199 Faridpur III IV

17 Benaful 1529 Dinajpur III III

18 Binnatoha 1622 Noakhali II IV

19 Pankiraj 1700 Faridpur III V

20 Baismuguria 1701 Faridpur III V

21 Benamuri 1732 Khulna I I

22 Chapla 1961 Kishoreganj III IV

23 Pakiraj 1967 Kishoreganj III I

24 Kalisaita 2102 Dhaka III V

25 Surjamukhi 2114 Narsingdi I II

26 Madabjata 2118 Gazipur III V

27 Begunbichi 2120 Dhaka I V

28 Jameri 2182 Bogra I I

29 Botwessor 3235 Dhaka I I

30 Sarisaful 3239 Gazipur I III

31 Khorajumri 3519 Pabna III I

32 Beursona 3523 Sirajganj III IV

33 Saita 3543 Jhalakati III IV

34 Dhalisaita 3551 Barisal II IV

35 Sreerampuri 3560 Barisal III IV

36 Narikeljhupi 3721 Rajshahi III II

37 Binnasopa 3734 Barisal II I

38 Manikjor 4028 Jhenaidaha III V

39 Boilam 4608 Noakhali II II

40 Tusha 4623 Kustia III IV

41 Parangi 4644 Magura III IV

42 Beerpala 4954 Khulna I IV

43 Kharojamri 4996 Pabna IV I

44 Kerondol 6210 Bhola II I

45 Khatomala 6622 Bagerhat IV I

46 Fullbadam 7266 Khagrachhari I II

47 Moisor 7420 Barisal II I

(Continued)
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Genetic diversity

The germplasm of fifty red rice populations collected by BRRI from several locations in Ban-

gladesh were amplified using fifty SSR markers (Table 1). All of the markers produced 162

polymorphic bands, with an average of 3.24 and varied from 2 to 7 for each marker (Table 2).

For the SSR loci, polymorphism information content (PIC) varied from 0.04 to 0.60 (with an

average of 0.32) (Table 2). The observed genetic diversity index varied from 0.05 to 0.78 (with

an average of 0.35). Major allele frequency varied from 30.77% to 98.00% and their size from

67 bp (RM413) to 285 bp (RM496). On average, 75.52% of the fifty red rice germplasm shared

a common major allele at any locus. Those rare alleles, which have a frequency of less than 5%,

were not identified at the fifty loci.

The study found 22 unique alleles detected in all tested germplasm (Table 2, see S1 Table

for all of the unique alleles with their respective germplasm), and all fifty markers showed an

allelic size-banding pattern, with a moderate observed genetic similarity coefficient of 0.59. Fig

5 gives the dendrogram generated through neighbor-joining (NJ) tree analysis, which grouped

Table 1. (Continued)

SL No. Genotypes Acc. No. Location Group Based by STRUCTURE Analysis Cluster Group by Morphology

48 Laithajhora 7817 Chandpur IV II

49 Rateil 7852 Barisal II IV

50 Shibjhota 7854 Rajbari I III

https://doi.org/10.1371/journal.pone.0196096.t001

Fig 4. Distribution of twelve quantitative morphological traits in five group populations derived from cluster analysis.

https://doi.org/10.1371/journal.pone.0196096.g004
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Table 2. Number of alleles, allele size range, allele frequency, unique allele, gene diversity and polymorphism information content (PIC) of 50 SSR markers across

50 red rice germplasms.

Marker Chromosome Motif Allele(s) Size

Range (bp)

Size (bp)b Allele Frequency (%)c Gene Diversityd PICe

# Position (cM) No.a Unique Rare

RM1 1 29.7 (GA)26 4 1 0 87–112 112 57.14 0.55 0.47

RM5 1 94.9 GA)14 2 0 1 110–115 115 86.00 0.24 0.21

RM35 1 49.9 (GA)19 3 0 1 200–212 212 90.00 0.18 0.18

RM312 1 71.6 (ATTT)4(GT)9 2 0 0 98–104 98 90.00 0.18 0.16

RM145 2 49.8 - 2 0 0 165–172 165 94.00 0.11 0.11

RM262 2 103.3 (CT)16 4 0 1 127–152 152 82.00 0.32 0.30

RM16 3 131.5 (TCG)5(GA)16 3 2 0 170–202 170 96.00 0.08 0.08

RM282 3 100.6 (GA)15 2 1 0 126–135 135 98.00 0.05min 0.04min

RM489 3 29.2 (ATA)8 3 0 2 242–312 242 92.00 0.15 0.15

RM554 3 106.0 (GA)14 2 0 0 251–259 259 58.00 0.49 0.37

RM518 4 25.5 (TC)15 3 0 0 164–171 171 56.00 0.59 0.52

RM537 4 8.5 (CCG)9 2 0 1 215–221 221 96.00 0.08 0.07

RM567 4 153.6 (GA)21 2 0 0 280–289 280 90.00 0.18 0.16

RM5473 4 107.35 (TC)20 4 0 0 125–145 125 60.87 0.58 0.53

RM39 5 87.7 (CT)17CCA(TC)3 2 0 0 110–115 115 96.00 0.08 0.07

RM178 5 118.8 (GA)5(AG)8 2 0 0 117–123 117 81.63 0.30 0.25

RM334 5 141.8 (CTT)20 3 0 0 178–190 190 54.17 0.59 0.52

RM413 5 26.7 (AG)11 4 1 0 67–105 67min 79.59 0.35 0.33

RM507 5 - (AAGA)7 2 0 0 244–253 253 86.00 0.24 0.21

RM510 6 20.8 (GA)15 2 0 0 213–223 223 94.00 0.11 0.11

RM527 6 61.2 (GA)17 2 0 0 212–220 220 78.00 0.34 0.28

RM3330 6 61.6 (CT)15 3 0 2 136–146 146 92.00 0.15 0.15

RM70 7 64.66 (ATT)33 4 0 0 185–211 185 58.00 0.59 0.54

RM214 7 34.7 (CT)14 4 0 0 116–144 116 50.00 0.66 0.60

RM320 7 62.5 (AT)11GTAT(GT)13 6 0 2 178–212 178 50.00 0.68 0.64

RM542 7 34.7 (CT)22 4 2 0 94–122 122 56.00 0.53 0.42

RM478 7 93.8 (AG)12 2 0 0 204–210 204 92.00 0.15 0.14

RM500 7 36.1 (AAG)9 2 0 0 251–257 257 60.00 0.48 0.36

RM560 7 54.2 (CT)12 2 1 0 130–150 150 98.00max 0.05min 0.04min

RM342 8 78.4 (CAT)12 3 1 0 132–152 152 82.00 0.30 0.27

RM447 8 124.6 (CTT)8 5 0 1 105–139 139 56.00 0.62 0.58

RM215 9 99.4 (CT)16 3 2 0 144–164 144 96.00 0.08 0.08

RM105 9 32.1 (CCT)6 3 1 0 133–143 133 86.00 0.25 0.22

RM205 9 114.7 (CT)25 4 1 0 111–146 111 68.00 0.49 0.44

RM316 9 1.8 (GT)8(TG)9(TTTG)4(TG)4 2 0 0 192–199 192 90.00 0.18 0.16

RM464 9 3.3 (AT)21 2 1 0 142–150 150 98.00 0.05 0.04

RM285 9 1.8 (GA)12 2 0 0 142–150 150 87.50 0.22 0.19

RM304 10 73.0 (GT)2(AT)10(GT)33 7 2 1 103–158 158 30.77min 0.78max 0.75max

RM474 10 - (AT)13 4 0 0 215–248 103 60.00 0.58 0.53

RM496 10 113.0 (TC)14 4 0 0 246–285 285max 82.00 0.32 0.30

RM591 10 118.3 (AC)10 5 0 2 231–272 272 64.00 0.54 0.51

RM21 11 85.7 (GA)18 5 2 0 135–160 116 88.00 0.22 0.21

RM206 11 102.9 (CT)21 5 2 0 134–172 134 78.00 0.37 0.35

RM224 11 120.1 (AAG)8(AG)13 4 0 0 129–145 145 64.00 0.54 0.50

RM287 11 68.6 (GA)21 4 1 1 98–115 115 60.87 0.52 0.44

(Continued)
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Table 2. (Continued)

Marker Chromosome Motif Allele(s) Size

Range (bp)

Size (bp)b Allele Frequency (%)c Gene Diversityd PICe

# Position (cM) No.a Unique Rare

RM536 11 55.1 (CT)16 3 0 0 221–237 237 79.17 0.35 0.32

RM20 12 - (ATT)14 3 0 0 152–163 152 60.00 0.55 0.48

RM1337 12 - (AG)21 4 0 1 164–185 185 56.00 0.60 0.54

RM5364 12 - TC)13 4 0 0 127–156 156 62.50 0.54 0.48

RM7108 12 - (AGAT)8 4 1 2 169–191 169 56.00 0.54 0.45

aTotal (162), Min (2), Max (7), Avg. (3.24)
bAvg. (167.96)
cTotal (3776.21), Avg. (75.52)
dTotal (17.67), Avg. (0.35)
eTotal (15.87), Avg. (0.32)

Note: Major allele is described as the allele with the highest frequency. Rare alleles are described as alleles with a frequency less than 5%.

https://doi.org/10.1371/journal.pone.0196096.t002

Fig 5. Dendogram of fifty red rice germplasm constructed from molecular data using MEGA software.

https://doi.org/10.1371/journal.pone.0196096.g005
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all germplasm into three major clusters I, II, and III, comprised of 7, 41, and 2 germplasms,

respectively (see Table 1). Cluster II is further grouped into two sub-clusters, IIa and IIb,

which themselves have further sub-groups.

Model-based population structure

Bayesian analysis using STRUCTURE characterized the population structure for tested red

rice germplasm. The LnP(D) as well Evanno’s ΔK values identified four genetically distinct

populations (i.e., K = 4; Fig 6), A, B, C, and D (Fig 7), representing 34.60%, 19.40%, 37.90%,

and 8.10% of germplasm, respectively. Membership fractions were used to classify these popu-

lations as pure or an admixture: population A showed ten pure (58.82%) and seven admixed

(41.18%) individuals, B showed seven pure (70.00%) and three (30.00%) admixed individuals,

C showed ten pure (52.63%) and nine (47.37%) admixed individuals, and D showed three pure

(75.00%) and one (25.00%) admixed individuals.

Genetic variation by population was tested using FST statistics. The FST population values,

by their degree of structuredness, were 0.4997 (A), 0.4226 (B), 0.3742 (D), and 0.3534 (C), with

an average 0.4125, thus indicating a high population structure. We calculated specific FST val-

ues for populations A, B, C, and D, using STRUCTURE software. The average distances (i.e.,

expected heterozygosity) between the individuals in the same cluster were 0.2144 for A, 0.2831

for B, 0.3017 for C, and 0.4317 for D. The largest genetic (net nucleotide) distance (0.2240) was

observed between A and D, and the lowest genetic distance was observed between A and C.

Both a neighbor-joining (NJ) tree and principal component analysis (PCA), based on popu-

lation derived from the structure analysis, were also performed. Both NJ tree and PCA estab-

lished the results obtained from structure analysis. The model-based population groups (A–D)

were distinctly separated from each other (Fig 8). In the PCA analysis, the first two eigenvec-

tors classified the germplasm in four distinct groups (Fig 9), which were similar to those

observed in the structure analysis and NJ tree (Fig 8). Group I consisted of the higher yielding

germplasm, suitable for future breeding programs, while group IV had lower yielding germ-

plasm. Most of the population of group IV are dwarf and have a short growth phase.

Analysis of molecular variance (AMOVA) from the model-based approach

The four populations obtained from structural analysis were subsequently exposed to

AMOVA in order to determine the variation across and within populations. While a 14% vari-

ance was observed across populations, for individuals, 80% variance among and 6% within

was observed (Fig 10 and Table 3). The pairwise FST values also demonstrated significant vari-

ation among populations, which varied from 0.108 to 0.207, suggesting that all of the groups

were statistically distinguished from each other (Table 4). Populations A and D had the great-

est difference from each other based on the FST test (Table 4).

In general, the results from FST analysis and AMOVA both agreed with results obtained

using the phylogenetic tree-based similarity coefficient distribution as well as the structure

analysis, with all of these aforementioned approaches confirming the presence of both a statis-

tically moderate genetic diversity and a high level of population structure. This represents a

critical step for carrying out any future association mapping (AM) analysis.

Discussion

In this study, we analyzed the diversity (both morphology and molecular) and population

structure of fifty kinds of red rice that grow in different locations of Bangladesh in order to

begin to lay a foundation for future yield-improvement rice breeding programs [58]. Based on

agro-morphological data and fifteen quantitative traits, five groups (clusters I-V) were

Genetic diversity of red rice
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identified for the fifty germplasm. A majority of the most desirable characteristics were

observed in cluster III, including higher yields (10.73 g/hill). Other good characteristics, from

a breeding perspective, grouped in cluster IV (e.g., short growth duration, dwarf stature, and

effective tiller number). This suggests that germplasm of cluster III and IV have the potential

to be used for hybridization programs in order to generate higher yielding pre-breeding mate-

rials with a maximum probability of desirable traits.

Traits for culm diameter, plant height, panicle length, five panicles weight, and filled grains

per panicle led the most to genetic diversity (S2 Table). The highest cluster means for leaf area

index (cm2), culm diameter (mm), filled grains per panicle, and yield/hill (gm) were observed

in cluster III. Cluster III also showed the lowest mean for 1000 grain weight (g). Cluster II

showed the highest cluster means for the panicle length trait. The performance mean of the

different clusters for the characteristics studied demonstrated that traits for dwarf stature,

short growth duration, lower leaf area index (cm2), culm diameter (mm), panicle length (cm),

filled grains per panicle, unfilled grains per panicle, and yield/hill (g) were clubbed in cluster

IV along with the trait for maximum number of effective tiller.

Fig 6. Estimation of population using LnP(D) derived ΔK for K from 1 to 15.

https://doi.org/10.1371/journal.pone.0196096.g006

Fig 7. Assignment of fifty red rice germplasms into four populations (A, B, C and D) using STRUCTURE 2.3.4 software.

https://doi.org/10.1371/journal.pone.0196096.g007
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Comparing these results to other research, the five clusters here, grouped using the Mahala-

nobis D2 statistic, resonates with Siddique et al. Siddique, Khalequzzaman, Islam, Ahamed and

Rashid [59], who reported five and six clusters from forty traditional Boro and forty Aman rice

germplasm also using D2 statistics. The clustering pattern in this study demonstrated that the

germplasm constellated in the same cluster, albeit without originating from the same geo-

graphic area. Chakravorty, Ghosh and Sahu [60] evaluated fifty-one rice landraces and

observed no specific relationship between geographical and genetic diversity.

Correlation analysis of genotypic and phenotypic traits can provide important information

among study crop species or different groups of crop accessions [61]. Research has concen-

trated on genetic and morphological diversity analysis for both indigenous aromatic rice germ-

plasm available in Bangladesh and the considerable phenotypic variation observed in a large

number of aromatic rice germplasms [62]. In this study, the intra- (0.65–1.24) and inter-

(3.70–16.31) cluster distances displayed a large range of diversity. This result resonates with

Islam et al. [62], who measured ranges of intra- and inter-cluster distances from 0.61 to 1.27

and 3.71 to 16.12 in aromatic rice, respectively. Bhakal and Lal [63] suggest that having more

distant clusters could afford hybridization in order to achieve a higher heterotic response.

Fig 8. Neighbor-joining tree of fifty red rice germplasm based on populations obtained by the model-based

approach.

https://doi.org/10.1371/journal.pone.0196096.g008
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Results from the present study suggest that crosses between germplasm of cluster III and IV

might provide high heterosis as well as transgressive segregation [64, 65].

Using SSR marker profiling to identify the genetic polymorphism available among the

tested red rice germplasm, the measured average number of alleles per locus (3.24) compares

with Islam [66], who studied 113 aromatic and fine rice germplasm from different districts of

Bangladesh using forty-five SSR markers and detecting 3.11 alleles per locus. Further, Salgotra

et al. [10] also detected 114 alleles with an average of 3.08 among 141 basmati accessions using

SSR markers. In the present report, the PIC value ranged 0.04 to 0.75, with an average of 0.32.

This accords with previous values: 0.34 to 0.88 and an average of 0.66 [46], as well as 0.04 to

0.59 [16] and 0.05 to 0.67 [66]. Ahmed, Khalequzzaman, Bashar and Shamsuddin [67], how-

ever, reported a range of 0.44 to 0.89 and average of 0.74, which is markedly higher than the

results in the current study. While high PIC values can be attributed to the use of more infor-

mative markers [68], lower PIC values, in general, indicate that the germplasm under study are

more closely related types. Higher values, by contrast, indicate greater diversity of materials.

Results from this study suggest that these SSR markers may be useful tools for future genetic

dissection of rice germplasm.

Identification of unique alleles can have great importance for breeding purposes [9, 69]. In

this study, 22 unique alleles were identified by SSR markers (S1 Table). Each germplasm

showed unique alleles for at least one microsatellite locus. However, unique alleles ranged

from one to two at each locus [9]. Ten SSR markers amplified one unique allele and six mark-

ers amplified two unique alleles from 22 red rice germplasm (S1 Table). Moreover, germplasm

Fig 9. Principal component analysis (PCA) of fifty red rice germplasm based on population obtained by the model-based

approach.

https://doi.org/10.1371/journal.pone.0196096.g009
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with a higher number of unique alleles represents a potential bank of novel alleles for use in a

crop improvement breeding program [15]. SSR markers have previously identified 58 unique

alleles among rice, all found at 25 of 30 SSR loci [70]. Unique alleles have similarly been

detected in both cultivated and wild rice [30, 71].

In the present study, genetic diversity ranged from 0.05 and 0.68, averaging 0.35 (Table 2),

with a genetic similarity (GS) coefficient of 0.59, reflecting a moderate level of genetic diversity.

This GS is comparable to Babu et al. [72], where an average GS of 0.55 was reported within 82

rice accessions. Jayamani, Negrao, Martins, Macas and Oliveira [73] reported a GS from 0.21

to 0.92 within 155 Japonica rice germplasms, and Yadav et al. [17] reported an average GS of

0.59 within 88 rice germplasm using fifty SSR markers. In Pakistan, a lower average GS of 0.39

was found for forty rice accessions [16].

Neighbor-joining tree analysis showed all fifty red rice germplasm separated into three

major groups, with group II divided into further sub-groups. While the majority of the

Fig 10. Analysis of molecular variance (AMOVA) of fifty red rice germplasm based on population obtained by the

model-based approach.

https://doi.org/10.1371/journal.pone.0196096.g010

Table 3. Analysis of molecular variance (AMOVA) of red rice available in Bangladesh.

Source df SS MS Est. Var. % Variation

Among population 3 150.626 50.209 1.451 14%

Among individual 46 766.644 16.666 8.053 80%

Within individual 50 28.000 0.560 0.560 6%

Total 99 945.270 10.064 100%

Notes: df, degrees of freedom, SS, sum of squares, CV, variance component estimates, % total, percentage of total variation.

https://doi.org/10.1371/journal.pone.0196096.t003
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germplasm (82%) were in group II, and group III contained only the Surjamukhi and Noyan-

tara germplasm, group II also had several sub-groups (Fig 4).

Population structure analysis displayed four populations A, B, C and D. The highest num-

ber of germplasm were grouped in population C, with only four—Honumanjata, Kharojamri,

Khatomala and Laithajhora—in group D. Both AMOVA and FST analyses confirmed the pop-

ulation structure and its statistical significance (Tables 3 and 4). That the four groups were sig-

nificantly different from each other was confirmed by pairwise FST, ranging from 0.108 to

0.207 (Table 4). Genetic variance among A–D of 14.00% and 80.00% was explained by individ-

ual distinctness within the population (Table 3). This finding is comparatively lower than

other reports for variation within (64.72%) and among (35.28%) groups [74]. Zhang, Ni, Jiang,

Deng, Qing, Yang et al. [75] similarly reported variation among (34%) and within (66%)

populations.

Group I derived from STRUCTURE analysis showed higher yield than other groups, with

group IV showing the lowest yield. Most of the population of group IV are short and have a

lower growth phase that limits the yield and yield-contributing traits.

Conclusion

In general, care should be taken when selecting germplasm for any breeding program attempt-

ing yield enhancement. Cluster analysis from the agro-morphological features grouped all the

germplasm into five groups. Significant (at both p� 0.05 and p� 0.01) differences were found

in all fifteen agro-morphological traits, which confirms the presence of diversification among

the fifty red rice germplasm. From molecular analysis using SSR markers, three groups were

found, while population structure analysis showed all tested germplasm constructed as four

populations, each significantly differentiated and with their variation confirmed by AMOVA.

From the findings of the population structure analysis, in particular, large genetic differ-

ences were also observed between two populations (group A and D), suggesting that these

could be crossed to improve grain yield. As such, the germplasm, as well as the highly poly-

morphic SSR markers identified in this study, have the potential to facilitate a red rice breeding

program for enhanced yield. Based on these findings, we are currently developing such a pro-

gram to facilitate more desirable, novel trait-linked markers usable for not only the mapping

of QTLs/genes against a diversity of abiotic and biotic stresses but also the breeding of socially

and economically desirable traits in red rice. The findings of this study provide a solid founda-

tion for such further work in the effort to increase the yields of this increasingly popular and

both medically and nutritively beneficial red rice.
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S1 Table. Microsatellite loci that unique alleles in different test red rice germplasm.

(DOC)

Table 4. FST Pair wise population differentiation according to groups of populations (using GenAlEx 6.503).

Population A B C D

A 0.000

B 0.172�� 0.000

C 0.108�� 0.138�� 0.000

D 0.207�� 0.185�� 0.179�� 0.000

��Significance at P = 0.001 at 1,000 permutations

https://doi.org/10.1371/journal.pone.0196096.t004
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