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Abstract

The most common kind of cancer among women is breast cancer. Understanding the tumor

microenvironment and the interactions between individual cells and cytokines assists us in

arriving at more effective treatments. Here, we develop a data-driven mathematical model

to investigate the dynamics of key cell types and cytokines involved in breast cancer devel-

opment. We use time-course gene expression profiles of a mouse model to estimate the rel-

ative abundance of cells and cytokines. We then employ a least-squares optimization

method to evaluate the model’s parameters based on the mice data. The resulting dynamics

of the cells and cytokines obtained from the optimal set of parameters exhibit a decent

agreement between the data and predictions. We perform a sensitivity analysis to identify

the crucial parameters of the model and then perform a local bifurcation on them. The

results reveal a strong connection between adipocytes, IL6, and the cancer population, sug-

gesting them as potential targets for therapies.

Author summary

One of the outstanding challenges of the mathematical modeling of cancer progression is

the existence of many unknown parameters. In this work, we develop a data-driven math-

ematical model of breast cancer progression by deriving a system of ordinary differential

equations for the interaction networks of key cell types and molecules in breast tumors.

To overcome the limitations of unknown parameters, we utilize a time course data of a

PyMT mice model of breast cancer and estimate parameters using an optimization

method. Although the predicted dynamics of cancer and necrotic cells using the obtained

values of parameters are in good agreement with the data, the predicted values for a few

other variables do not match the data. This might indicate that there are some other key
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interactions that have not been modeled, and/or there is a noise in the data. The sensitivity

and bifurcation analyses show that the most important parameters in controlling the can-

cer cells population are the proliferation and death rates of cancer cells and adipocytes.

These results are in agreement with some biological and clinical studies of breast cancer,

which have reported a link between adipocytes and breast cancer progression.

Introduction

Breast cancer is known to be one of the most common types of cancer in women. In 2021,

breast cancer accounted for 50% of all new diagnoses in the USA, with a projected death of

43,600 [1]. Breast cancer can be divided into different subtypes through molecular-level analysis

of gene expression patterns. These subtypes are defined as luminal A (LumA), luminal B

(LumB), luminal/human epidermal growth factor receptor 2 (HER2), HER2 enriched, basal-

like, and triple-negative breast cancer (TNBC) nonbasal [2]. LumA is the most common type

with the lowest mortality rate among other subtypes [3]. Most cancer treatments available today

focus on killing cancer cells as well as removing them via surgery [4–6]. While these treatments

may cure cancer, in some cases, cancer metastasizes to other areas of the body after treatments

[7, 8]. Furthermore, it is estimated that 70-80% stage four metastatic breast cancer patients die

within five years [9]. Understanding the biology of cancer as a whole intricate system of interac-

tions is crucial for assessing the invasiveness of cancer and obtaining effective treatments.

The tumor microenvironment is a mixture of many cell types and molecules. The impor-

tance of the cells and molecules interaction networks within the microenvironment in tumor

development has attracted many researchers from many disciplines; whether it is the cancer

progression [10–12] or its response to treatments [13–15]. The interactions between immune

cells, cancer cells, necrotic cells, and adipocytes result in interesting dynamics and lead to the

secretion of important cytokines such as HMGB1, IL12, IL10, and IL6 [16, 17]. These cyto-

kines are often subjects of targeted therapies [18–21].

In-vivo investigation of the tumor microenvironment can be costly and straining for both

patients and scientists. Therefore, mouse models have been one of the most popular methods

of studying cancers’ initiation and progression. There are many different approaches such as

transgenic [22–25], gene targeting [26–28], RNA interference [29–31], and many more to cre-

ate mouse models. The mammary specific polyomavirus middle T antigen overexpression

mouse model (MMTV-PyMT) is the most popular mouse model used in cancer studies, espe-

cially in breast cancer which qualifies as a transgenic approach. These models show the signal-

ing of receptor tyrosine kinases commonly activated in many human progressive tumors,

including breast cancer [32, 33]. Therefore, they are very suitable as they closely mimic the

development of breast cancer in humans.

Mathematical models have enabled scientists to gain insight into biological phenomenon,

which are either obscure or costly to experiment. Modeling cardiovascular system [34–36], dis-

ease spread [37–39], muscle function [40, 41] and ocular disease [42, 43] are just a few exam-

ples of them. Cancer is among one of the most mathematically modeled diseases, some aim to

answer questions about cancer as a whole system of biological and chemical interactions [44–

47], some investigate the mechanical properties of a cancerous tissue [48, 49], and some others

focus on modeling cancer response to different treatments [50–52]. The most desirable fea-

tures of mathematical models of cancer, including stochastic [53–55] and deterministic models

[56–58], are their ability to make good predictions, testing plausible biological hypotheses or

generating clinically testable hypothesis. For example, a multiscale model of prostate cancer
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shows that low androgen levels may increase resistance to hormonal therapy and that treat-

ment with 5α-reductase inhibitors may lead to more therapy-resistant cancer cells [59], and a

data driven mathematical model predicts the response to FOLFIRI treatment for colon cancer

patients [60]. Moreover, an agent-based model [61] of tumor progression indicate that while

macrophages existence can increase the size of the tumor, an increase in their infiltration has a

reverse effect. In another study, a hybrid agent-based model [62] of ductal carcinoma, which is

a common type of breast cancer that starts in cells that line the milk ducts, finds that duct

advance rates happen in two phases of an early exponential expansion, followed by a long-

term steady linear expansion. Additionally, a free boundary mathematical model of the early

detection of recurrences shows a relation between the size of the growing cancer and the total

Serum uPAR mass in the cancer [63].

Simple models such as the logistic model and Gompertz model have helped in understand-

ing the growth dynamics of the tumor, predicting the age of the tumor, etc. [64, 65]. These

models are dependent on parameters such as proliferation and degradation rates which may

depend on cells and molecules interactions in the tumor. Thus, such simple models have the

capacity of expanding into more comprehensive models and include many factors through a

system of ordinary differential equations (ODEs). This could give a better understanding of

how the tumor develops to find optimal treatments [66–70]. However, for mathematical mod-

els, obtaining parameter values is always a challenge due to the lack of biological data, espe-

cially time course dataset.

In this paper, We use a system of ODEs to describe the dynamics of some key players in the

breast tumors microenvironment. We utilize a time course data set collected from three PyMT

mice at four different stages of cancer’s progression [71] to estimate the parameters of our pro-

posed mathematical model through an optimization approach. There are several methods for

estimating model parameters, including Monte Carlo Hastings and steady-state assumption.

Each of these methods has its benefits and drawbacks. Monte Carlo methods, in particular,

necessitate a large number of simulations; therefore, they are extremely slow for large-scale

problems. Although assuming steady-state evaluates the system parameters straightforwardly,

some variables reach the steady-state prematurely and may not correspond with the data in

some cases. Here, the least-squares optimization is used to handle parameter estimation in a

feasible region for a breast cancer mouse model. Researchers have employed this method to

evaluate the system parameters in various disciplines [72–74]. We apply the least-square opti-

mization method on the PyMT mouse time course data set to estimate the parameters of our

model. We then assess the sensitivity of our model to its parameters using a sensitivity analysis

based on a direct differential method. Finally, we locally investigate the effect of sensitive

parameters using bifurcation plots. The results show interesting connections with important

biological observations reported in the literature.

Materials and methods

Many cells and cytokines are involved in cancer development, but to avoid complexity, we

only consider the most important ones give in Table 1. Fig 1 shows the interaction network

between different cell types and molecules used in this paper.

Cells and molecules interaction network—ODE model

T-cells. We categorize T-cells into 4 major sub-types: naive (TN), helper (Th), cytotoxic

(TC) and regulatory (Tr) T-cells; with naive T-cells being the only sub-type, which is not present

in the tumor microenvironment and is mainly found in the lymphatic system [75]. Even though,

introducing nonlinearity in ODEs for T-cells can prevent issues such as unlimited exponential
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growth, for simplicity, we just make activation rates of other T-cells proportional to the number

of naive T-cells. In this way, we control the system with less complexity. Therefore, we describe

the ODEs for helper, cytotoxic and regulatory T-cells prior to that of the naive T-cells.

CD4+ helper T-cells (Th). Dendritic cells [76, 77], HMGB1 [78, 79], and IL-12 [66, 80]

activate CD4+ helper T-cells, while regulatory T-cells [81, 82] and IL-10 [83, 84] inhibit them.

Therefore, we use the following ODE to describe the dynamic of helper T-cells

d½Th�

dt
¼ ðlThH

½H� þ lThD
½D� þ lThIL12

½IL12�Þ½TN �

� ðdThTr ½Tr� þ dThIL10
½IL10� þ dThÞ½Th�:

ð1Þ

Cytotoxic T-Cells (Tc). Dendritic cells [85, 86] and IL-12 activate naive CD8+ T-cells [66,

80]. On the other hand, regulatory T-cells [66, 82] and IL-10 [83, 84] suppress Cytotoxic

T-Cells functionality. Due to the similarity between natural killer (NK) cells and Cytotoxic

T-Cells in directly killing cancer cells, we assume this group includes both CD8+ T-cells and

NK cells. Therefore, we model cytotoxic T-cells’ dynamics in the following way.

d½Tc�

dt
¼ lTcD

½D� þ lTcIL12
½IL12�

� �
½TN � � dTcTr ½Tr� þ dTcIL10

½IL10� þ dTc

� �
½Tc�: ð2Þ

Regulatory T-Cells (Tr). Dendritic cells stimulate formation [87] and activation of regula-

tory T-cells [86, 88]. Hence, we have the following equation for the dynamics of T-reg cells.

d½Tr�

dt
¼ lTrD

½D�½TN � � dTr ½Tr�: ð3Þ

Table 1. Mouse data correspondence with variables.

Variable Name Data used

TN Naive T-cells Combination of CD4 naive and memory resting T-cells and resting NK

cells

Th Helper T-cells Combination of memory activated CD4 T-cells and follicular helper T-

cells

TC Cytotoxic cells Combination of CD8 T-cells and activated NK cells

Tr Regulatory T-cells Regulatory T-cells

DN Naive dendritic cells Naive dendritic cells

D Activated dendritic cells Activated dendritic cells

MN Naive Macrophages Combination of Macrophages M0 and Monocytes

M Macrophages Combination of M1 and M2 Macrophages

C Cancer cells Estimated

N Necrotic cells Estimated

A Cancer Associated

Adipocytes

Assumed to be twice of the total number of immune cells

H HMGB1 HMGB1 gene expression

IL12 IL-12 IL12A and IL12B gene expressions

IL10 IL-10 IL10, IL10RA and IL10RB gene expressions

IL6 IL-6 IL6, IL6ST and IL6RA gene expressions

Correspondence between the model variables and the gene expression data of the primary tumors and deconvolution

results.

https://doi.org/10.1371/journal.pcbi.1009953.t001
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Naive T-Cells (TN). Combining Eqs (1)–(3) for the activation of naive T-cells and adding

an independent naive T-cells production rate ATN
, we get the following ODE for for naive T-cells

d½TN �

dt
¼ ATN

� ðlThH
½H� þ lThD

½D� þ lThIL12
½IL12�Þ½TN �

� ðlTcD
½D� þ lTcIL12

½IL12�Þ½TN �

� ðlTrD
½D� þ dTN Þ½TN �:

ð4Þ

Dendritic cells (D)

Cancer cells [66, 89] and HMGB1 [67, 90–92] can activate dendritic cells. Moreover, cancer

cells may promote natural death of dendritic cells in different ways [86]. Adding ADN
as the

production rate of naive dendritic cells, we get the following system of equations for naive den-

dritic cells (DN) and activated dendritic cells (D)

d½DN �

dt
¼ ADN

� ðlDC½C� þ lDH½H�Þ½DN � � dDN
½DN �; ð5Þ

d½D�
dt

¼ ðlDC½C� þ lDH½H�Þ½DN � � ðdDC½C� þ dDÞ½D�: ð6Þ

Macrophages (M)

Macrophages have many phenotypes and can change them frequently. For simplicity, we

avoid the break down of them into M1, M2, and other subsets, and we model all activated

Fig 1. Interaction network. Diagram of interactions between different cell types and molecules in breast tumors for the mouse model, as it has

been modeled in this paper. Variables of the model with their descriptions are given in Table 1.

https://doi.org/10.1371/journal.pcbi.1009953.g001
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macrophages as a single variable denoted by M. Tumor associated macrophages (TAMs) are

activated by IL-10 [93–95]. Moreover, IL-12 activates M1 Macrophages [68, 93, 96–98], while

M2 macrophages are activated by helper T-cells secreted cytokines (IL-13 and IL-4) [93].

Denoting naive macrophages by MN, activated macrophages by M, and the production rate

of naive macrophages by AM, we can write the following system of equations for the dynamics

of naive and activated macrophages.

d½MN �

dt
¼ AM � ðlMIL10

½IL10� þ lMIL12
½IL12� þ lMTh

½Th�Þ½MN � � dMN
½MN �; ð7Þ

d½M�
dt
¼ ðlMIL10

½IL10� þ lMIL12
½IL12� þ lMTh

½Th�Þ½MN � � dM½M�: ð8Þ

Cancer cells (C)

Traditionally, it is assumed that the growth rate of cancer cells is related to both the existing

population and the available resources or space. Therefore, we model the proliferation of can-

cer cells by the logistic term [C](1 − [C]/C0), where C0 is the maximum capacity. In addition,

IL-6 promotes the proliferation of cancer cells [99–101]. Also, adipocytes, releasing metabolic

substrates, promote proliferation of breast cancer cells [102, 103]. On the other hand, activated

CD8+ T-cells kill cancer cells [66, 104, 105]. The dynamics of cancer cells is modeled by the

following equation.

d½C�
dt
¼ lC þ lCIL6

½IL6� þ lCA½A�
� �

1 �
½C�
C0

� �

½C� � ðdCTc ½Tc� þ dCÞ½C�: ð9Þ

Cancer associated adipocytes (A)

Adipocytes participate in a highly complex cycle orchestrated by cancer cells to promote

tumor progression [106]. Therefore, after including them in Eq (9), for simplicity we consider

an independent logistic model describing their dynamics.

d½A�
dt
¼ lA½A� 1 �

½A�
A0

� �

� dA½A�: ð10Þ

Necrotic cells (N)

Cells in the tumor microenvironment can die and turn into necrotic cells due to depletion of

resources. This process is called necrosis and is known as a feature of tumors possessing an

aggressive phenotype [107]. Necrotic cell death can replace other types of death for some cell

types [45, 91]. As mentioned, activated CD8+ T-cells kill cancer cells [66, 104, 105] and we

assume that death of cancer cells is the primary source of necrosis. Since a fraction of cancer

cells can go through first becoming necrotic cells, the production rate of necrotic cells is mod-

eled by the fraction (αNC) of dying cancer cells.

d½N�
dt
¼ aNC dCTc ½Tc� þ dC

� �
½C� � dN ½N�: ð11Þ

Molecules

In this section, we describe ODEs that govern dynamics of molecules in our model.

HMGB1 (H). High-mobility group box 1 (HMGB1) is known to be a prototypical dam-

age-associated molecular pattern (DAMP) protein, which alarms the body about disturbances
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in homeostasis [108]. HMGB1 exert immune promoting activity by inducing angiogenesis,

proliferation, and invasiveness of cancer cells [90]. HMGB1 is mainly produced by dendritic

cells [90, 91, 109, 110], necrotic cells [66, 109, 111, 112], macrophages, [109, 113–115], natural

killer (NK) cells which behave like cytotoxic T-cells [109, 116–118], and cancer cells [66, 90,

91].

Therefore, the dynamics of HMGB1 is modeled by the following equation.

d½H�
dt
¼ lHD½D� þ lHN ½N� þ lHM½M� þ lHTc

½Tc� þ lHC½C� � dH½H�: ð12Þ

IL-12 (IL12). IL-12, stimulates the differentiation of naive T-cells into helper T-cells. Mac-

rophages and dendritic cells secrete IL-12 [66, 86, 97, 119]. Also, IL-12 is produced by Helper

and cytotoxic T-cells [120]. We model the dynamics of IL-12 using the following equation.

d½IL12�

dt
¼ lIL12M

½M� þ lIL12D
½D� þ lIL12Th

½Th� þ lIL12Tc
½Tc� � dIL12

½IL12�: ð13Þ

IL-10 (IL10). IL-10 is secreted by macrophages [93, 121, 122], dendritic cells [86, 123–

125], T-reg cells [83, 126], CD4+ helper T-Cells [120, 127, 128], CD8+ cytotoxic T-cells [120,

126, 128], and cancer cells [87, 129]. Therefore, the dynamics of IL-10 is modeled in the follow-

ing way.

d½IL10�

dt
¼ lIL10M

½M� þ lIL10D
½D� þ lIL10Tr

½Tr� þ lIL10Th
½Th� þ lIL10Tc

½Tc�

þlIL10C
½C� � dIL10

½IL10�:

ð14Þ

IL-6 (IL6). The key cytokine that promotes the growth of cancer cells is IL-6 and is pro-

duced by cancer associated adipocytes [97, 99, 100, 130], macrophages [66, 93, 97, 98, 131,

132], and dendritic cells [66, 86, 120].

d½IL6�

dt
¼ lIL6A

½A� þ lIL6M
½M� þ lIL6D

½D� � dIL6
½IL6�: ð15Þ

Mouse data analysis

For this study, we use the PyMT mice RNA-sequencing data available in the Gene Expression

Omnibus (GEO) database as GSE76772 [71]. The PyMT gene expressions were acquired from

3 PyMT mice at four tumor progression stages: hyperplasia at week 6, adenoma/MIN at week

8, early carcinoma at week 10, and late carcinoma at week 12. The original study was designed

to recognize gene expression similarities at different cancer stages. They used a directional

RNA sequencing method to acquire the raw gene expression data. Later, they used statistical

methods to remove transcriptionally inactive genes and get high confident normalized gene

counts. We apply CIBERSORTx B-mode with the LM22 signature matrix [133] on the men-

tioned time-course gene expression data to estimate the relative abundance of each immune

cell type in the tumor. Finally, we use expression values of genes encoding cytokines in the

model and combined some immune cells to estimate the values of the model’s variables. Fig 2

shows the most variant immune cell frequencies for three mice at different time points. Since

the deconvolution method only provides us the percentage of each immune cell type in
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primary tumors, we use the tumor size for each mouse to estimate the number of immune

cells, cancer cells, and necrotic cells in each sample. Also, based on our observations, the aver-

age ratio of cancer cells to immune cells and necrotic cells is approximately 0.955:0.04:0.005 in

mouse model breast tumors. Also, the epithelial cells density has been reported as 45 cells/

mm3 in breast cancer [134]. Thus by choosing the scaling factor α = 45, the average density of

cancer cells across all samples at each time is close to that value. So, we first calculate the total

number of cells (TNC) for each mouse at a time point using

TNCi ¼ a
tumor sizeðtiÞ

1

4

P4

i¼1
tumor sizeðtiÞ

:

where ti 2 {6 weeks, 8 weeks, 10 weeks, 12 weeks} for i = 1, � � �, 4. Using the TNC, we calculate

the total number of cancer cells (TNCC), the total number of immune cells (TNIC), and the

total number of necrotic cells (TNNC), using the ratio 0.955:0.04:0.005 and the following for-

mulas

TNICi ¼ 0:04a

P4

i¼1
Immune Cells RatioðtiÞ

1

4

P4

i¼1
Immune Cells RatioðtiÞ

TNCCi ¼
191

192
ðTNCi � TNICiÞ and TNNCi ¼

TNCCi

191
:

See Table 2 for the values. The fraction 191

192
is just the simplified ratio of cancer cells to necrotic

cells 0.955 : 0.005.

Fig 2. Immune cell frequencies for each mouse at different time points. Results acquired from deconvolution of gene expression data at each time point using

CIBERSORTx B-mode.

https://doi.org/10.1371/journal.pcbi.1009953.g002
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Parameter estimation

For better stability, we perform the optimization process on the non-dimensionalized system,

see the Non-dimensionalization appendix. In the following, for easier identification, we pres-

ent matrix and vector quantities using boldface upper and lower case symbols, respectively.

Least-squares optimization. The set of parameters, i.e., the coefficients, proliferation, and

death rates, when no specified bounds are desired, can be evaluated by re-arranging the 15

ODEs expressed in Eqs (1)–(15), and solving a linear least-squares problem via the following

formula

θ ¼ ðATAÞ� 1ATb; ð16Þ

where A is the augmented matrix of mice’ data obtained by re-arranging, whose element ij is

the ith observation of the jth variable, i.e., the value of each variable at specific time reported in

Table 2. The rates are evaluated using a central finite difference method and are collected in

vector b. The solution vector, θ, provides the approximation for the 57 model parameters. The

Table 2. Cells and molecules values for each mouse at different time points.

Mouse 1 Time (days) TN Th TC Tr DN D MN M

0 18.91552 0.180307 0.001385 0.120725 13.04028 0.498882 6.767523 7.386616

14 6.771898 0.673464 4.279462 0.001385 8.607666 0.001385 6.115784 15.72747

28 16.02047 0.001385 0.164525 0.269144 6.955235 0.001385 6.053538 19.64027

42 8.807364 0.073352 2.217549 0.001385 11.31217 0.313571 1.842909 17.24431

Time (days) C N A H IL12 IL10 IL6

0 6.56815 0.034388 93.82247 1000 28 417 2490

14 32.33359 0.169286 84.35702 940 24 351 1766

28 57.61312 0.301639 98.2119 1103 0 404 1599

42 83.48514 0.437095 83.62523 1050 2 455 1880

Mouse 2 Time (days) TN Th TC Tr DN D MN M

0 14.18682 0.001459 0.001459 0.001459 8.67344 0.001459 14.50968 9.00316

14 2.54051 0.787626 0.001459 0.001459 13.30604 0.001459 26.56551 0.632713

28 7.022259 0.444987 2.773333 0.001459 14.39057 0.001459 21.57876 4.581648

42 11.05377 0.001459 3.951772 0.001459 8.180317 0.001459 7.14771 8.669383

Time (days) C N A H IL12 IL10 IL6

0 6.590515 0.034505 92.75787 1182 0 450 1602

14 32.26456 0.168924 87.67355 932 16 723 1068

28 57.54278 0.301271 101.5889 945 0 429 1646

42 83.60215 0.437708 78.01466 807 0 319 1490

Mouse 3 Time (days) TN Th TC Tr DN D MN M

0 10.84328 0.014559 2.398143 0.14663 11.10196 0.466044 9.302918 8.559201

14 11.18575 0.748596 0.235111 0.001456 11.90139 0.001456 6.080938 16.72823

28 17.73009 0.001456 0.608837 0.001456 12.19168 0.001456 6.812254 6.448463

42 10.89853 1.288033 0.552229 0.001456 12.57453 0.001456 13.96522 7.217389

Time (days) C N A H IL12 IL10 IL6

0 6.73803 0.035278 85.66546 1521 19 511 3327

14 32.13758 0.16826 93.76585 1549 3 566 3481

28 57.83445 0.302798 87.59139 957 0 349 1716

42 83.28994 0.436073 92.99769 779 4 278 1490

Time unit is represented in days. Although sampling starts at 6 weeks, we take that to be the origin of time, i.e. t = 0.

https://doi.org/10.1371/journal.pcbi.1009953.t002
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values of the carrying capacities C0 and A0 are determined based on the data, thus are consid-

ered known quantities, which keeps the system linear. In this study the parameters of the sys-

tem are all non-negative; however, the expression in Eq (16) does not enforce any bounds on

the solution that may result in negative values for the parameters. To enforce non-negativity,

the following linear least-squares optimization problem is solved

Find : y1; � � � ; y57

Minimize :
θ

1

2
kAθ � bk2

2

Subject to : ymin � ye; e ¼ 1; � � � ; 57

ð17Þ

that finds the solutions in the feasible region. The parameters’ bounds are the only constraint

imposed. In this study, we solve the optimization problem above by setting θmin = 10−5. In Eq

(17), the solution is found for the minimum residual value in an iterative process where no

inversion, such as the one in Eq (16), is needed. This approach of finding a solution using opti-

mization (i.e., the iterative process) has been employed successfully in prior studies [135, 136].

See the Parameter values appendix where the optimized set of non-negative parameters are

reported in Table 3.

Sensitivity analysis

Sensitivity analysis is generally used to assess the sensitivity of the model’s output to system

parameters [137]. To identify the most crucial parameters affecting the dynamics of cancer

and the total number of cells, we perform sensitivity analysis on these quantities.

Table 3. Non-dimensional parameter values.

Parameter Value Parameter Value Parameter Value

lThH
1.0767 � 10−5

lThD
2.0501 � 10−4

lThIL12
1.0751 � 10−5

lTcD
0.0208 lTcIL12

1.0123 � 10−5
lTrD

9.4550 � 10−5

lDC
0.0014 lDH

1.0484 � 10−5
lMIL10

1.3208 � 10−5

lMIL12
1.3208 � 10−5

lMTh
1.0875 � 10−5

lC
0.0063

lCIL6
2.1514 � 10−4

lCA
6.0466 � 10−4

lA
0.0024

lHD
0.0753 lHN

4.0155 � 10−5
lHM

5.5234 � 10−4

lHTc
1.8188 � 10−4

lHC
4.0155 � 10−5

l IL12M
1.0604 � 10−5

l IL12D
5.8560 � 10−5

lIL12Th
0.0084 lIL12Tc

7.1527 � 10−4

lIL10M
1.2340 � 10−5

lIL10D
2.6518 � 10−4

lIL10Tr
8.4369 � 10−4

l IL10Th
0.0011 l IL10Tc

1.0831 � 10−5
lIL10C

1.0842 � 10−5

lIL6A
4.1087 � 10−4

l IL6M
1.4458 � 10−4

lIL6D
0.0011

dTh 1.1053 � 10−5 dTc 1.0189 � 10−5 dTr 4.9935 � 10−5

dTN 1.0473 � 10−5 dDN
1.1051 � 10−5 δD 0.3212

dMN
2.8489 � 10−4 δM 1.0238 � 10−5 δC 0.0032

δA 0.0024 δN 0.0013 δH 0.0012

dIL12
0.0107 dIL10

0.0012 dIL6
0.0013

dThTr 0.0414 dThIL10
1.0753 � 10−5 dTcTr 0.0162

dTcIL10
1.0333 � 10−5 δDC 1.7530 � 10−4 dCTc 9.9663 � 10−5

ATN
1.4442 � 10−4 ADN

5.8773 � 10−4 AM 4.1504 � 10−5

https://doi.org/10.1371/journal.pcbi.1009953.t003
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We use x to show non-dimensional variables. For a generic ODE system of the form

dx
dt
¼ fðx; t; θÞ ð18Þ

where x ¼ hx1 ; � � � ; x15i and θ = hθ1, � � �, θ57i are vectors of state variables and parameters of

our model, respectively, the first order local sensitivity of a variable xj with respect to a parame-

ter θi is evaluated by

si ¼
dxj

dyi
; i ¼ 1; � � � ; 57 ð19Þ

To obtain the sensitivity vector, s = hs1, � � �, sMi, we use a direct differential method. That is, we

differentiate Eq (18) with respect to θi to get

d
dt
@x
@yi
¼
@f
@x

@x
@yi
þ
@f
@yi

ð20Þ

and then we use a forward Euler discretization in time for Eq (20) to find si ¼ @x=@yi. The

sensitivity of each parameter in the neighborhood of a chosen parameter set O(θ) is then

defined as

ŝi ¼
Z

OðyÞ

sidy: ð21Þ

This neighborhood is created by perturbing our original parameter set by 10% and the integra-

tion is carried out numerically with sparse grid points [138, 139].

In this study, because some of our state variables do not reach steady-state within an experi-

mentally reasonable time interval, we use a direct differential method rather than a steady-

state method. As mentioned before, the latest data point was extracted at 12 weeks. However,

our observations show that we need to continue the simulation for much longer than experi-

mentally feasible so that all variables reach the steady-state. For this reason, we use a direct dif-

ferential approach up to 18 weeks to obtain the sensitivities.

Results

Dynamics

We use the optimized parameters from the least-squares optimization and substitute them in

the system of ODEs to obtain the dynamics of the system variables. As mentioned before, mice

data was collected at weeks 6, 8, 10, and 12 corresponding to 42, 56, 70, and 84 days. However,

we shifted our time interval so that 6 weeks becomes the time origin (t = 0) and 12 weeks maps

to 42 days. We also continue our ODE solutions further than 42 days (up to 126 days) to

match our sensitivity analysis. Fig 3 shows a comparison between the solution of ODEs and

mouse data for the time period of 126 days. For a clear comparison of the results, the solution

of ODEs and mice data are shown in one plot.

Despite the fact that the dynamics of cancer and necrotic cells fit the data well, a few predic-

tions are less in accordance with the data points due to considerable disparities in the available

data for some state variables. This can be remedied by more time course data decreasing the

noise. However, it is considered a limitation of our study at this point.

Based on ODE simulations, naive T-cells for mice 1 and 3 show a quick decrease and then

increase, while mouse 2 is strictly increasing. Helper T-cells for mice 1 and 3 quickly decrease

to a very small steady-state, while for mouse 2, it gently increases. Cytotoxic cells behave the
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Fig 3. Comparison of the dynamics and mouse data. By solving the system of ODEs, the mouse data are compared to the values estimated using the

optimal parameters obtained from the least-squares optimization. Time zero corresponds to 6 weeks which is the beginning of the mice data sampling.

https://doi.org/10.1371/journal.pcbi.1009953.g003
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same way as the helper T-cells, and regulatory T-cells are generally decreasing with a negligible

change in Mouse 2 compared to the other mice. Generally, for T-cells, our simulations are not

in a good agreement with the data. Mouse 3 shows the best agreement in naive and cytotoxic

T-cells, mouse 2 in regulatory T-cells and mouse 1 in helper T-cells.

The ODE results show that naive dendritic cells increase and then decrease in all 3 mice.

Activated dendritic cells sharply decrease to a small steady-state in mice 1 and 3. In mouse 2,

we can see a fluctuation in dendritic cells, but these changes are very small and negligible and

eventually settles at a small value like the other two mice. Compared to T-cells, dendritic cells

show a much better agreement with data in all three mice. The number of naive macrophages

decrease in all three mice. Activated macrophages also decrease with similar rates in all three

mice. Again, the simulation results are not in good agreement with the data. Mouse 1 shows

the best agreement in naive macrophages and, mouse 3 in activated macrophages.

The predicted dynamics of cancer cells in all three mice follow the data very closely; dynam-

ics in all three mice are similar, and they reach a steady-state value within 75 days. Given the

closeness of reported data points in three mice, this similarity in their behavior is expected.

Adipocytes’ dynamics also reach the steady-state values in all three mice. They do so by slowly

decreasing in mouse 1 and slowly increasing in mouse 2. Mouse 3 undergoes a sharper

increase before it converges to its steady-state value. Interestingly, in all three mice, the num-

ber of adipocytes converges to the same value. In mouse 3, we see a fair agreement between the

dynamic of adipocytes and the data unlike the other two mice. Necrotic cells, like cancer cells,

show a logistic growth and a perfect match with the data. We see almost the same behavior in

all 3 mice reaching the same steady-state value. This is expected since the source of necrosis in

the model is the death of cancer cells.

HMGB1 dynamics show a good agreement with the data, in all three cases. They start with

a sharp increase from the initial value followed by a fast decrease. IL12 dynamics in mice 1 and

3 quickly decrease to a steady-state, but mouse 2 shows a mild, strictly increasing behavior.

Mouse 1 and 3 also follow the data closely unlike mouse 2. IL10 decreases in all cases with a

rather steeper slope in mouse 2. As a matter of fact, mouse 2 is the only mouse for which IL10

reaches its steady-state value within 125 days. Finally, IL6 decreases to a steady-state within the

simulation time for all three mice, with mouse 3 showing the steepest descend followed by

mouse 1. In general, we see a fair correspondence between dynamics and data in all 3 mice for

both IL10 and IL 6. However, this correspondence is better in mice 1 and 3 than mouse 2.

Now we comment on the interactions, which we believe are responsible for the differences

in the dynamics. For activated T-cell subtypes, we can see from equations Eqs (1) and (2) that

dendritic cells, IL12 and HMGB1 are involved in their promotion, and regulatory T-cells and

IL10 are involved in their inhibition process.

Helper T-cells are produced by activation of naive T-cells and inhibited by T-reg cell. For

helper T-cells, we can see that mouse 2 has significantly fewer T-reg cells in the long run, and

its IL12 levels are increasing, unlike the other two mice. These two behaviors contribute to a

rise in the number of helper T-cells in this mouse. The same goes for cytotoxic cells. T-reg cell

levels are only dependent on dendritic cells. Dendritic cells in Mice 1 and 3 start at high values

contributing to some activation of T-reg cells and then a quick depletion. This explains the

decreasing of T-reg cells in these mice. As for mouse 2, the number of dendritic cells starts low

and stays low, resulting in the low numbers of T-reg cells and the sharp decrease in this case.

Finally, Eq (5) shows that in the model, naive T-cells are produced via a constant rate, while

activation of other T-cell subtypes contributes to their depletion. All three mice show a grow-

ing trend for naive T-cells. Given that the other subtypes are generally low or depleting (mice 1

and 3) or have a very gentle growth (mouse 2), the natural production of naive T-cells domi-

nates the process.
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Dendritic cells are activated and inhibited by cancer cells, see Eq (6). Therefore, its activa-

tion by HMGB1 can be the key to the observed behaviors. The sudden decrease in HMGB1 in

all mice can be the reason that the decaying effects in Eq (6) have taken over so quickly. For

the naive dendritic cells, the sudden surge results from the sudden drop in activated dendritic

cells. However, natural decay takes over later.

By looking at Eq (7), we can see that macrophages get activated by IL10, IL12, and helper T-

cells, and the only cause of death considered for them in this model is their natural decay. All

the activators decrease in mice 1 and 3. In mouse 2, we have a slight increase in helper T-cells

and IL12, and maybe that is why mouse 2 has the highest level of activated macrophages. How-

ever, at the end, these effects are not enough to win over the natural decay, and hence we see

an overall decrease in all three cases. For naive macrophages, we can see that the death rate in

Table 3, is an order of magnitude larger than the natural production rate. As a result, there is a

decrease in naive macrophages in all three mice.

In the model, either cancer cells production happens independently or is promoted by adi-

pocytes and IL6. They can also die naturally or by cytotoxic cells. As mentioned before, adipo-

cytes in all three mice converge to the same value. Also, IL6 behavior is similar across all cases,

while cytotoxic cells follow a different pattern in mouse 2. In fact, the increase in Tc observed

in mouse 2 agrees with CD8 frequency shown in Fig 2. Adipocytes and IL6 play crucial roles in

the cancer dynamics given their roles and the similarity between cancer dynamics and their

dynamics. Adipocytes are modeled independently. They follow a logistic population model,

and depending on their estimated growth and decay rate; they increase or decrease and then

saturate. Also, since necrotic cells are produced as a result of cancer cells’ death, their dynamics

are self-explanatory.

HMGB1 is produced proportional to the number of dendritic cells, necrotic cells, macro-

phages, cytotoxic cells, and cancer cells and decays naturally. Among the mentioned cell types,

cancer and necrotic cells are the only ones whose numbers increase in time, and the rest of the

cell types decrease. But, the parameter estimation shows that cancer cells and necrotic cells

have the smallest production rates (two orders of magnitude smaller than the natural decay

rate). Therefore, HMGB1 won’t be affected by them and decreases in time.

IL12 is produced proportional to the number of dendritic cells, macrophages, cytotoxic and

helper T-cells and decays naturally. Higher levels of macrophages and increasing levels of

helper and cytotoxic T-cells in mouse 2 is the reason for its mild increase, unlike mice 1 and 3.

IL10 is produced proportional to the number of dendritic cells, macrophages, cytotoxic,

helper, and regulatory T-cells plus cancer cells and decays naturally. Given its large production

rate by helper T-cells and its even larger decay rate, this cytokine is more significantly affected

by these two parameters. Therefore, it decays quickly in all mice. However, we can see its

steady-state value in mice 2 within the simulation time interval. This is mostly due to the

increasing helper T-cells, which dampens the decreasing effect of its natural decay.

Finally, IL6 is produced by adipocytes, macrophages, and dendritic cells and is removed

naturally. The dynamics of IL-6 is heavily depend on its production rate by dendritic cells,

because its production by dendritic cells and its natural decay rate are orders of magnitude

larger than its production rates by adipocytes and macrophages. Hence, we see a strict decreas-

ing trend in all three mice.

Sensitivity analysis results

Figs 4 and 5 show the results of the sensitivity analysis. A positive value for a parameter means

its increase will directly affect the population of cancer or the total number of cells depending

on the plot title, and a negative value means the opposite. Fig 4 shows the same sensitive
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Fig 4. Sensitivity results. Sensitivity levels of the top 6 most sensitive parameters for cancer and total number of cells.

https://doi.org/10.1371/journal.pcbi.1009953.g004
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parameters for cancer in all three mice. However, there are some differences when it comes to

sensitivity for the total number of cells.

In all three mice, the natural decay rate of cancer cells is the most sensitive parameter. It is

important to point out that calling it the natural decay rate of cancer is an abuse of terminology

Fig 5. Sensitivity results. Other sensitive parameters for cancer and total number of cells.

https://doi.org/10.1371/journal.pcbi.1009953.g005
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and is merely for convenience. In fact, in addition to natural death, δC includes the rate of can-

cer death caused by anything other than cytotoxic cells (which have been directly included in

the model). This description engulfs a large set of biological reasons affecting the cancer popu-

lation and is suitably recognized as the most sensitive parameter. Similarly, for λC being cancer

proliferation rate promoted by anything other than adipocytes and IL6 (which have been

directly included in the model). The next sensitive parameters for cancer are λCA, and λCIL6.

As mentioned in the previous section, adipocytes and IL6 play a big role in cancer dynamics.

Adding to that, we can see δA and λA are also among the most sensitive parameters and

lIL6A
; dIL6

, and lIL6M
are at top of the rest of sensitive parameters, see Fig 5. These imply that

controlling adipocytes and IL6 (in that order) might be a gateway to controlling cancer prolif-

eration in these mice. The removal rate of cancer cells by cytotoxic cells is the tenth sensitive

parameter. Even though this rate is directly involved in the cancer ODE, it is not as sensitive as

adipocyte and IL6 related parameters mentioned before. This might be due to the very low

expression of cytotoxic cells in the mouse model. Next, for mice 1 and 3, we have δM, and for

mouse 2, we have lIL10C
as sensitive parameters. Macrophages affect the cancer population

indirectly by producing cytokines like IL6, IL10, and IL2. IL6 directly affects cancer dynamics,

while IL10 and IL12 do it by affecting cytotoxic cells. For Mouse 2, the parameter lIL10C
pro-

motes the production of IL10, which can affect cancer through cytotoxic cells. The last set of

parameters are C0 for mouse 1, lThH
for mouse 2 and lMIL10

for mouse 3. Cancer cells’ carrying

capacity dictates how far they can go before depleting their resources and are explicitly

involved in cancer ODE. Production of HMGB1 by Th can lead to cancer through several

interactions, such as promoting the production of dendritic cells, which leads to more produc-

tion of all cytokines, or through helper T-cells which are similarly cytokine producers. The

fastest route that connects the production of IL10 by macrophages is the route that leads to

cytotoxic cells. The more IL10, the more removal of cytotoxic cells and hence less death of can-

cer cells by cytotoxic cells.

Before discussing the sensitive parameters for total cells, it is important to note that TN is

excluded from the total cell count, because they are not primarily present in the tumor micro-

environment and are frequently detected in the circulation and lymphatic system [75]. Other

T-cells get activated and infiltrate the tumor and can be found in copious amounts in tumors.

Dendritic cells get activated inside of the tumor, and cancer cells, necrotic cells, and adipocytes

are the other components of the breast tumor [140]. Finally, since most of the naive macro-

phages polarize into different phenotypes inside of the tumor, we include a 20% factor for MN

[141]. Therefore, we have:

Total Cells ¼ Th þ Tc þ Tr þ DN þ Dþ 0:2MN þM þ C þ N þ A ð22Þ

The total number of cells is an important measurement directly related to the size of the

tumor. Sensitivity results show that parameters δA, λC, δN, λCA, and λA are included as top 5

sensitive parameters in all 3 mice in Fig 4. Four out of five of these parameters govern the pop-

ulation of adipocytes and cancer cells. These results are reasonable given that they have the

largest populations among all other cells. However, the necrosis related parameter is not as

straightforward, since we do not have a large number of necrotic cells in these tumors. If we

track the influence of necrotic cells in the model, we see that they only contribute to the pro-

duction of HMGB1. This cytokine is involved in the dynamics of helper T-cells and naive and

activated dendritic cells. The sixth sensitive parameters are ADN
for mouse 1, AM for mouse 2

and dTr for mouse 3. This difference is interesting since mouse 1 has the highest amount of

naive dendritic cells, mouse 2 has the largest number of macrophages, and mouse 3 has the

most regulatory T-cells. The rest of the sensitive parameters in Fig 5 are independent death
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rates or production rates of cells that are present in the tumor’s microenvironment and can be

justified similar to above. However, we notice the presence of lCIL6
again. As λCA and lCIL6

play

a crucial role in cancer proliferation, they are also important in controlling the size of the

tumor.

Varying dynamics and bifurcation

This section further explores the effect of parameters on cancer dynamics. First, we perturb all

sensitive parameters of cancer by 20% to see the collective effect of changing these parameters.

Fig 6 shows that all three mice almost identically respond to these perturbations. This indicates

good stability of the parameter estimations, especially since this has been acquired by the per-

turbation of parameters that have the biggest impact on the model dynamics.

Finally, we explore the local effect of the top 6 sensitive parameters (from Fig 4) for cancer

on its dynamic. We do this by calculating the value of cancer at t = 42 days with respect to each

sensitive parameter separately with the rest of the parameter values being fixed. As a reminder,

we take 6 weeks which is the beginning of the mouse sampling, to be t = 0 days, and that

makes t = 42 days corresponding to 12 weeks. As mentioned before, some state variables reach

the steady-state very late; therefore, we limited the bifurcation points to the level of cancer at

the last sampling time (12 weeks). The benefit of these results is that we can investigate the

independent effect of large changes in single parameter values. We choose the interval [0, 0.2]

for all the target parameters. Among sensitive parameters, λC has the largest estimated value of

0.0063, and the choice of the interval [0, 0.2] covers values 30 times larger than this value. Note

that there is no limitation in choosing the interval, and this choice has only been made for bet-

ter scaling and visual purposes (see Fig 7). In other words, the plots in Fig 7 are a zoomed-in

and cropped version of more extensive bifurcation diagrams, as there are branches for negative

values and chaos regions for large values that are not biologically realistic parameters’ value

regimes.

Again, all three mice show almost identical behaviors. By increasing death rate values such

as δC and δA, we can significantly reduce the value of cancer cells at the last sampling time. As

mentioned before, δC has a rather obscure meaning as it can be the death of cancer cells pro-

moted by any reasons not directly included in the model. However, we can specifically see that

removing adipocytes by significantly increasing their death rate leads to a notable reduction in

the population of cancer cells at the last sampling time, see Fig 7a and 7e.

Fig 6. Varying dynamics. The transparent regions are acquired by 20% perturbation of all the sensitive parameters in Figs 4 and 5.

https://doi.org/10.1371/journal.pcbi.1009953.g006
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(a)

(b)

(c)

(d)

(e)

(f)

Fig 7. Bifurcation plots. Bifurcation of cancer values after 12 weeks with respect to the most sensitive parameters in

Fig 4, namely (a)δC (b) λC (c) λCA (d) lCIL6
(e) δA and (f) λA.

https://doi.org/10.1371/journal.pcbi.1009953.g007
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On the other hand, increasing the production rates such as λC, λCA, lCIL6
, and λA increases

the cancer population at the last sampling time. Among these, λA has the smallest effect, but

the others can cause the cancer population to reach double its last value in Fig 3. Also, λC has

the same obscurity as δC, since it engulfs the production rate of cancer promoted by reasons

other than what we have already included in the model. But λCA, lCIL6
and λA, specify that con-

trolling the processes for which cancer production is promoted by IL6 and adipocytes or even

reducing the production of these two can lead to a better result.

Discussion

In this study, we modeled the breast cancer progression in PyMT mice using a system of

ODEs. Biologically, cancer is an intricate interaction network with many cells and molecules

involved in its development. For the model, we identified key players and devised a simplified

interaction network based on the available literature, see Fig 1. To further reduce the complex-

ity of the model, we mostly used simple mass action kinetics and linear ODEs, except for can-

cer and adipocytes that follow a logistic growth model, see Eqs (1)–(15).

We acquired the gene expression data from the PyMT RNA-sequencing data available in

the Gene Expression Omnibus (GEO) database as GSE76772 [71]. These data were collected

from 3 PyMT mice after 6, 8, 10, and 12 weeks. We used CIBERSORTx B-mode to deconvolute

the gene expression data and obtained each mouse’s time course data set. We used these data

to estimate all the parameters in the ODE system.

Although the dynamics shown in Fig 3 are not an excellent fit for all the variables, ODE

solutions closely follow a couple of important variables such as cancer and necrotic cells. The

mismatch between the data and dynamics can be attributed to lacking sufficient biological

information. Furthermore, we need to continue the simulations way past the feasible experi-

mental time for all dynamics to reach the steady-state. However, we can see the steady-state

values for cancer and a few more state variables by continuing the response evaluation up to

126 days (three times are longer than the last mouse data sampling).

The simulations indicate similar attributes for mice 1 and 3. Mouse 2 showed similar trends

in most variables except for helper, cytotoxic, regulatory T-cells, activated dendritic cells, and

IL12, see Fig 3. Maybe the most interesting observation was that cancer dynamics were almost

identical in all three mice despite these differences. We argued that the similarity in adipocytes

and IL6 dynamics in three mice dominates the discrepancies in other variables. This was sim-

ply a hunch based on the direct mathematical involvement of these two variables in the cancer

ODE. We further confirmed this by looking at sensitivity levels of cancer to all the parameters

of the model. The observed differences in variables of mouse 2 from mice 1 and 3 might be

due to the differences in the percentages of macrophages’ subtypes (Fig 2), because a high level

of M2 macrophages can suppress cytotoxic T cells and inhibit anti-tumor immunity [142,

143].

We carried out a sensitivity analysis based on a direct differential method, and the results

showed us that the cancer population in all three mice is sensitive to δC, λC, λCA, lCIL6
, δA and

λA in that order, see Fig 4. Commenting on the biological significance of δC and λC is rather

difficult, since they can include the death and production of cancer promoted by cells and

chemicals not included in the model. However, 3 out of 6 of these parameters are related to

adipocytes, and looking at the rest of the sensitive parameters in Fig 5, we can also observe the

importance of IL6 in cancer dynamics. We even investigated these parameters locally for

much larger values through the bifurcation plots and saw regions for which cancer can be con-

trolled through each of the sensitive parameters in Fig 5.
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The link between obesity and breast cancer has been observed by many researchers. In

2007, about 7% of all new cases of cancer in women were related to obesity [144]. Obesity

results in an elevated amount of adipose tissue (fat), and a direct relationship between excess

fat and increased mortality rate in many types of cancer, including breast cancer, has been con-

firmed [145]. Prevention and medication approaches have been utilized to stop or reverse dys-

functional adipose tissue. Approaches such as weight loss strategies or medications such as

metformin, statins, nonsteroidal anti-inflammatory drugs, and docosahexaenoic acid have

been widely studied [146]. In addition, there are studies that suggest that leptin (a hormone

produced by adipocytes) is involved in increasing breast cancer risk in postmenopausal

women, and targeting it might be a key to controlling cancer in such patients [147, 148]. All of

these confirm the importance of adipocytes in breast cancer development. Moreover, there are

many studies recognizing IL6 as a key cytokine in progressive breast cancer, confirming that

high levels of IL6 are related to poor breast cancer prognoses and showcasing its therapeutic

significance in treating cancer patients [18, 19, 70]. Finally, it has been discussed that increased

inflammation and IL-6 secretion in adipocytes, plus a hypoxic tumor microenvironment, cre-

ates an ideal opportunity for adipocyte-derived IL6 to promote angiogenesis [149]. So not only

do adipocytes and IL6 independently contribute to poor breast cancer prognoses, but their

combined effect has been acknowledged as a promoter of angiogenesis.

The approach chosen in this paper is one amongst many. There are many ways to model

the interaction network. Many cells and cytokines have not been included in this study which

have the potential to be integrated in our future studies. For example, our model does not con-

sider resources such as oxygen or metabolites, macrophage heterogeneity, and the formation

of blood vessels (angiogenesis). Similarly, we do not incorporate cancer stem cells, which are a

tumor-initiating, self-renewing population typically resistant to therapeutics [150, 151]. The

role of fibroblasts which tend to support the cancer cell niche [152], can also be considered in

future iterations of the model. Furthermore, given the patient-to-patient heterogeneity, a

mathematical model including more cell types and interactions mechanisms would require

extensive time-course data and underlying parameters that describe these interactions. As

mentioned in our manuscript, the lack of sufficient time-course data is a significant limitation

of our study. Therefore, there is much room for improvement in expanding the interaction

system, the validation phase, or even the dimension of the problem. Nevertheless, the current

approach will guide our future studies to build targeted treatment models that focus on sup-

pressing adipocytes and IL6. There are already studies targeting specific proteins or signaling

patterns by adipocytes to control cancer [153, 154]. Also, high levels of adipocytes lead to up-

regulated IL6, which build resistance to anti-VEGF therapy in breast cancer [155]. These sug-

gest attractive therapy models with resistance terms for our future work.

Non-dimensionalization

We non-dimensionalize the system of ODEs by dividing each variable by its maximum value

over all mice and time points for more stable numerical simulation, parameter estimation, and

sensitivity analysis. As a result, the steady-state value of a non-dimensional variable ½X �, which

is [X]/[X1], equals 1. Accordingly, the following system is obtained:

d½Th �

dt
¼ ðlThH

½H � þ lThD
½D� þ lThIL12

½IL12 �Þ½TN �

� ðdThTr
½Tr � þ dThIL10

½IL10 � þ dThÞ½Th �;

ð23Þ

d½Tc �

dt
¼ ðlTcD

½D� þ lTcIL12
½IL12 �Þ½TN � � ðdTcTr

½Tr � þ dTcIL10
½IL10 � þ dTcÞ½Tc �; ð24Þ
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d½Tr �

dt
¼ lTrD

½D�½TN � � dTr ½Tr �; ð25Þ

d½TN �

dt
¼ ATN

� ðlThH
½H � þ lThD

½D� þ lThIL12
½IL12 �Þ½TN �

� ðlTcD
½D� þ lTcIL12

½IL12 �Þ½TN �

� ðlTrD
½D� þ dTN Þ½TN �;

ð26Þ

d½DN �

dt
¼ ADN

� ðlDC½C� þ lDH½H �Þ½DN � � dDN
½DN �; ð27Þ

d½D�
dt
¼ ðlDC½C� þ lDH½H �Þ½DN � � ðdDC½C� þ dDÞ½D�; ð28Þ

d½MN �

dt
¼ AM � ðlMIL10

½IL10 � þ lMIL12
½IL12 � þ lMTh

½Th � þ dMN
Þ½MN �; ð29Þ

d½M�
dt
¼ ðlMIL10

½IL10 � þ lMIL12
½IL12 � þ lMTh

½Th �Þ½MN � � dM½M�; ð30Þ

d½C�
dt
¼ lC þ lCIL6

½IL6 � þ lCA½A�
� �

1 � ½C�C0

� �
½C� � dCTc

½Tc � þ dC

� �
½C�; ð31Þ

d½A�
dt
¼ lA½A� 1 � ½A�A0

� �
� dA½A�; ð32Þ

d½N �
dt
¼ aNCðdCTc

½Tc � þ dCÞ½C� � dN ½N �; ð33Þ

d½H �
dt
¼ lHD½D� þ lHN½N � þ lHM½M� þ lHTc

½Tc � þ lHC½C� � dH½H �; ð34Þ

d½IL12 �

dt
¼ lIL12M

½M� þ lIL12D
½D� þ lIL12Th

½Th � þ lIL12Tc
½Tc � � dIL12

½IL12 �; ð35Þ

d½IL10 �

dt
¼ lIL10M

½M� þ lIL10D
½D� þ lIL10Tr

½Tr � þ lIL10Th
½Th � þ lIL10Tc

½Tc �

þlIL10C
½C� � dIL10

½IL10 �;

ð36Þ

d½IL6 �

dt
¼ lIL6A

½A� þ lIL6M
½M� þ lIL6D

½D� � dIL6
½IL6 �: ð37Þ

Since we are not non-dimensionalizing with respect to the time, the production rates, λC and

λA, and the decay rates, dTh , dTc , dTr , dTN , dDN
, δD, dMN

, δM, δC, δA, δN, δH, dIL12
, dIL10

, and dIL6
, are

left unchanged.
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Parameter values

The values of the model parameters obtained from the least-squares optimization discussed in

the section of Parameter estimation are reported in Table 3. The given constant values in the

optimization process are C0 = 2, A0 = 2, and αNC = 1.5.
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