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Heterogeneity in early language development in autism spectrum disorders (ASD) is clinically 

important and may reflect neurobiologically distinct subtypes. Here we identify a large-scale 

association between multiple coordinated blood leukocyte gene co-expression modules and 

multivariate functional neuroimaging (fMRI) response to speech. Gene co-expression modules 

associated with multivariate fMRI response to speech are different for all pairwise comparisons 

between typically developing toddlers and toddlers with ASD and either poor versus good early 

language outcome. Associated co-expression modules are enriched in genes that are broadly 

expressed in the brain and many other tissues. These co-expression modules are also enriched for 

ASD, prenatal, human-specific and language-relevant genes. This work highlights distinctive 

neurobiology in ASD subtypes with different early language outcomes that is present well before 

such outcomes are known. Associations between neuroimaging measures and gene expression 

levels in blood leukocytes may offer a unique in-vivo window into identifying brain-relevant 

molecular mechanisms in ASD.

Autism spectrum disorders (ASD) are heterogeneous at multiple levels (e.g., genetics, 

cellular and neural systems, cognition, behavior, developmental trajectories, prognosis, 

response to treatment)1–3. This multi-level heterogeneity presents a significant challenge on 

the path towards stratified psychiatry and precision medicine4, 5. One dimension of 

heterogeneity of clinical importance in ASD is early language development and outcome. 

There is a wide spectrum of variability in early language abilities in the ASD population, 

from individuals who remain minimally verbal, to those who have difficulties similar to 

specific language impairment, to those who develop near-typical levels of language function 

6, 7. Early language ability is paramount for better understanding a range of clinical 

phenomena. For example, early language ability is one of the most important predictors of 

early-intervention response and later life outcomes8–12.

An additional challenge lies in studying relationship between macroscale properties of the 

brain and the molecular mechanisms at play in early development, and how this relationship 

may be altered in ASD13. Functional magnetic resonance imaging (fMRI) can be used to 

gain insight into the macroscale, neural-systems level of organization and its association 

with cognitive and behavioral functioning. However, the molecular biological underpinnings 

of this organization are not well understood. Although blood samples are a practical source 

for assaying atypical gene-expression in early ASD development14, 15, a common question 

is how relevant they are for understanding atypical neural processes in ASD. The evidence 

for a genetic basis of ASD is strong16, 17 and genetic variation will likely affect gene 

expression levels in multiple tissues18, including brain and blood. Thus, identifying 

associations between the blood leukocyte transcriptome and neuroimaging phenotypes may 

help shed light on mechanisms affecting early neural systems development in toddlers with 

ASD as compared to typically-developing toddlers. Such an “in-vivo window” onto the 

biology of ASD13 may be able to further our understanding of the mechanisms underlying 

atypical brain development in heterogeneous populations of ASD patients, but may also 

advance translational work targeted at better monitoring treatment response, predicting 

prognosis, and in evaluating clinical trials.
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Here we ask whether large-scale coordinated gene expression in blood leukocytes is 

associated with neural responses to speech as measured with fMRI, and whether this 

association differs between toddlers with ASD and either poor or good early language 

outcome and typically-developing toddlers. A fundamental question for this work is whether 

differences in early language outcome are a biologically relevant basis for stratifying ASD. 

Based on prior work19 suggesting that early language outcome subtypes are underpinned by 

distinct biology, we predict that early language outcome ASD subtypes will show different 

profiles of associations between blood leukocyte gene expression and functional neural 

systems response to speech.

Examining large-scale blood leukocyte transcriptome associations with neuroimaging 

phenotypes in ASD may also identify novel mechanisms involved in ASD. The omnigenic 

model20, much like other viewpoints on polygenic risk21, predicts that large numbers of 

genes are relevant to complex traits like ASD. However, the omnigenic model suggests that 

these genes do not necessarily need to be specific to brain tissue. Genes that are broadly 

expressed in one or more tissues, including brain and blood, are predicted to harbor a large 

amount of the heritability signal and can contribute more to overall risk than the smaller 

number of tissue-specific genes implicated in a complex trait20. Applied to the current 

study, we predict that large-scale coordinated transcriptional activity in the blood leukocyte 

transcriptome could be relevant for explaining neural phenotypes relevant to ASD. The 

omnigenic model predicts that this large-scale transcriptomic signal would be enriched for 

genes that are broadly expressed in the brain and many other tissues.

Results

Group-differentiation in superior temporal cortex response to speech and clinical 
behavioral trajectories over the first 4 years of life

In this study we compared typically-developing toddlers (TD) and age-matched toddlers 

with ASD, whose language abilities were assessed around 3-4 years of age. Toddlers with 

ASD were stratified by poor (“ASD Poor”) or good (“ASD Good”) language outcome. ASD 

Poor is defined by Mullen expressive (EL) and receptive language (RL) T-scores below 1 

standard deviation of typical developing age norms (T<40). In contrast, ASD Good is 

defined by outcome Mullen EL or RL within 1 standard deviation of typical age-norms 

(T≥40) (see Methods). In prior work we showed that this stratification identifies an ASD 

subtype with different developmental trajectories and a reduced left-hemisphere superior 

temporal cortex response to speech, as measured with sleep-fMRI before diagnosis and 

outcome are known19. The current dataset utilizes a subset of toddlers from the prior paper 

(n = 19 ASD Poor; n = 24 ASD Good; n = 21 TD), and adds a similar number of new 

toddlers (n=22 ASD Poor, n=16 ASD Good, and n=16 TD). Thus, we first re-ran 

longitudinal clinical trajectory and fMRI analyses of this combined dataset.

As previously reported19, all longitudinal clinical measures showed evidence of 

subtype*age interactions (except for Mullen Fine Motor and ADOS total), indicating that 

groups differed in the slope of trajectories (see Fig. 1; Supplementary Table 1 for statistics). 

This difference was generally driven by the ASD Poor group, whose downwards trajectories 

are indicative of falling further behind age-appropriate norms. All measures also showed 

Lombardo et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



main effects of group and were generally due to all groups differing from one another in a 

hierarchy of ASD Poor as most severe, ASD Good as intermediate, and TD as least severe. 

With the fMRI data, we also find that the previously reported19 hypoactivation in left 

hemisphere superior temporal cortex remains stable in this combined sample (Fig. 2 and 

Supplementary Table 2). Whole-brain between-group analyses did not reveal any regions 

differentiating the groups. However, the lack of effects in this context are likely to be due to 

low statistical power for whole-brain between-group comparisons22.

Lack of group-differentiation within gene expression data alone

The total sample of n=41 ASD Poor, n=40 ASD Good, and n=37 TD was the largest dataset 

of toddlers for whom both fMRI and gene expression data were available. We next assessed 

whether differences in blood leukocyte gene expression might reflect this different neural 

systems organization between the two ASD language-outcome subtypes. First, we assessed 

differential expression (DE) between subtypes at the level of individual genes. After 

correction for multiple comparison, no genes were identified as DE for any pairwise group 

comparison (Supplementary Table 3). Next, we utilized weighted gene co-expression 

network analysis (WGCNA) to reduce redundancy between the 14,313 genes, down to 21 

discrete co-expression modules. Co-expression modules are summarized by the first 

principal component score, also known as the module eigengene (ME)23. Similar to the DE 

analysis at the gene level, there were no ME differences between the two ASD subtypes 

(Supplementary Table 3). Thus, examining blood leukocyte gene expression data in isolation 

does not significantly differentiate the groups at the current sample sizes. We next turned to 

examining associations between gene expression and functional neuroimaging phenotypes.

Large-scale blood leukocyte gene co-expression module association with fMRI response 
to speech

Multivariate analysis of association between co-expression modules and whole-brain voxel-

wise patterns of activation was implemented with partial least squares (PLS) analyses. Of 

the 63 total latent variable (LV) co-expression-fMRI pairs, PLS identified only one LV pair 

with a statistically significant association after multiple comparison correction (LV1: d = 

65.47, p = 1.99e-4, FDR q = 0.0125; see Supplementary Table 4 for statistics for all PLS LV 

pairs). LV1 accounts for 20.13% of the covariance between gene expression and fMRI data 

and is spatially distributed across a number of cortical regions highly relevant to speech, 

language24, 25 (e.g., primary auditory cortex, superior temporal sulcus, inferior frontal 

gyrus, ventral premotor cortex, insula), visual and sensorimotor areas (e.g., primary visual 

cortex, superior parietal cortex, primary somatomotor cortex, premotor cortex), cognitive 

control (dorsolateral prefrontal cortex), and ‘social brain’ circuitry overlapping with key 

areas of the default mode network (e.g., posterior cingulate cortex, medial prefrontal cortex, 

right temporo-parietal junction, superior temporal sulcus) (Fig. 3a). Subcortical regions such 

as the striatum and thalamus were also implicated and are highly relevant for language 

processes such as vocal learning25, 26. For example, Area X in song birds is linked to vocal 

learning and is homologous with human dorsal striatum26.
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Extent of non-zero associations across co-expression modules

To better understand the most important co-expression modules for the PLS LV1 result, we 

first identified what we call ‘non-zero’ association modules. Non-zero modules are defined 

as gene co-expression modules which have gene co-expression-fMRI correlations with 95% 

confidence intervals (CI) that exclude a correlation of 0. Non-zero modules comprise about 

half of all modules analyzed (11/21; 52%) (Fig. 3b; Supplementary Table 4). The remaining 

modules (10/21; 48%) are referred to as ‘zero’ modules, defined as gene co-expression 

modules for which a correlation of 0 lies within the 95% CIs. Zero modules contribute little 

to and/or are unreliable in how they contribute to LV1. Non-zero modules cover a majority 

(61%) of the transcriptome considered for the WGCNA analysis. This widespread coverage 

indicates a coordinated and large-scale signal spanning large parts of the blood leukocyte 

transcriptome associated with macroscale functional neural response to speech measured 

with fMRI.

Most non-zero modules can be characterized by a variety of biological processes generally 

falling within categories such as translation, transcription, cell cycle, immune, inflammation, 

signal transduction, and cytoskeleton processes. However, enrichments differ substantially 

depending on the module (Fig. 3b; see Supplementary Table 5 for a complete description of 

enrichments for each module). For instance, non-zero modules M2, M8, and M11 are 

primarily translation and transcription modules, while M1 and M10 have enrichments for 

many of these terms, but not translation and transcription. These biological processes have 

all been implicated as important in autism. For example, translation processes are affected in 

many syndromic forms of ASD (e.g., Fragile X Syndrome, Tuberous Sclerosis)27. Many 

high-confidence ASD-risk genes are known to affect transcription processes (e.g., CHD8)28, 

29. Cell cycle processes are involved in aberrant early cell proliferation and increased early 

brain growth in ASD13, 14. Immune and inflammation processes have been linked to ASD 

via various lines of evidence30–32. These results supports the idea that ASD-relevant 

biological processes can be assayed in blood leukocytes and are associated with early 

developing large-scale functional neuroimaging phenotypes.

Lack of overlap in non-zero modules across ASD subtypes and TD

The majority of non-zero modules are present only in one group (9/11; 81%). In fact, only 

TD and ASD Poor show evidence of non-zero modules. No non-zero modules are present 

for the ASD Good subtype. Two (18%) non-zero modules are present in both TD and ASD 

Poor and are correlated in the same direction. However, the extent of this overlap is not 

statistically significant (enrichment odds ratio (OR) = 1.67, p = 0.65) (Fig. 3b). This result 

suggests that different biological mechanisms within each group may underpin the 

variability observed in macroscale language-relevant fMRI phenotypes. To further test the 

importance of the ASD language outcome subtype distinction, we next tested whether a 

simple case–control distinction could enhance sensitivity in detecting gene co-expression–

fMRI relationships. This case–control PLS analysis was not able to identify any statistically 

significant LV pairs at FDR q<0.05 correction for multiple comparisons (Supplementary 

Table 4). Thus, using early language outcomes as a stratifier in ASD appears to substantially 

enhance sensitivity for detecting gene co-expression–fMRI relationships.
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Non-zero modules are enriched for broadly expressed genes

We next examined what class of genes likely heavily contributes to the non-zero modules. 

Based on ideas from the omnigenic model20, genes that are broadly expressed, i.e. 

expressed in many tissues including the brain, could also be expressed and measurable in 

blood leukocytes and, therefore, could be of high relevance for these non-zero modules 

associated with a functional neuroimaging phenotype. Remarkably, we find that 81% (9/11) 

of non-zero modules are enriched for broadly expressed genes (OR = 184.5, p = 1.87e-4). 

All modules enriched for broadly expressed genes were also non-zero modules (Fig. 4b). In 

contrast, tissue-specific gene lists (e.g., brain, whole blood, lymphocyte) were not heavily 

enriched in many modules nor over-represented in non-zero modules (brain-specific 

modules: OR = 0, p = 1; whole blood-specific modules: OR = 0.6, p = 0.96; lymphocyte-

specific modules: OR = 4.44, p = 0.53) (Fig. 4b). In addition to running these enrichments at 

the level of overlap amongst modules, we also ran tests for overlap at the gene level. Around 

44% of all broadly expressed genes are present in non-zero modules, amounting to a highly 

significant enrichment (OR = 3.58, p = 1.48e-93). Whole-blood and lymphocyte-specific 

genes also showed evidence of enrichment in non-zero modules (blood OR = 4.79, p = 

1.57e-18; lymphocyte OR = 2.82, p = 1.94e-8), though whole-blood-specific genes also 

showed enrichment in zero modules (Fig. 4a). As shown in Fig. 4b, the whole-blood and 

lymphocyte-specific enrichments are likely driven by genes within 1-2 non-zero modules 

(e.g., M1, M6, M17). In contrast, the enrichment in broadly expressed genes is driven by 

genes spread across nearly every single non-zero module.

Non-zero modules are enriched for differentially expressed genes in a song bird vocal 
learning model

Given the relationship between expression of genes in non-zero modules and language-

relevant functional neuroimaging phenotypes, we next looked to validate whether these 

genes are brain-relevant and conserved in an animal model of vocal learning. Vocal learning 

is a language-relevant ability shared between humans and songbirds and has been 

extensively examined 25, 26, 33. Here we tested whether genes in our non-zero modules 

show overlap with DE genes from subcortical Area X of singing versus non-singing 

songbirds. Re-analysis of data from Hilliard et al.33 identified 1,267 DE genes in Area X 

and of these, 902 overlap with the genes examined in the main PLS analysis. Area X is 

thought to be homologous with human striatal areas26 (Fig. 1a). Strikingly, 33% of the DE 

genes in Area X are present in our non-zero modules (OR = 1.77, p = 0.002). In contrast, no 

such enrichment was present in zero modules (OR = 1.37, p = 0.13) (Fig. 5a). Most of the 

non-zero enrichment was driven specifically by module M10, as no other non-zero module 

was specifically enriched in songbird-DE genes (Fig. 5b). These results suggest that a subset 

of genes in non-zero modules are indeed brain-relevant and conserved between humans and 

songbirds, which both have an ability for vocal learning.

Non-zero modules are enriched for transcriptionally human-specific genes

Language requires more than vocal learning and is indeed a uniquely human ability. 

Therefore, it is possible that components of language ability may be reflected in neural 

differences between humans and our closest non-human primate relatives (e.g., 
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chimpanzees) which do not possess language34. We therefore investigated whether non-zero 

modules are enriched for genes that are DE in cortical tissue of humans versus chimpanzees 

(‘human-specific’ genes). Using two lists of such ‘human-specific’ genes obtained from 

independent studies34, 35 and which minimally overlap (4.38%), we find that non-zero 

modules are significantly enriched on both lists, with 33-34% of human-specific genes 

overlapping with genes from non-zero modules (OR>1.73, p <0.0115) (Fig. 5a). These 

enrichments are driven by M13, as no other specific modules were enriched across both 

human-specific gene lists (Fig. 5b). In contrast, no enrichment of human-specific genes is 

present in zero modules (OR<1.11, p >0.85; Fig. 5a). These results suggest that 

transcriptional activity of human-specific genes in blood leukocytes is linked to language-

relevant fMRI phenotypes measured in TD and ASD toddlers with varying early language 

abilities.

Non-zero modules are enriched for highly active prenatal co-expression modules 
associated with ASD

Several lines of evidence point towards ASD pathophysiology having key impact on prenatal 

brain development13, 36–38. We therefore examined whether non-zero modules are 

enriched for genes that are members of co-expression modules that show high levels of 

prenatal expression and that possess a number of highly-penetrant ASD-associated genes. 

Using lists from two independent studies of the BrainSpan atlas39 examining either cortical-

only37 or cortical and subcortical regions36, we find that approximately 32% of genes in 

prenatal and ASD-associated co-expression modules also appear in non-zero modules 

(OR>1.7, p <0.0056) (Fig. 5a), whereas only 15-17% are present in zero modules (OR<1.19, 

p>0.74). Non-zero modules M15 and M10 drove the enrichment, as no other non-zero 

modules showed evidence of enrichment for genes in either ASD-associated prenatal gene 

lists (Fig. 5b). Overall, this evidence supports the idea some of the genes present in non-zero 

modules are also genes that are members of prenatally active and ASD-associated co-

expression modules.

Non-zero modules are enriched with genes from ASD-downregulated co-expression 
modules from frontal and temporal cortex tissue

While establishing that non-zero modules overlap with prenatally relevant co-expression 

modules that harbor ASD-relevant genes, a caveat to this result is that those prenatal, ASD-

associated co-expression modules were identified from the BrainSpan dataset39, which for 

obvious reasons does not contain prenatal tissue from ASD donors. Thus, to more directly 

connect non-zero modules with cortical gene expression in diagnosed ASD patients, we used 

gene-expression data from post-mortem frontal and temporal cortical tissue of ASD 

patients40. Non-zero modules are enriched for genes that are members of ASD-

downregulated frontal and temporal cortex co-expression modules (OR = 1.70, p = 0.03). 

Enrichments at trend levels were also seen for genes from ASD-upregulated co-expression 

modules (OR = 1.64, p = 0.0502, FDR q = 0.0586) (Fig. 5a). However, no specific non-zero 

modules seemed to drive this enrichment (Fig. 5b). While zero modules were not enriched in 

genes from ASD-downregulated modules (OR = 1.15, p = 0.75), zero modules were 

enriched for genes from ASD-upregulated modules (OR = 1.79, p = 2.80e-5) (Fig. 5a). 

These results further point towards the ASD- and brain-relevance of genes identified via 
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their non-zero association between expression in blood leukocytes and language-relevant 

functional neuroimaging phenotypes.

Non-zero modules with preservation of network structure between ASD blood and cortical 
tissue

Utilizing the same gene-expression dataset from post-mortem cortical tissue from ASD 

patients40, we next examined whether co-expression network structure of non-zero modules 

identified in blood might be preserved in ASD frontal and temporal cortical tissue. This is 

important, as it highlights specific modules where co-expression network connectivity 

patterns are similar between blood leukocytes and brain tissue. While non-zero modules M8 

and M11 showed moderate evidence of preservation (2< Zsummary <6), the non-zero M2 

module was the highest ranking of all modules with evidence of high-moderate preservation 

(Zsummary = 8.1) (Supplementary Fig. 1). M2 is highly enriched for the term ‘translation in 

mitochondria’ (Supplementary Table 5) and many of M2’s hub genes encode proteins that 

are localized to mitochondria (e.g., MRPS12, NDUFS3, NDUFB8, HINT2, MRPL14) 

(Supplementary Table 6). This evidence could be relevant in light of possible mitochondrial 

dysfunction in autism41. Other notable M2 hub genes are DGCR6 and BOLA2. Both are 

located within prominent ASD-associated CNV regions of 22q11.21 (DGCR6) and 16p11.2 

(BOLA2)42. Interestingly with regard to evolutionarily accelerated human-specific genes, 

BOLA2 is known for human-specific duplications and shows upregulated expression in 

human versus chimpanzee induced pluripotent stem cells (iPSCs)43, 44. In patients with 

16p11.2 CNVs, 96% of breakpoints include human-specific duplications of BOLA244. 

Deletions and duplications of 16p11.2 are linked to language and its associated neural 

circuitry45–47. Thus, the evidence here could suggest that BOLA2 is an important ASD-

relevant 16p11.2 locus, but also is more generally relevant for the human-specific capacity to 

develop language and the neural systems supporting that development.

Non-zero modules are enriched for ASD de novo protein-truncating variants and cortically 
ASD-downregulated co-expression modules

We next tested non-zero modules for enrichments with different classes of genetic variants 

associated with ASD. We first examined enrichment with high-penetrance rare de novo 

protein truncating variants (dnPTVs). Amongst the genes highlighted by Kosmicki et al.,48 

with ≥2 dnPTVs in ASD, 43% are also present in non-zero modules, resulting in an 

enrichment at trend level significance (OR = 2.58, p = 0.08, FDR q = 0.0915). The lack of 

significant enrichment may be due to the limited number of known dnPTVs that overlap 

with the subset of genes considered in our analysis (i.e. 28). When we relax the criterion to 

≥1 dnPTVs in ASD but add the constraint that the gene should also have a probability of 

loss-of-function intolerance (pLI)≥0.949, this enabled us to study a larger set (155) of 

putative ASD-relevant dnPTVs. Under this criterion, we find a significant enrichment of 

these ASD risk genes in non-zero modules (OR = 2.01, p = 0.02) (Fig. 5a), including ADNP, 
ANKRD11, DYRK1A, ILF2, KDM5B, KDM6B, MED13L, PHF2, PTEN, SPAST, 
SUV420H1, TRIP12, WDFY3, ZC3H4. Non-zero module M10 is the primary driver behind 

this enrichment (Fig. 5b) and includes ADNP, ANKRD11, DYRK1A, KDM5B, TRIP12, 
and ZC3H4. Of these notable M10 genes, ADNP is within the top 20 hub genes 

(Supplementary Table 6). In contrast, zero modules were not enriched for these ASD risk 
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genes, either amongst the criteria of ≥2 dnPTVs or with ≥1 dnPTVs and pLI ≥0.9 (OR < 

1.82, p > 0.24) (Fig. 5a). In addition, and contrary to the enrichment with ASD-associated 

dnPTVs, we could not find any enrichment amongst the 543 ASD-associated genes 

annotated on SFARI Gene (https://gene.sfari.org)50 for non-zero (OR = 1.36, p = 0.66) or 

zero modules (OR = 1.26, p = 0.44) (Fig. 5a). This evidence suggests that some high-

penetrance ASD-associated genes are detectable within blood leukocyte gene expression 

data and show strong association to in-vivo functional neuroimaging phenotypes relevant for 

early language heterogeneity in ASD.

Non-zero modules are enriched for FMRP and CHD8 targets

While non-zero modules do not contain some of the most well-known and highly-penetrant 

ASD-associated genes, such as FMR1 and CHD8, non-zero modules may nevertheless 

overlap with the molecular networks linked to these genes. One way to examine this 

hypothesis is through testing non-zero modules for enrichment with downstream targets of 

these highly important genes. Non-zero modules are highly enriched for both FMRP and 

CHD8 targets across two different target lists (OR>1.89, p<0.0269) (Fig. 5a). Numerous 

modules drive these enrichments, such as M10 and M15 for FMRP targets and M10, M8, 

M13, and M15 for CHD8 targets (Fig. 5b). In contrast, zero modules were not enriched for 

target genes of either FMRP or CHD8 (Fig. 5a). These results suggest that non-zero modules 

also contain genes that are members of FMRP and CHD8-related networks.

Broadly expressed genes are a prominent source of signal driving enrichments

Finally, given the prominent overlap between broadly expressed genes and non-zero 

modules, we tested whether many of the other enrichments with non-zero modules were 

driven by broadly expressed genes. We first examined the enrichment of broadly expressed 

genes with all of the gene lists already tested. Remarkably, we found that nearly all gene 

lists enriched in non-zero modules are also highly enriched in broadly expressed genes (Fig. 

5a). Furthermore, once broadly expressed genes are removed from these lists, the 

enrichments with non-zero modules largely disappear (Supplementary Fig. 2). This suggests 

that broadly expressed genes drive the enrichments of these lists in non-zero modules.

Discussion

Here we find one large-scale association between coordinated gene co-expression modules 

in blood leukocytes with multivariate fMRI response to speech. Highlighting the 

distinctiveness of ASD language outcome subtypes, we find that blood leukocyte co-

expression modules associated with multivariate fMRI response to speech are different for 

all pairwise comparisons between groups of TD toddlers or toddlers with ASD and either 

poor or good language outcome. Given the early ages when blood samples and fMRI data 

were collected, it is clear that this association manifests well before stable diagnoses and 

final language outcomes are known. Co-expression modules of importance in TD but not 

ASD may signal normative biological processes associated with the development of 

language-related neural circuitry. These normative processes may be affected in ASD. In 

addition, modules that diverge between ASD subtypes may indicate risk or protective 

mechanisms that push different ASD individuals towards different early developmental 
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language outcomes. Thus, in contrast to the idea that ASD is a uniform condition with 

similar underlying biological mechanisms in all diagnosed individuals, these results indicate 

that a behavioral stratifier such as early language outcome holds important information to 

help understand how the underlying biology may be differentially linked to the way 

macroscale neural systems develop.

These findings may be of high translational importance. Both neuroimaging methods and 

blood sampling to quantify the leukocyte transcriptome with high-throughput techniques are 

feasible to collect from ASD patients with different levels of impairment and at early ages. 

In-vivo examination of the molecular mechanisms and their associations with higher-level 

macroscale neural systems and heterogeneity in clinical phenotypes will be important for 

furthering progress towards precision medicine13. Endeavors such as evaluating early-age 

treatment response, monitoring clinical trials, developing prediction tools for diagnosis and 

prognosis can all be facilitated with this approach to understanding links between gene 

expression, macroscale neural systems, and behavioral levels of analysis. Future work will 

be necessary to determine whether similar associations are present in older children and 

adults with ASD. Given the inability to directly and non-invasively assay gene expression 

from brain tissue in living patients, the current approach offers a novel in-vivo window into 

how molecular mechanisms are associated with ongoing and dynamic macroscale neural 

systems development across the lifespan in ASD.

Another striking feature of these results is the large-scale nature of the association that 

covers a majority of the blood leukocyte transcriptome considered by the co-expression 

analysis. This feature matches predictions from the omnigenic model20. The omnigenic 

model suggests that for any complex trait or disorder (e.g., ASD), the majority of heritability 

signal is spread widely throughout most of the genome. The omnigenic model also suggests 

that the numerous widespread ‘peripheral’ genes of small effect likely interact within gene 

regulatory networks with a smaller set of ‘core’ genes with much larger effect. Here we find 

evidence that higher-impact rare dnPTVs in ASD that are intolerant to loss of function 

mutations are enriched amongst non-zero modules. Furthermore, we also find that many 

targets of FMRP and CHD8 are enriched in non-zero modules. Thus, the massive number of 

genes present within non-zero modules may point to a large peripheral background of small 

risk common variants that could work en masse and interact in important ways with genes 

that can be higher-impact core mechanisms.

The omnigenic model makes another key prediction, namely that the such associations can 

be detectable in many tissue types other than the brain, such as blood leukocytes. The 

omnigenic model suggests that a large percentage of the genes associated with a complex 

trait are likely to be broadly expressed genes. Here we find evidence of large overlap 

between broadly expressed genes and non-zero modules - around 44% of all broadly 

expressed genes exist within non-zero association modules. In contrast to the fact that nearly 

all non-zero modules (e.g., 81%) were enriched with broadly expressed genes, only 2 non-

zero modules (e.g., 18%) were enriched in lymphocyte-specific genes. Thus, this large-scale 

gene co-expression-fMRI association is largely driven by genes broadly expressed in the 

brain and many other tissues rather than lymphocyte-specific genes. While we observed 

enrichments between non-zero modules and genes implicated in vocal learning, human-

Lombardo et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



specific genes, ASD-associated prenatal co-expression modules, cortically ASD-

downregulated co-expression modules, ASD dnPTVs, and FMRP and CHD8 targets, most 

of these enrichments likely emerged because each gene list is heavily enriched in broadly 

expressed genes. Removing broadly expressed genes from these lists results in elimination 

of nearly all significant enrichments with non-zero modules. Overall, these results highlight 

the importance of broadly expressed genes as a novel class of mechanisms for further study 

in ASD.

There are some limitations and caveats to keep in mind. First, the number of genes 

investigated in the final co-expression and PLS analyses are a subset of the total number of 

genes in the entire genome that could be considered. Therefore, while non-zero modules do 

cover a large proportion of the genes examined in the analysis, they do not cover a large 

majority of the entire genome. The extent of coverage of non-zero modules is certainly 

compatible with ideas about polygenic architecture behind complex neural phenotypes21. 

However, the coverage of non-zero modules cannot be interpreted with respect to the 

omnigenic model in terms of sheer size. The current study does however evaluate 

predictions from the omnigenic model, particularly with respect to the importance of broadly 

expressed genes. However, this result can also be consistent with polygenic viewpoints, 

particularly if most of the polygenic associations reside within broadly expressed genes. 

Second, because the expression data is measured from a non-neural tissue, many brain-

specific genes are not considered in the analyses. Thus, the current dataset cannot say 

anything about the importance or lack thereof with regard to brain-specific genes, nor can 

we make comparisons about the relative importance of broadly expressed genes versus 

brain-specific genes.

To summarize, we identify a large-scale association between multiple coordinated blood 

leukocyte gene co-expression modules and multivariate fMRI response to speech. 

Associated co-expression modules are different for all pairwise comparisons between TD 

toddlers and toddlers with ASD and good versus poor early language outcome. The 

associated co-expression modules are highly enriched in broadly expressed genes as well as 

ASD, prenatal, human-specific, and language-relevant genes. These results are congruent 

with predictions from polygenic and omnigenic models and suggest that gene expression in 

peripheral cells like blood leukocytes are associated with in-vivo functional neural response 

to language that differentiates ASD toddlers with poor versus good early language 

outcomes. The study showcases a novel in-vivo approach that could be used in future work 

towards precision medicine goals.

Methods

Participants

This study was approved by the Institutional Review Board at University of California, San 

Diego. Parents provided written informed consent according to the Declaration of Helsinki 

and were paid for their participation. Identical to the approach used in our earlier studies14, 

15, 19, 51, 52, toddlers were recruited through two mechanisms: community referrals (e.g., 

website) or a general population-based screening method called the 1-Year Well-Baby 

Check-Up Approach53 that allowed for the prospective study of ASD beginning at 12 
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months based on a toddler’s failure of the CSBS-DP Infant-Toddler Checklist54, 55. All 

toddlers were tracked from an intake assessment around 12 months and followed roughly 

every 12 months until 3–4 years of age. All toddlers, including normal control subjects, 

participated in a series of tests collected longitudinally across all visits, including the Autism 

Diagnostic Observation Schedule (ADOS; Module T, 1, or 2)56, the Mullen Scales of Early 

Learning57, and the Vineland Adaptive Behavior Scales58. All testing occurred at the 

University of California, San Diego Autism Center of Excellence (ACE). No randomization 

procedures were implemented as part of the data collection process. Data collection and 

analyses were not performed blind to the conditions of the experiment.

A total of n=118 toddlers were scanned with fMRI and had available gene expression data. 

No statistical methods were used to pre-determine sample sizes, but our sample sizes are 

currently amongst the largest of any fMRI study to date on ASD at very early ages in 

toddlerhood. From these 118 toddlers, n=81 ASD individuals were examined and were split 

into 2 language outcome subtypes. n=41 individuals with ASD (34 male, 7 female) were 

classified as ‘poor’ language outcome (ASD Poor), based on the criteria of having both 

Mullen EL and RL T-scores more than 1 standard deviation below the norm of 50 (i.e. T<40) 

at the final testing time-point (mean age at fMRI scan = 29.53 months, SD at fMRI scan = 

8.04, range = 12-46 months). Another n=40 individuals with ASD (30 male, 10 female) 

were classified as ‘good’ language outcome (ASD Good), based on having either Mullen EL 

or RL T-scores greater than or equal to 40 (i.e. T ≥ 40) at the final testing time-point (mean 

age at fMRI scan = 29.73 months, SD at fMRI scan = 8.51, range = 12-45 months). The 

usage of the term ‘Good’ here is not used to refer to ability level in absolute terms, but more 

reflects ability relative to the ASD Poor subgroup. These ASD subtypes were compared to 

n=37 typically-developing toddlers (21 male, 16 female; mean age at fMRI scan = 26.19 

months, SD at fMRI scan = 10.20, range = 12-45 months). ASD subtypes and TD did not 

statistically differ in age at the time of scanning (F(2,115) = 1.87, p = 0.15). For more 

demographic and phenotypic information, please see Supplementary Table 7.

Blood Sample Collection, RNA extraction, quality control and samples preparation

Four to six milliliters of blood was collected into EDTA-coated tubes from toddlers on visits 

when they had no fever, cold, flu, infections or other illnesses, or use of medications for 

illnesses 72 hours prior blood draw. Blood samples were passed over a LeukoLOCK™ filter 

(Ambion, Austin, TX, USA) to capture and stabilize leukocytes and immediately placed in a 

20°C freezer. Total RNA was extracted following standard procedures and manufacturer’s 

instructions (Ambion, Austin, TX, USA). LeukoLOCK disks (Ambion Cat #1933) were 

freed from RNA-later and Tri-reagent (Ambion Cat #9738) was used to flush out the 

captured lymphocyte and lyse the cells. RNA was subsequently precipitated with ethanol 

and purified though washing and cartridge-based steps. The quality of mRNA samples was 

quantified by the RNA Integrity Number (RIN), values of 7.0 or greater were considered 

acceptable59, and all processed RNA samples passed RIN quality control. Quantification of 

RNA was performed using Nanodrop (Thermo Scientific, Wilmington, DE, USA). Samples 

were prep in 96-well plates at the concentration of 25 ng/µl.
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Gene expression and data processing

RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) for labeling, 

hybridization, and scanning using the Illumina BeadChips pipeline (Illumina, San Diego, 

CA, USA) per the manufacturer’s instruction. All arrays were scanned with the Illumina 

BeadArray Reader and read into Illumina GenomeStudio software (version 1.1.1). Raw data 

was exported from Illumina GenomeStudio, and data pre-processing was performed using 

the lumi package60 for R (http://www.R-project.org) and Bioconductor (http://

www.bioconductor.org)61. Raw and normalized data are part of larger sets deposited in the 

Gene Expression Omnibus database (GSE42133; GSE111175).

A larger primary dataset of blood leukocyte gene expression was available from 383 samples 

from 314 toddlers with the age range of 1-to-4 years old. The samples were assayed using 

the Illumina microarray platform on three batches. The datasets were combined by matching 

the Illumina Probe ID and probe nucleotide sequences. The final set included a total of 

20,194 gene probes. Quality control analysis was performed to identify and remove 23 

outlier samples from the dataset. Samples were marked as outlier if they showed low signal 

intensity (average signal two standard deviations lower than the overall mean), deviant 

pairwise correlations, deviant cumulative distributions, deviant multi-dimensional scaling 

plots, or poor hierarchical clustering, as described elsewhere14. The high-quality dataset 

included 360 samples from 299 toddlers. High reproducibility was observed across technical 

replicates (mean Spearman correlation of 0.97 and median of 0.98). Thus, we randomly 

removed one of each of two technical replicates from the primary dataset. From the subjects 

in the larger primary dataset, n=118 also had task-fMRI data and thus a total of n=105 from 

the Illumina HT12 platform along with n=13 from the Illumina WG6 platform were used in 

this study. Batch was not asymmetrically distributed across one subgroup more than another, 

as chi-square analyses on the contingency table between subgroup and batch show no effect 

(χ2(4) = 4.772, p = 0.3115). ASD subtypes and TD toddlers also did not statistically differ 

in age at the time of blood sampling (F(2,115) = 1.74, p = 0.17). The 20,194 probes were 

then collapsed to 14,313 genes based on picking the probe with maximal mean expression 

across samples. Data were quantile normalized and then adjusted for batch effects, sex, and 

RIN. This batch, sex, and RIN adjusted data were utilized in all further downstream 

analyses. We also checked for differences in proportion estimates of different leukocyte cell 

types (i.e. neutrophils, B cells, T cells, NK cells, and monocytes) using the CellCODE 

deconvolution method62, but found no evidence of differences across groups for any cell 

type (see Supplementary Table 8). In addition to the primary analyses using WGCNA, 

differential expression analysis at the level of individual genes was also conducted using 

limma63, and DE genes were identified if they passed Storey FDR q<0.0564. Data 

distributions were assumed to be normal but this was not formally tested for each gene. 

Further enrichment tests were used annotate which co-expression modules are enriched for 

such DE genes.

Weighted Gene Co-Expression Network Analysis

We reduced the number of features in the gene expression dataset from 14,313 genes down 

to 21 modules of tightly co-expressed genes. This data reduction step was achieved using 

weighted gene co-expression network analysis (WGCNA), implemented within the 
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WGCNA library in R23. Correlation matrices estimated with the robust correlation measure 

of biweight midcorrelation were computed and then converted into adjacency matrices that 

retain the sign of the correlation. These adjacency matrices were then raised to a soft power 

of 16 (see Supplementary Fig. 3a). This soft power was chosen by finding the first soft 

power where a measure of R2 scale-free topology model fit saturates at least above R2 > 

0.865 and where the slope was between -1 and -266. The soft power thresholded adjacency 

matrix was then converted into a topological overlap matrix (TOM) and then a TOM 

dissimilarity matrix (e.g., 1-TOM). The TOM dissimilarity matrix was then input into 

agglomerative hierarchical clustering using the average linkage method. Gene modules were 

defined from the resulting clustering tree, and branches were cut using a hybrid dynamic tree 

cutting algorithm (deepSplit parameter = 4) (see Supplementary Fig. 3b). Modules were 

merged at a cut height of 0.2, and the minimum module size was set to 100. Only genes with 

a module membership was r > 0.3 were retained within modules. For each gene module, a 

summary measure called the module eigengene (ME) was computed as the first principal 

component of the scaled (standardized) module expression profiles. We also computed 

module membership for each gene and module. Module membership indicates the 

correlation between each gene and the module eigengene (see Supplementary Table 6). 

Genes that could not be clustered into any specific module are left within the M0 module, 

and this module was not considered in any further analyses. Analysis of group differences in 

MEs were also conducted using linear models and correction for multiple comparisons at 

FDR q<0.05 (see Supplementary Table 3; Supplementary Fig. 4). Data distributions were 

assumed to be normal but this was not formally tested for each module. Further WGCNA 

analyses were run separately within each group in order to check for preservation of detected 

modules across groups at a soft power threshold of 20. These analyses all indicated high 

levels of preservation (Zsummary>10)67 across nearly all detected modules for each 

pairwise group comparison (see Supplementary Fig. 5).

fMRI Data Acquisition and Task Design

The fMRI task was identical to that used in our previously published studies19, 68–70 and 

consisted of three types of speech stimuli (complex forward speech, simple forward speech, 

and backward speech) as well as rest blocks interspersed between task blocks to forestall 

possible habituation across blocks. Blocks were 20 seconds in duration. All speech 

conditions were created using the same female speaker. Two contrasts of interest were 

analyzed in this study: all speech conditions versus rest and forward (simple + complex) 

versus backward speech. At early language learning ages, when neonates, infants, and 

toddlers are not yet experts at language, forward and backward speech both activate 

language-relevant temporal areas; thus, specific comparisons between them tend to be non-

significant70, 71. Therefore, forward and backward speech stimuli both appear to be 

effective in stimulating language-sensitive cortices, by perhaps both being treated as 

potentially language-relevant by the language-inexperienced infant and toddler brain. Thus, 

although we have specifically analyzed both contrasts, because of this age-related caveat for 

forward versus backward speech, our main contrast of interest was all speech versus rest.

Imaging data were collected on a 1.5 Tesla General Electric MRI scanner during natural 

sleep at night; no sedation was used. High-resolution T1-weighted anatomical scans were 
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collected for warping fMRI data into standard atlas space. Blood oxygenation level-

dependent (BOLD) signal was measured across the whole brain with echoplanar imaging 

during the language paradigm (echo time = 30 ms, repetition time = 2,500 ms, flip angle = 

90 degrees, bandwidth = 70 kHz, field of view = 25.6 cm, in-plane resolution = 4 x 4 mm, 

slice thickness = 4 mm, 31 slices).

Analysis of head motion via framewise displacement (FD) and DVARS indicated that head 

motion was minimal (mean FD<0.25) for nearly all subjects in all groups (ASD Good mean 

= 0.11 mm, sd = 0.23; ASD Poor mean = 0.07 mm, sd = 0.08; TD mean = 0.07 mm, sd = 

0.03) and that groups did not differ in either mean FD (F(2,115) = 1.12, p = 0.33) or mean 

DVARS (F(2,115) = 1.93, p = 0.15; ASD Good mean = 8.81, sd = 2.85; ASD Poor mean = 

8.61, sd = 2.57; TD mean = 7.75, sd = 2.01).

fMRI Data Analyses

Preprocessing of functional imaging data was implemented within the Analysis of 

Functional NeuroImages (AFNI) software package. The preprocessing pipeline was 

comprised of motion correction, normalization to Talairach space, and smoothing (8mm full-

width at half-maximum (FWHM) Gaussian kernel). First-level and second-level mass-

univariate whole-brain activation analyses were modeled with the general linear model 

(GLM) in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Events in first-level models were 

modeled using the canonical hemodynamic response function and its temporal derivative. 

All first-level GLMs included motion parameters as covariates of no interest. High-pass 

temporal filtering was applied with a cutoff of 0.0078 Hz (1/128 seconds) in order to remove 

low frequency drift in the time series. For whole-brain analyses, the distributions were 

assumed to be normal but this was not formally tested for every voxel.

Group-level analysis were implemented using the general linear model in SPM8. We ran 

whole-brain analyses for the contrast of All Speech vs Rest within and between-groups and 

thresholded at a voxelwise FDR q<0.0572. For between-group region of interest (ROI) 

analysis we used meta-analytic ROIs from the Neurosynth term ‘language’73 of frontal and 

temporal cortex areas in both hemispheres, identical to those used in a prior paper19. We 

computed the difference in percent signal change for All Speech vs Rest and used this as the 

dependent variable in a linear model that tests subtype membership as the main independent 

variable of interest, while covarying for sex. Data are plotted in Fig. 2b for each individual to 

show the distribution of the data. No group showed heavy deviations from normality and all 

regions showed evidence of homogeneity of variance between groups. Follow-up tests for 

pairwise group comparisons used Welch’s t-test.

fMRI-Gene Expression Association Analysis

To assess multivariate fMRI-gene expression relationships we used partial least squares 

(PLS) analysis74, 75. PLS is widely used in the neuroimaging literature, particularly when 

explaining multivariate neural responses in terms of multivariate behavioral patterns of 

variation or a design matrix. Given that the current dataset is massively multivariate both in 

terms of fMRI and gene expression datasets, we used PLS to elucidate how variation in 

neural response to speech across large-scale neural systems covaries with gene expression as 
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measured by module eigengene values of co-expression modules. PLS allows for identifying 

such relationships by finding latent fMRI-gene expression variable pairs (LV) that 

maximally explain covariation in the dataset and which are uncorrelated with other latent 

fMRI-gene expression variable pairs. The strength of such covariation is denoted by the 

singular value (d) for each brain-behavior LV, and hypothesis tests can be made via using 

permutation tests on the singular values. Furthermore, identifying brain regions that most 

strongly contribute to each LV pair is made via bootstrapping, whereby a bootstrap ratio is 

created for each voxel, and represents the reliability of that voxel for contributing strongly to 

the LV pattern identified. The bootstrap ratio is roughly equivalent to a Z statistic and can be 

used to threshold data to find voxels that reliably contribute to an LV pair.

The PLS analyses reported here were implemented within the plsgui Matlab toolbox 

(www.rotman-baycrest.on.ca/pls/). Here we input first-level all speech versus rest contrast 

images into the PLS. For gene expression data, we input module eigengene values for all 21 

co-expression modules. For statistical inference on identified fMRI-gene expression LV 

pairs, a permutation test was run with 10,000 permutations. To identify reliably contributing 

voxels for fMRI-gene expression LVs and to compute 95% confidence intervals (CIs) on 

fMRI-gene expression correlations, bootstrapping was used with 10,000 resamples. To show 

voxels that most reliably contribute to significant fMRI-gene expression LVs, we 

thresholded data for visualization at a bootstrap ratio (BSR) of 1.96 and -1.96. The strength 

of fMRI-gene expression correlations for significant LVs was displayed as a bar graph with 

95% bootstrap CIs as error bars. Gene co-expression modules whereby 95% CIs do not 

encompass 0 are denoted as ‘non-zero’ association modules. All other modules where 95% 

CIs include 0 are denoted as ‘zero’ modules.

From the PLS results we tested whether non-zero associations across modules were common 

across ASD subtypes or common across ASD subtypes and TD. To test this question we 

counted the overlap amongst non-zero association modules in each group and ran 

hypergeometric tests that explicitly test for statistically significant overlap or commonality 

of non-zero associations across groups.

Enrichment Tests

Tests for functional (process-level) enrichment across all modules were implemented using 

the MetaCore GeneGO software platform. Further gene set enrichment tests 

(hypergeometric tests and enrichment odds ratio) were done on tissue-specific gene lists. 

First, we annotated each co-expression module by enrichment with 4 types of gene classes 

of relevance as defined by GTEx data reported from Boyle et al.20 These classes were 1) 

broadly expressed genes, 2) brain-specific genes, 3) whole-blood specific genes, and 4) 

lymphocyte-specific genes. The background pool number for these hypergeometric tests was 

14,313. Next, we tested whether non-zero modules were heavily enriched with modules 

from one or more of these gene classes. The background total for these tests was set to the 

total number of co-expression modules (e.g., 21).

Further enrichment tests were done across a wider range of gene lists of theoretical 

importance. Song birds are often used as animal models relevant for the vocal learning 

component of language25, 26, 33. We investigated enrichments with differentially expressed 
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genes taken from a microarray dataset of Area X of song birds33. To identify differentially 

expressed (DE) genes between singing versus non-singing birds, we re-analyzed this dataset 

(GEO Accession ID: GSE34819) using limma63, and DE genes were identified if they 

passed Storey FDR q<0.0564. Given the uniquely human nature of language, we also tested 

hypotheses regarding enrichments amongst genes that are transcriptionally different in the 

cortical tissue between humans and chimpanzees (i.e. human-specific genes). These tests 

were done across gene lists from two independent investigations on human-specific gene 

expression differences, where the common overlap amongst the two lists is small (4.38%)34, 

35. Ample evidence suggests that prenatal brain developmental periods are critical for 

ASD13, 36–38. To test enrichment with prenatal ASD-associated co-expression modules, 

we utilized co-expression modules from two independent studies that analyzed the Allen 

Institute BrainSpan dataset39 – 1) Eising et al., analyzed data from both subcortical and 

cortical regions and identified modules M3, M9, and M12 as ASD-associated and prenatally 

active36; 2) Parikshak et al., analyzed only cortical regions and identified M2 and M3 as 

ASD-associated and prenatally active37. There is 23% overlap between these two gene lists. 

We also tested enrichments with gene lists known to be associated with ASD, either via 

genetic evidence or evidence from cortical transcriptomic dysregulation. In particular, we 

examined de novo protein-truncating variants (dnPTV) associated with ASD48, ASD-

associated genes from the SFARI Gene (https://gene.sfari.org)50, and differentially 

expressed cortical co-expression modules measured from ASD post-mortem frontal and 

temporal cortex tissue40. For ASD-associated dnPTVs we used a list of 38 genes from 

Kosmicki et al.,48 with ≥2 dnPTVs in ASD and which also showed 0 dnPTVs in the 

normative ExAC database49. We additionally used a more relaxed criteria of ≥1 dnPTVs in 

ASD and 0 dnPTVs in ExAC combined with a probability of loss-of-function intolerance 

(pLI) ≥0.949, which resulted in 211 genes. Finally, we tested for enrichments with known 

downstream targets of highly penetrant mutations known to be associated with ASD – 

FMRP and CHD8. For each, we had lists of downstream targets for two independent 

studies76–79, where the overlap for FMRP targets was 3.71% and 27.61% for CHD8 

targets. FDR q<0.05 was used to identify significant enrichments after multiple comparison 

correction.

Co-expression Network Preservation Across ASD Brain and Blood Datasets

We also wanted to understand whether co-expression modules detected in blood leukocytes 

showed preservation of co-expression network patterns in ASD post-mortem cortical tissue 

from frontal and temporal cortex. To achieve this aim, we utilized ASD post-mortem frontal 

and temporal cortex RNA-seq data from Parikshak et al.,40. Using the same preprocessed 

data as Parikshak et al., we computed Zsummary module preservation statistics and 

evaluated which modules detected from ASD blood leukocyte datasets are preserved in ASD 

cortical frontal and temporal cortical tissue sampled from similar sites as those detected in 

the PLS LV1 map. Zsummary > 10 indicates strong preservation, while Zsummary between 

2 and 10 indicates moderate preservation67.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical behavioral trajectories over the first 4 years of life in typically-developing (TD) 
toddlers and toddlers with ASD and good or poor early language outcome.
This figure shows developmental trajectories over the first 4 years of life for typically-

developing (TD) toddlers, toddlers with ASD and good early language outcome (ASD 

Good) and toddlers with ASD and poor early language outcome (ASD Poor) on clinical 

behavioral assessment measures such as ADOS total scores, Mullen Scales of Early 

Learning subscales (Expressive and Receptive Language, Visual Reception, and Fine Motor) 

and Vineland Adaptive Behavioral Scales (Communication, Socialization, Daily Living 

Skills, Motor, and Adaptive Behavior). The TD (n=35) group is shown in blue, ASD Good 

(n=40) in pink, and ASD Poor (n=41) in green. Individual level trajectories are plotted 

including the group-level trajectory and 95% confidence band.
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Figure 2. Reduced fMRI response to speech in ASD toddlers with poor early language outcome.
Panel A shows results of whole-brain analyses (one-tailed t-test) on each group separately 

(results shown at FDR q<0.05) (TD n = 37; ASD Good n = 40; ASD Poor n = 41). Panel B 

shows the results of region-of-interest (ROI) analyses testing for subtype differences. ROIs 

are defined by 4 regions within the Neurosynth ‘Language’ meta-analysis map in left (LH) 

or right hemisphere (RH) frontal and temporal cortex. ROI data are shown for each 

individual in the scatter-boxplots (TD, blue, n = 37; ASD Good, pink, n = 40; ASD Poor, 

green, n = 41). The box in the boxplots indicates the interquartile range (IQR; Q1 indicates 

the 25th, while Q3 indicates the 75th percentile) and the whiskers indicate Q1-(1.5*IQR) or 

Q3+(1.5*IQR). The line within the box represents the median. Matrices next to the scatter-

boxplots show standardized effect sizes (Cohen’s d) for each pairwise group comparison. 

Cohen’s d is shown in each cell and also indicated by the color of the cell. Within each cell 

one star (*) indicates p<0.05, while two stars (**) indicates p<0.005.
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Figure 3. Multivariate gene co-expression-fMRI association in ASD with good or poor early 
language outcome and typically-developing control toddlers.
Panel A shows the brain regions with the strongest contributions to the multivariate gene co-

expression–fMRI association present in the LV1 PLS result. The coloring in each region 

indicates the bootstrap ratio (BSR) and reflects how important each voxel is to the LV1 PLS 

result. Areas are shown in panel A if the BSR ≥ 1.96 or BSR ≤ -1.96. Hot colored regions in 

panel A are interpreted as showing a positive gene co-expression–fMRI correlation — that 

is, as a module’s eigengene increases, functional activation in response to speech also 

increases. In contrast, cool colored areas in panel A indicate a negative correlation between a 

module’s eigengene and functional activation response to speech. The table in panel B 

describes which modules were the strongest contributors to the LV1 PLS result. Each row 

indicates one of the 21 co-expression modules used in the PLS analysis. The columns 

labeled with the heading ‘Non-Zero Modules’ are broken down to indicate gene co-

expression–fMRI correlations by group. Cells in these columns are colored red or blue if the 

gene co-expression–fMRI correlation was non-zero and had 95% confidence intervals 

(estimated from bootstrapping) that did not include a correlation of 0. These modules are 

called ‘non-zero’ modules, as they are the strongest contributors or modules of importance 

to the LV1 PLS result. All other modules with white colored cells are labeled ‘zero’ 

modules, as the 95% confidence intervals for the gene co-expression–fMRI correlation 

include 0. Non-zero modules have cells colored in red to indicate a positive gene co-

expression–fMRI correlation (i.e. congruent with the interpretation already stated for the hot 

and cool colored regions in panel A). However, in the case of non-zero modules with cells 
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colored in blue, the previously stated way to interpret the hot and cool colored regions in 

panel A should reverse (e.g., cool colored regions in panel A reflect positive correlations 

with a module’s eigengene, while hot colored regions in panel A reflect negative correlations 

with a module’s eigengene). The remaining columns in panel B with the heading ‘Biological 

Processes’ annotate each module for enrichments in biological process terms from Metacore 

GeneGO software. Cyan colored cells indicate modules with enrichments passing FDR 

q<0.05 for multiple comparison correction. For a complete description of these biological 

process enrichments, please see Supplementary Table 5.
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Figure 4. Tissue class enrichments with sets of non-zero or zero association modules.
Enrichments with different classes of genes taken from the Boyle et al., (2017)20 analysis of 

tissue-specific or broadly expressed genes from GTEx data. Within panel A, the numbers in 

each cell represent the enrichment odds ratio, while the coloring represents the –log10 p-

value for each hypergeometric test for enrichment. Cells outlined in green pass multiple 

comparison correction at FDR q<0.05. In panel B, we show all gene co-expression modules 

(rows) and whether they are enriched for each tissue class (columns). Modules with 

enrichments passing FDR q<0.05 for multiple comparison correction are indicated as 

colored cells. The first 3 columns show which modules are those with non-zero associations 

(colored cells), as shown in Fig. 3b.
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Figure 5. Vocal learning, human-specific, and ASD-associated enrichments with sets of broadly 
expressed genes and non-zero or zero association modules.
Panel A shows the results of hyperogeometric tests for enrichment between broadly 

expressed genes, non-zero, and zero modules (columns) and a variety of different gene lists 

(rows) relevant to vocal learning, human-specific genes, or genes of relevance to ASD. The 

numbers in each cell represent the enrichment odds ratio, while the coloring represents the –

log10 p-value for each hypergeometric test for enrichment. For details about the gene lists 

specified in each row, see the Methods section. Cells outlined in green pass multiple 

comparison correction at FDR q<0.05. Panel B shows a table to indicate which gene co-

expression modules (rows) are enriched for a variety of different gene lists (columns). 

Modules with enrichments passing FDR q<0.05 for multiple comparison correction are 

indicated as cyan colored cells. The first 3 columns show which modules are those with non-

zero associations (colored cells), as shown in Fig. 3b.
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