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Abstract

Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR)

for maize canopies are important for maize growth monitoring and yield estimation. The goal

of this study is to explore the potential of using airborne LiDAR and hyperspectral data to

better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height

and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices

derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson corre-

lation analyses were conducted to evaluate the relationships among LiDAR metrics, hyper-

spectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR)

models were developed using these metrics. Results showed that (1) LiDAR height and cov-

erage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegeta-

tion indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination

of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88).

These results indicate that LiDAR model seems to offer a reliable method for estimating

maize fPAR at a high spatial resolution and it can be used for farmland management. Com-

bining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation

than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can ben-

efit from the complementary nature of LiDAR-detected canopy structure characteristics and

hyperspectral-captured vegetation spectral information.

Introduction

Vegetation plays an important role in the exchange of energy and matter between atmo-

sphere and land, and it provides food and habitats for terrestrial species. The photosynthetic

process of green vegetation that converts sunlight to sugars is a key component of vegetation

function. Photosynthetically active radiation (PAR) is solar radiation in the spectrum of

400–700 nm that can be used by vegetation canopy in photosynthesis [1] with a unit of
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These data used in this study are airborne remote

sensing data, which have fine spatial resolution. In

particular, airborne LiDAR data contain fine terrain

information, which is sensitive information for

China. In addition, the dataset is owned by a third-

party organization—Cold and Arid Regions Science

Data Center at Lanzhou. These restrictions were

https://doi.org/10.1371/journal.pone.0197510
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197510&domain=pdf&date_stamp=2018-05-29
https://doi.org/10.1371/journal.pone.0197510
https://doi.org/10.1371/journal.pone.0197510
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


measurement of μmol �m-2 � s-1. Fraction of absorbed photosynthetically active radiation

(fPAR) is the fraction of incoming solar radiation in the spectrum of 400–700 nm that is

absorbed by vegetation canopy, and it is a ratio that ranges from 0 to 1 with no units [2].

fPAR is a key indicator of vegetative water, energy and carbon balance [3], and it is also

an important parameter in ecosystem models, climate models, vegetation net primary pro-

ductivity estimation models, and crop yield estimation models [4]. Therefore, efficient and

accurate methods for fPAR mapping over large areas will be valuable to these important

modeling efforts [5].

fPAR can be measured using traditional ground-based methods, e.g., canopy analysis sys-

tems or radiation sensors, such as SunScan, AccuPAR, and TRAC [6–8]. These ground-based

measurement methods can be used to accurately obtain fPAR in real time, but they are time-

consuming and labor-intensive, and they cannot be implemented over large areas [8, 9].

Remote sensing can overcome abovementioned shortcomings and obtain spectral information

from canopy by non-destructive method [10, 11]. Optical remote sensing datasets have been

widely used to estimate vegetation fPAR in many studies [12]. fPAR are often estimated based

on the statistical relationships between field-measured fPAR and vegetation indices (VIs), such

as normalized difference vegetation index (NDVI) [13–15], perpendicular vegetation index

(PVI) [13], green normalized difference vegetation index (GNDVI) [16, 17], enhanced vegeta-

tion index (EVI) [18], and simple ratio (SR) [15]. Although optical remote sensing imagery

can be used to rapidly estimate vegetation fPAR over large areas, these methods are often lim-

ited by the saturation of vegetation indices in dense vegetation [17].

LiDAR is an active remote sensing technique that can penetrate vegetation canopy and

capture light transmissivity inside the canopy [19]. LiDAR can bypass the saturation effect

and provide accurate information on vegetation structure [20, 21]; so, it has been used to

estimate vegetation fPAR in several studies. Chasmer et al. [7] calculated the ratio of canopy

return number to total return number as fractional canopy cover to estimate forest fPAR,

and their results indicated that estimated fPAR was strongly correlated with hemispherical

photography-derived fPAR. Luo et al. [19] found that LiDAR-derived canopy fractional

cover had a strong correlation with field-measured maize fPAR by linear regression analysis,

especially when LiDAR intensity correction was carried out. However, LiDAR metrics-

based fPAR estimation methods are often limited by a lack of available spectral information

[19].

In summary, airborne LiDAR data can provide detailed vegetation structural informa-

tion, and hyperspectral imagery can offer abundant canopy spectral information. In these

circumstances, combination of airborne LiDAR and hyperspectral data seems to be an inter-

esting option for better estimation of maize fPAR. Previous studies have demonstrated the

ability of using the combination of airborne LiDAR and hyperspectral data to estimate vege-

tation canopy parameters, such as leaf area index (LAI) [22], height [22, 23], biomass [24,

25], and even fPAR in boreal mixedwood forests [26]. However, no literature has focused

on crop fPAR estimation by combining airborne LiDAR and hyperspectral data. Therefore,

this study is a new attempt to estimate maize fPAR by combining airborne LiDAR and

hyperspectral data.

The objective of this study is to determine if maize fPAR is best estimated using airborne

LiDAR data or hyperspectral data, or the combination. More specifically, our goals are to

(1) explore the relationships among field-measured maize fPAR with airborne LiDAR data

derived height and coverage metrics; (2) evaluate the utility of using hyperspectral data-

derived vegetation indices for maize fPAR estimation; and (3) determine whether the

combination of LiDAR and hyperspectral data will improve the accuracy of maize fPAR

estimation.

Maize fPAR estimation using LiDAR and hyperspectral data
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Study area and data

Study area

The study region is located in Zhangye City of Gansu Province in northwest China (38˚

58032@-38˚5906@N, 100˚25038@-100˚26027@E). The study area is relatively flat with elevations

from 1402 to 1418 m. The climate type of the study area is a temperate arid climate with an

annual average temperature of 6 ˚C and an annual average precipitation of 198 mm [27].

Maize is the main vegetation in the study area, and it is often sowed in late April and harvested

in mid-September. Fig 1 shows a false-color composite image of the study area, and the green

squares are the locations of the sampling plots. The false-color image was derived from a Com-

pact Airborne Spectrographic Imager (CASI) hyperspectral image, and the near-infrared band

(826.3 nm), red band (654.8 nm), and green band (540.4 nm) are shown in red, green, and

blue, respectively.

Field measurements

The field measurements were conducted on July 8–13, 2012, when the maize was at the pre-

flowering stage. In this stage, maize had almost the maximum leaves, and the top of maize

Fig 1. The false color composite image (NIR/red/green band) of the study area derived from the Compact Airborne Spectrographic Imager

(CASI) hyperspectral image and the sampling plots (green squares in the image).

https://doi.org/10.1371/journal.pone.0197510.g001
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tassel was about 3 cm higher than top-most leaf. We randomly selected 40 sample plots with

uniformly distributed maize to measure the fPAR by using a SunScan canopy analyzer. The

owners of the land gave permissions to conduct the study on these sites. The mean density of

these plots was 6 maizes/m2 and the mean height of the 40 maize plots ranged from 1.6 m to

2.8 m. The plot size was chosen as 4 m × 4 m according to Wang et al. [28] and the locations of

all sample plots are shown in Fig 1. To acquire fPAR, above-canopy upwelling PAR (PARau)

and downwelling PAR (PARad), and below-canopy upwelling PAR (PARbu) and downwelling

PAR (PARbd) were all measured at each sample plot by using SunScan canopy analyzer with

the μmol �m-2 � s-1 units of the measurement. The PARau and PARad were measured by Sun-

Scan canopy analyzer at an approximate height of 0.5 m above canopy surface, and PARbu and

PARbd were measured at an approximate height of 0.15 m above ground to reduce the impacts

from short grasses. The sensor was kept horizontal during all measurements to reduce error.

For each plot, fPAR was calculated based on Eq (1).

fPAR ¼
ðPARad � PARauÞ � ðPARbd � PARbuÞ

PARad
ð1Þ

To cover plot and minimize error, we measured fPAR in the center and four cardinal direc-

tions at each plot and then averaged these measurements to obtain field-measured fPAR. Mea-

surements were taken under sunny and cloudless skies over six consecutive days from 10:00 to

14:00. An RTK-GPS (global positioning system) was used to record geographic coordinates of

the center of each plot.

Airborne LiDAR data

Airborne LiDAR data for the study area were obtained using a Leica ALS70-HA system on

July 19, 2012. The weather conditions were sunny and cloudless. Flight height was approxi-

mately 1300 m above ground with an approximate overlap of 60%, and flight speed was

approximately 216 km/h. Pulse rate of the airborne LiDAR system was 210.7 KHz. LiDAR sys-

tem emitted a laser pulse at a wavelength of 1064 nm, a scan angle of ±18˚, and a beam diver-

gence of 0.22 mrad. Acquired LiDAR data were discrete point cloud data with multiple returns

and with a point density of approximately 7.4 points/m2. The LiDAR system recorded geo-

graphical coordinate, pulse intensity, return number, and scan angle.

Hyperspectral data

Airborne hyperspectral data for the study area were collected on July 7, 2012 using a Compact

Airborne Spectrographic Imager (CASI-1500). The weather conditions were sunny and cloud-

less. Flight height was approximately 2000 m above ground, and field of view was 40˚. Swath

width was approximately 1500 m. The CASI-1500 has 48 spectral bands over wavelengths

from 382.5 nm (visible band) to 1055.5 nm (near infrared band), and the horizontal resolution

of hyperspectral data was 1 m.

Methods

Airborne LiDAR data processing

There are some outliers in the airborne LiDAR point cloud data, so the noises were first

removed based on the frequency histogram. To separate ground from non-ground points,

the cloth simulation filter (CSF) algorithm [29], which is embedded in the Point Cloud Magic

software (China), was used to filter the point cloud data. The filtered ground points and non-
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ground points were used to generate the digital terrain model (DTM) and digital surface

model (DSM) with a spatial resolution of 1 m respectively.

To remove the influence of terrain, we extracted the corresponding ground elevation of

each non-ground point from DTM and then subtracted it from original point height to obtain

normalized height of each non-ground point. The point cloud data within each plot were

extracted to calculate LiDAR metrics. Twenty height-related and coverage-related LiDAR

metrics (Table 1) that have been commonly used in vegetation parameter estimations were

extracted according to the metric descriptions in Table 1. The point cloud intensity was

affected by incidence angle and sensor-to-target distance. To calculate intensity-based frac-

tional cover (fcoverintensity), the return intensity was corrected using incidence angle and dis-

tance according to Eq (2). Then, the sum of vegetation return intensity and the sum of ground

return intensity within each plot were calculated. The fcoverintensity was calculated according to

Eq (3).

Icorrected ¼ I �
D2

D2
s cosa

ð2Þ

fcoverintensity ¼
Icanopy

Icanopy þ kIground
ð3Þ

where D is the distance from sensor to target, Ds is the perpendicular distance from sensor

Table 1. LiDAR metrics used for maize fPAR estimation.

LiDAR

metrics

Descriptions

Rveg_grd The ratio of vegetation return number to ground return number

fcoverintensity Intensity-based fractional cover, calculated as the ratio of vegetation return intensity to all return

intensity

H5th 5th percentile vegetation point cloud height

H10th 10th percentile vegetation point cloud height

H25th 25th percentile vegetation point cloud height

H50th 50th percentile vegetation point cloud height

H75th 75th percentile vegetation point cloud height

H90th 90th percentile vegetation point cloud height

H95th 95th percentile vegetation point cloud height

IQRH Interquartile range (IQR) of vegetation point cloud height; IQRH = H75th − H25th

CVH Coefficient of variation of vegetation point cloud height

RangeH Difference between maximum vegetation point cloud height and minimum vegetation point cloud

height

MeanH Mean value of vegetation point cloud height

CNRH Canopy relief ratio of vegetation point cloud height; CNRH = (MeanH −minimum vegetation point

cloud height)/ RangeH

MADH Median absolute deviation (MAD) from median vegetation point cloud height;

MAD = 1.4826�median(|height-median height|)

AADH Mean absolute deviation (AAD) from mean vegetation point cloud height; AAD = mean(|height-

mean height|)

VarianceH Variance of vegetation point cloud height

StdevH Standard deviation of vegetation point cloud height

SkewnessH Skewness of vegetation point cloud height

KurtosisH Kurtosis of vegetation point cloud height

https://doi.org/10.1371/journal.pone.0197510.t001
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to target, α is the incidence angle of laser pulse, I is raw echo intensity, and Icorrected is the

echo intensity corrected by distance and incidence angle. Icanopy is the sum of vegetation

return intensity, Iground is the sum of ground return intensity, k is reflectance adjusting fac-

tor, which is set to 2.0 according to Luo et al. [19], and fcoverintensity is intensity-based frac-

tional cover.

Hyperspectral data processing

To reduce the effects of atmospheric scattering and absorption, atmospheric correction for the

airborne hyperspectral image was carried out using the FLAASH (Fast Line-of-Sight Atmo-

spheric Analysis of Spectral Hypercubes) correction module, which is embedded in ENVI

software. In the FLAASH correction module, atmospheric model was mid-latitude summer,

aerosol model was rural, sensor type was CASI, and sensor altitude, ground elevation, flight

date and other parameters were all set according to data specifications. The DSM was used as

reference image to geometrically calibrate the hyperspectral image by using image-to-image

registration module, which is embedded in ENVI software. Thirty ground control points

(GCPs) were selected to establish calibration model to execute geometric calibration, and

root mean square (RMS) was 0.203. The hyperspectral images were then mosaicked using the

mosaic function in ENVI software to obtain an image that covered entire study area. Finally,

the hyperspectral data within each plot were extracted and used to calculate hyperspectral

metrics.

According to previous studies, based on spectral characteristics of maize and physical

meaning of spectral index, a total of 46 hyperspectral vegetation indices that were related to

fPAR, leaf area index (LAI), and chlorophyll (known as an important influencing factor of

fPAR) were considered (Table 2) as the independent metrics to estimate maize fPAR. These

indices included simple ratio indices, normalized difference ratios, triangular vegetation indi-

ces, modified versions of these three types of indices, derivative spectral indices and red edge

position-based indices.

Maize fPAR estimation method

Pearson correlation analyses were first conducted to assess the relationships among LiDAR

metrics, hyperspectral metrics, and field-measured fPAR. Multiple linear regression (MLR)

models, which included LiDAR metric set and hyperspectral metric set as predictor metrics,

were developed independently and in combination to estimate maize fPAR. The scatterplot

matrix of determination coefficient (R2) was used to avoid multicollinearity due to high

similarity between some variables. If two or more variables were highly correlated, the more

straightforward one was usually retained [30]. Standard backward stepwise regression was per-

formed to select the metrics for final models; predictor metrics that were left in the models

were significant at the 5% level [31]. Finally, we selected the best fitting models based on the

lowest Akaike information criteria (AIC) value [31]. Several studies have employed the multi-

ple linear regression method to estimate vegetation parameters, such as forest aboveground

biomass [32, 33], forest height [34], and LAI [30].

Accuracy assessment

To assess the accuracy of maize fPAR estimation, we randomly selected 25 samples out of 40

samples to develop the multiple linear regression model and then used the remaining 15 sam-

ples to validate the model. The accuracy of maize fPAR estimation model was estimated by

Maize fPAR estimation using LiDAR and hyperspectral data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197510 May 29, 2018 6 / 20

https://doi.org/10.1371/journal.pone.0197510


Table 2. Hyperspectral metrics used for maize fPAR estimation.

Hyperspectral metrics Symbols Formulas

Photochemical reflectance index PRI (R526-R569)/(R526+R569)

Modified NDVI mNDVI (R755-R712)/(R755+R712)

Carter index Ctr2 R698/R755

Carotenoid reflectance index CRI (1/R512)-(1/R698)

Anthocyanin reflectance index ARI (1/R555)-(1/R698)

Vogelmann red edge index 1 VOG1 R741/R726

Vogelmann red edge index 2 VOG2 (R741-R755)/(R712-R726)

Simple ratio 1 SR1 R411/R712

Simple ratio 2 SR2 R411/R698

Simple ratio 3 SR3 R783/R769

Simple ratio 4 SR4 R755/R712

Simple ratio 5 SR5 R898/R683

Simple ratio 6 SR6 R798/R669

Simple ratio 7 SR7 R669/(R555×R712)

Transformed vegetation index TVI 0.5×[120×(R755-R555)-200×(R669-R555)]

Modified transformed vegetation index MTVI 1.2×[1.2×(R798-R555)-2.5×(R669-R555)]

Modified chlorophyll absorption in reflectance index MCARI [(R698-R669)-0.2×(R698-R555)]×(R698/R669)

Optimized vegetation index 1 VIopt1 R755/R726

Optimized vegetation index 2 VIopt2 100×(lnR755-lnR726)

Pigment specific simple ratio 1 PSSR 1 R798/R683

Pigment specific simple ratio 2 PSSR 2 R798/R641

Pigment specific simple ratio 3 PSSR 3 R798/R469

Sum green index SGI Normalized mean reflectance of 500–600 nm

Structure intensive pigment index SIPI (R798-R440)/(R798-R683)

Normalized pigments chlorophyll ratio index NPCI (R683-R426)/(R683+R426)

Red-edge vegetation stress index RVSI (R712+R755)/2-R726

Double difference index DDI (R755-R726)-(R698-R669)

Difference vegetation index DVI R798-R683

Transformed chlorophyll absorption in reflectance index TCARI 3×[(R698-R669)-0.2×(R698-R555)×(R698/R669)]

Visible atmospherically resistant index VARI (R555-R683)/(R555+R683-R483)

Green normalized difference vegetation index GNDVI (RNIR-RGREEN)/(RNIR+RGREEN)

Enhanced vegetation index EVI (R798-R683)/(1+R798+6R683-7.5×R483)

Water band index WBI R898/R969

Triangular vegetation index TVI 0.5×(120×(R655-R555)-200×(R669-R555))

Soil-adjusted vegetation index SAVI (1.5×R798-R683)/(R798+R683+0.5)

Modified soil adjusted vegetation index MSAVI
½2R798 þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2R798 þ 1Þ
2
� 8ðR798 � R669Þ

q

=2�

Optimal soil adjusted vegetation index OSAVI (1+0.16)×(R798-R669)/(R798+R669+0.16)

Red green ratio RGratio Rred/Rgreen

Red edge position index REPI Maximum value from 690 to 740 nm

Plant senescence reflectance index PSRI (R683-R497)/R755

Ratio between MTVI and MSAVI MTVI/MSAVI MTVI/MSAVI

Ratio between DDI and MSAVI DDI/MSAVI DDI/MSAVI

Ratio between MCARI and OSAVI MCARI/OSAVI MCARI/OSAVI

Ratio between TCARI and OSAVI TCARI/OSAVI TCARI/OSAVI

Derivative chlorophyll index DCI δ715/δ726

Maximum 1st derivative for red-edge δmaxred-edge δmax[680–750]

https://doi.org/10.1371/journal.pone.0197510.t002

Maize fPAR estimation using LiDAR and hyperspectral data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197510 May 29, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0197510.t002
https://doi.org/10.1371/journal.pone.0197510


determination coefficient (R2) from Eq (4) and root mean square error (RMSE) from Eq (5).

R2 ¼ 1 �

Xn

i¼1
ðyi � xiÞ

2

Xn

i¼1
ðyi � �xÞ2

ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðyi � xiÞ

2

n � 1

s

ð5Þ

where yi is field-measured value of the ith sample, xi is model-estimated value of the ith sample,

�x is the average value of all model estimated values, and n is sample number.

Results

LiDAR model generation

To evaluate the relationship between each LiDAR metric and field-measured fPAR, a correla-

tion analysis was conducted based on 40 field-measured fPAR data against each LiDAR metric.

Pearson correlation coefficient (R) of each LiDAR metric and field-measured fPAR data is

shown in Fig 2. Seven of the twenty LiDAR metrics had negative correlations with field-mea-

sured fPAR, and their R values were all between -0.57 and 0. Eleven of the remaining metrics

had positive correlations with field-measured fPAR data, and their R values were smaller than

0.5. Two LiDAR metrics, fcoverintensity and Rveg_grd, had stronger positive correlations with

field-measured fPAR data, with R values of 0.88 and 0.59, respectively.

After the correlation analyses among all LiDAR predictor variables, highly inter-corre-

lated variables were reduced, and finally 9 predictor variables were selected for model

development in the end, i.e., fcoverintensity, H10th, H75th, IQRH, RangeH, CNRH, MADH, Var-

ianceH, SkewnessH. Twenty-five randomly selected samples were used to develop maize

fPAR estimation model, and the remaining fifteen samples were used to validate the model.

The results of multiple stepwise linear regression using LiDAR metrics are shown in Table 3.

Using standard backward stepwise variable selection method, two fPAR estimation models

were generated. Only fcoverintensity was selected as a predictor metric in the first model,

while two metrics, fcoverintensity and CNRH, were selected by multiple stepwise regression

method in the second model. The fcoverintensity is intensity-based fractional cover, which

describes the status of vegetation canopy coverage. Canopy relief ratio of vegetation point

cloud height (CNRH) describes the distribution status of vegetation point cloud, and it can

illustrate maize growth status. Interestingly, height percentile metrics were not selected in

automatic variable selection, and they did not provide much additional interpretation ability

to fPAR estimation model.

According to the results shown in Table 3, the model that contained only fcoverintensity has

an adjusted-R2 value of 0.76 and a RMSE of 0.047. The fPAR estimation model with both fco-

verintensity and CNRH showed a higher adjusted-R2 value (0.81) and a lower RMSE (0.042),

so it is considered the best LiDAR based maize fPAR estimation model. Therefore, the final

model generated from randomly selected modeling dataset of 25 plots is shown in Eq (6). All

parameters are statistically significant at the< 0.05 level. The value of Durban-Watson test for

residual autocorrelation was 1.568.

FPAR ¼ 0:802f coverintensity þ 0:268CNRH � 0:175 ð6Þ

Using the remaining 15 samples as validation dataset, the model was run with the same pre-

dictor metrics. Validation results showed an adjusted-R2 value of 0.82 (p<0.05) and a RMSE

Maize fPAR estimation using LiDAR and hyperspectral data
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of 0.040. This adjusted-R2 adequately corresponds to the interpretation ability of fPAR estima-

tion model (adjusted-R2 = 0.81).

Hyperspectral model generation

For the 46 original hyperspectral vegetation indices, variable selection was performed using

a Pearson correlation analysis. Nineteen hyperspectral metrics that had absolute R values

greater than 0.3 were selected for further processing. R values of the nineteen metrics and

field-measured fPAR are shown in Fig 3. Six of the nineteen hyperspectral metrics had

Fig 2. Pearson correlation coefficient (R) of each LiDAR metric and field-measured fPAR data.

https://doi.org/10.1371/journal.pone.0197510.g002

Table 3. Results of the multiple stepwise linear regression using LiDAR metrics.

Model no. Metric R2 Adjusted-R2 RMSE Durbin-Watson

1 fcoverintensity 0.77 0.76 0.047

2 fcoverintensity

CNRH

0.82 0.81 0.042 1.568

https://doi.org/10.1371/journal.pone.0197510.t003
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negative correlations with field-measured fPAR with R values between -0.5 and -0.33. Four

metrics, MCARI, TCARI, MCARI/OSAVI, and TCARI/OSAVI, exhibited stronger negative

correlations with field-measured fPAR, with R values of -0.65, -0.60, -0.59, and -0.57, respec-

tively. Six of the remaining metrics had positive correlations with field-measured fPAR with

R values smaller than 0.5. Three hyperspectral metrics, DCI, DDI and SR1, exhibited stron-

ger positive correlations with field-measured fPAR, with R values of 0.69, 0.64, and 0.57,

respectively.

After the correlation analyses among the selected nineteen hyperspectral predictor

variables, the highly inter-correlated variables were reduced, and finally ten predictor vari-

ables were selected for model development in the end, i.e., WBI, VOG2, TCRI, REPI, PRI,

mNDVI, MTVI, CRI, DVI, and DCI. The twenty-five plots that were selected to generate

LiDAR model were used to develop fPAR estimation model, and the remaining fifteen plots

used in LiDAR model validation were used to validate the model. As the input parameters,

the ten selected metrics that were derived from hyperpsectral imagery were put into the

Fig 3. Pearson correlation coefficient (R) of each selected hyperspectral metric and field-measured fPAR.

https://doi.org/10.1371/journal.pone.0197510.g003
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multiple stepwise regression model. Table 4 shows the results of multiple stepwise linear

regression using hyperspectral metrics. After standard backward stepwise variable selection,

two fPAR estimation models were generated. The first model contained only DCI, while the

second model selected both DCI and VOG2 as predictor metrics. The derivative chlorophyll

index (DCI) is a vegetation index related to chlorophyll content, which is the main pigment

for photosynthesis by vegetation. The Vogelmann red edge index (VOG2) is sensitive to

chlorophyll concentration and leaf water content and can characterize the photosynthetic

capacity of vegetation. The DCI-based model has an adjusted-R2 value of 0.46 and a RMSE

of 0.065, and the model that contained both DCI and VOG2 exhibited improved perfor-

mance (adjusted-R2 = 0.50, and RMSE = 0.061). Therefore, in the end, maize fPAR estima-

tion model derived from hyperspectral imagery was developed, as shown in Eq (7). The value

of Durban-Watson test for residual autocorrelation is 1.232, and all parameters are statisti-

cally significant at the < 0.05 level.

FPAR ¼ � 0:813DCI � 0:252VOG2þ 1:425 ð7Þ

Using the validation dataset, the model was run with the same predictor variables. Valida-

tion results showed an adjusted-R2 value of 0.46 (p<0.05) and a RMSE of 0.062. This adjusted-

R2 is also consistent with the adjusted-R2 value of fPAR estimation model (R2 = 0.50).

Combination model generation

Further research was conducted to explore whether combining airborne LiDAR and hyper-

spectral data could improve the accuracy of maize fPAR estimation. Both the selected LiDAR

and hyperspectral metrics were put into the multiple linear regression algorithm to develop an

fPAR estimation model. As before, the modeling dataset selected to generate LiDAR model

was used to develop the model, and the corresponding validation dataset was used to validate

the model. Table 5 shows the results of multiple stepwise linear regression using both LiDAR

and hyperspectral metrics. Three fPAR estimation models were generated after standard back-

ward stepwise variable selection. The first and the second model were the same as LiDAR

models. Three metrics, fcoverintensity, CNRH, and DCI, were selected in the third model. fco-

verintensity and CNRH were both derived from LiDAR data, while fcoverintensity describes

canopy coverage status and CNRH indicates maize growth status. DCI was derived from

hyperspectral data, and it represents chlorophyll content of vegetation, which is highly related

to the photosynthetic capacity of maize. Finally, maize fPAR estimation model was developed,

Table 4. Results of the multiple stepwise linear regression using hyperspectral metrics.

Model no. Metric R2 Adjusted-R2 RMSE Durbin-Watson

1 DCI 0.48 0.46 0.065

2 DCI

VOG2

0.53 0.50 0.061 1.232

https://doi.org/10.1371/journal.pone.0197510.t004

Table 5. Results of the multiple stepwise linear regression using both LiDAR and hyperspectral metrics.

Model no. Metric R2 Adjusted-R2 RMSE Durbin-Watson

1 fcoverintensity 0.77 0.76 0.047

2 fcoverintensity CNRH 0.82 0.81 0.042

3 fcoverintensity CNRH

DCI

0.89 0.88 0.035 1.356

https://doi.org/10.1371/journal.pone.0197510.t005
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as shown in Eq (8).

FPAR ¼ 0:692f coverintensity þ 0:251CNRH � 0:177DCIþ 0:052 ð8Þ

This model has an adjusted-R2 value of 0.88 and a RMSE of 0.035. All parameters are statis-

tically significant at the<0.05 level. The Durban-Watson test for residual autocorrelation

resulted in a value of 1.356.

Validation dataset was used to validate the fPAR estimation model, and the results showed

an adjusted-R2 value of 0.89 (p<0.05) and a RMSE of 0.029, which is in accordance with the

adjusted-R2 value of the fPAR estimation model (adjusted-R2 = 0.88).

Discussion

LiDAR model

The final fPAR estimation model includes two LiDAR metrics, which suggests some interest-

ing aspects of the model and using LiDAR to predict fPAR in general. The fcoverintensity

showed a strong and positive correlation to maize fPAR (R = 0.88), i.e., as fPAR increased, fco-

verintensity increased (Fig 4(a)). High fcoverintensity values correspond to high canopy coverage

and low gap fractions (i.e., low penetration). It was expected that a metric of this nature would

be included in the final model since canopy coverage was high, the leaf area used for photosyn-

thesis was large, and therefore, the fPAR was large.

Another predictor metric did not exhibit a strong correlation to maize fPAR. However, the

nature of multiple linear regression algorithm is that the combination and interplay of trends

between predictor variables can often generate more explanatory power than an individual

variable [30]. Fig 4(b) shows relatively weak positive correlation between fPAR and CNRH.

CNRH is canopy relief ratio of vegetation point cloud height, which demonstrates the distribu-

tion status of vegetation point cloud. Higher CNRH values mean that more LiDAR pulses are

intercepted by upper canopy leaves, and fewer LiDAR pulses penetrate to lower canopy leaves.

If canopy is dense, there is a higher chance of more pulses being intercepted by upper canopy

leaves; more open canopies allow for greater pulse penetration and more returns from lower

canopy leaves.

The lack of height percentile metrics captured in LiDAR model was noticeable because

these metrics tend to be predominant in many other vegetation inventory variable estimation

Fig 4. Scatterplots of fPAR and (a) fcoverintensity, and (b) CNRH from the 25 modeling plots.

https://doi.org/10.1371/journal.pone.0197510.g004
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models (e.g., biomass and LAI). This phenomenon can be explained by the fact that although

these height percentile metrics provide a general measure of canopy complexity and penetra-

tion, there were other metrics derived from the LiDAR data that had better explanatory abili-

ties for maize fPAR.

The regression model generated by the modeling dataset was used to predict maize fPAR

for the validation dataset, and results are shown in Fig 5. The correlation of predicated fPAR

and field-measured fPAR was strong, and the straight line fit is very close to the 1:1 line. This

phenomenon explained the strong explanatory power of airborne LiDAR metrics for maize

fPAR.

Several studies have estimated vegetation fPAR using only LiDAR data. Chasmer et al. [7]

estimated forest fPAR using a LiDAR-derived fraction coverage, and their results indicated

that LiDAR-derived fraction coverage was strongly correlated with the fPAR data derived

from digital hemispherical photography (R2 = 0.72 and RMSE = 0.11). Luo et al. [19] used

discrete-return LiDAR data-derived fraction coverage to predict maize fPAR and showed

slightly higher accuracy than this study. The slight difference may be related to (1) different

plot sizes, as several studies have shown that plot size has an important impact on the accuracy

of vegetation parameter estimations [35–37]; (2) the use of a LI-191SA Linear Quantum PAR

Sensor instead of SunScan canopy analyzer for in situ fPAR data collection, as different

Fig 5. Scatterplots of field-measured fPAR values versus fPAR values predicted by the LiDAR model.

https://doi.org/10.1371/journal.pone.0197510.g005
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measurement sensors always acquire discriminatory results in the same plot because of differ-

ent measurement principles; and (3) different in situ measurement times during the rapid

maize growing season. Qin et al. [38] estimated maize fPAR using full-waveform LiDAR data,

and their results showed that full-waveform airborne LiDAR-derived canopy fraction coverage

had a slightly stronger correlation with field-measured maize fPAR than measured in this

study. This difference may be caused by the abundant waveform information provided by full-

waveform LiDAR data.

Similar to LiDAR data, photogrammetric data can also be used to produce 3D point clouds.

However, photogrammetric data can only acquire the information of canopy top, and they

almost cannot penetrate vegetation canopy. Thus photogrammetric data cannot acquire the

vertical structural information of vegetation canopy, which are important for vegetation

parameters estimation. Therefore, although photogrammetry-derived 3D point clouds may

have higher point cloud density, they have only been used to estimate tree height with high

accuracy in several studies [39, 40], and they have never been used to estimate vegetation

parameters which are related to vegetation vertical structural information, such as fPAR and

LAI.

Hyperspectral model

Two metrics were ultimately included in the hyperspectral model. The DCI showed a moder-

ate, negative correlation with fPAR (R = 0.69), i.e., as fPAR increased, DCI decreased (Fig 6(a)).

A high DCI corresponds to low chlorophyll content. It was expected that a variable of this

nature would be included in final model since chlorophyll is the main pigment utilized for veg-

etation photosynthesis. Chlorophyll content is a coarse surrogate for the ability of vegetation

to photosynthesize (i.e., higher chlorophyll content = greater photosynthesis ability = higher

fPAR).

VOG2 was another metric that was closely linked to chlorophyll content and water content.

Fig 6(b) demonstrates the weak positive correlation between VOG2 and fPAR. Vegetation

chlorophyll is main photosynthesis pigment in vegetation, while water is principal raw mate-

rial for photosynthesis, which are both key factors in vegetation photosynthesis. In this study,

the relationship between fPAR and VOG2 was weak. This phenomenon cannot be explained

in this study because the relationship between VOG2 and chlorophyll content and the relation-

ship between VOG2 and water content are not clear, which should be studied in the future.

Fig 6. The scatterplots of fPAR and (a) DCI and (b) VOG2 from the 25 modeling plots.

https://doi.org/10.1371/journal.pone.0197510.g006
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The relationship between the fPAR predicted by hyperspectral model and field-measured

fPAR data is shown in Fig 7. The correlation between predicated fPAR and field-measured

fPAR was moderate, and the straight line fit is different from the 1:1 line. This can explain the

relatively weaker explanatory power of hyperspectral metrics for maize fPAR than LiDAR

metrics.

Previous studies that have used only hyperspectral data to estimate vegetation fPAR tend to

show slightly better results than this study, but they used different methods. Tan et al. [17] esti-

mated corn fPAR using hyperspectral vegetation indices, and their results showed a higher

fPAR estimation accuracy (R2 = 0.75). This result was because a piecewise fPAR regression

model—the regression variable is green normalized difference vegetation index (GNDVI) for

fPAR values less than 0.75, and scaled normalized difference vegetation index (NDVI�) for

fPAR values greater than 0.75 –was used to estimate corn fPAR. Yang et al. [15] used hyper-

spectral vegetation indices to estimate corn fPAR based on a neural network method.

Although fPAR estimation accuracies were higher in these studies, the relationships between

corn fPAR and vegetation indices could not be clearly acquired.

Our study showed airborne LiDAR can acquire more accurate maize fPAR than hyperspec-

tral data, which was consistent with other vegetation parameter estimation [28, 30]. However,

each method has its shortcomings in different situations, such as growing stage and terrain

condition. In complicated terrain areas, hyperspectral imagery-derived canopy reflectance will

be seriously distorted [41]. This phenomenon is caused by inhomogeneous incident radiation

Fig 7. Scatterplots of field-measured fPAR versus fPAR predicted by the hyperspectral model.

https://doi.org/10.1371/journal.pone.0197510.g007
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and the shadow caused by topographic occlusion, and it will affect the accuracy of vegetation

parameter estimation. Similarly, LiDAR point cloud data of terrain areas always cannot be fil-

tered accurately, which will also affect the accuracy of LiDAR metrics extraction [42]. In the

early stages of vegetation growth, vegetation is sparse, so soil background produces many

noises to canopy reflectance estimation [43]. When vegetation is too dense, airborne LiDAR

often cannot penetrate vegetation canopy to acquire enough ground points [44]. All these situ-

ations will reduce the accuracy of vegetation parameter estimation. However, in this study,

maize is in pre-flowering stage and in flat areas, so their effects on maize fPAR estimation can

be ignored.

Combination model

Two LiDAR metrics (i.e., fcoverintensity and CNRH) and one hyperspectral metric (i.e., DCI)

were included in the combination maize fPAR estimation model. It was assumed that the two

LiDAR metrics in conjunction with DCI derived from hyperspectral data could improve the

accuracy of maize fPAR estimation to some degree (Fig 8). This result was expected consider-

ing the moderate correlation between DCI and fPAR. The combination model in Eq (8) has a

moderately higher explanatory power and a moderately lower RMSE than both the LiDAR

model and hyperspectral vegetation index model. This difference can be explained by the

Fig 8. Scatterplots of field-measured fPAR values versus the fPAR values predicted from the combination model.

https://doi.org/10.1371/journal.pone.0197510.g008
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complement of LiDAR-derived canopy structure characteristics and hyperspectral-derived

canopy spectral characteristics. However, the improvement to both explanatory power of the

combination model and residual error is not significant considering that the combination

model used three metrics, including one hyperspectral metrics (i.e., DCI), and additional

expense and challenge of collecting, processing, and working with hyperspectral data.

Previous study has shown that full-waveform LiDAR data can acquire slightly higher esti-

mation accuracy of maize fPAR than this study [38]. However, due to the limitations of the

experiment conditions, cost and data storage, full-waveform LiDAR data are often unavailable.

The goal of this study is to explore whether combining airborne discrete-return LiDAR data

and hyperspectral data can improve the estimation accuracy of maize fPAR, and results

showed that the combination model have a moderately higher accuracy than LiDAR or hyper-

spectral model alone. Therefore, combining airborne discrete-return LiDAR data and hyper-

spectral data may acquire the highest estimation accuracy for maize fPAR when full-waveform

LiDAR data are not available.

Airborne LiDAR and hyperspectral data have been combined to estimate several other veg-

etation parameters. Wang et al. [28] found combining airborne LiDAR and hyperspectral data

could provide better estimations of maize biomass. Anderson et al. [45] estimated forest basal

area, above-ground biomass and quadratic mean stem diameter, and their results indicated

the estimation accuracy of these parameters were improved by combining hyperspectral and

LiDAR data. Thomas et al. [26] integrated airborne LiDAR and hyperspectral data to estimate

boreal mixedwood forest fPAR and got an improved estimation accuracy. These studies indi-

cated that vegetation parameters estimation could benefit from the combination of airborne

LiDAR and hyperspectral data, which is in agreement with the findings of our study.

Novelty

Several studies have estimated maize fPAR by using airborne LiDAR or hyperspectral data

alone [19, 46]. However, this study is the first attempt to explore the potential of utilizing air-

borne LiDAR and hyperspectral data to better estimate maize fPAR, which has never been

explored. The results of this study first found a moderate improvement in maize fPAR estima-

tions when using both airborne LiDAR and hyperspectral data compared to using only air-

borne LiDAR or hyperspectral data. This improvement may be because airborne LiDAR data

can provide detailed vegetation canopy structural information, while hyperspectral data can

offer abundant spectral information about the biochemical and biophysical composition of the

vegetation canopy.

Limitations and future work

Several limitations should be identified when estimating maize fPAR using airborne LiDAR

and hyperspectral data. The first limitation is the error due to the inherent discrepancies

between field-measured fPAR values and airborne LiDAR and hyperspectral measurements.

The measuring conditions, such as measuring distance and instrument are not consistent,

which can lead to inherent errors. Another limitation is the time differences among field mea-

surements, airborne LiDAR, and hyperspectral data acquisition. Although the time intervals

are short and the weather conditions are quite similar, the small growth of maize during the

days in July and the slightly different weather conditions can cause a little fPAR estimation

error.

Estimating maize fPAR from different time periods during growing season may be utilized

to monitor maize growth status more accurately and estimate maize yield more reliably. Due

to the limitations of experimental conditions and costs, maize fPAR of only one time period
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was estimated in this study. However, the results of this study are effective when maize is in

the pre-flowering stage. Moreover, the methods used in this study can be used to estimate

maize fPAR of entire growing seasons when datasets are available.

This study took full advantage of accurate canopy structural information provided by air-

borne LiDAR data and abundant canopy spectral information provided by hyperspectral data to

estimate maize fPAR using a multiple linear regression method. This approach was simple and

efficient, and it can be applied to other sites. However, since estimation model is empirical, it

could not be directly used for other vegetation types and study areas, and field-measured fPAR

data are always needed to develop optimal fPAR estimation model. To develop a more accurate

fPAR estimation model with wide applicability, efforts are necessary to develop a physically

based fPAR estimation model that combines LiDAR and hyperspectral data in future research.

Conclusion

This study implemented two different approaches, i.e., airborne LiDAR data and hyperspectral

imagery-based approaches, to extract plot-level LiDAR and hyperspectral metrics and evalu-

ated the capacities of LiDAR and hyperspectral metrics alone and in combination to predict

maize fPAR. Results indicated that the three sets of predictive models performed well in the

maize growing area, with R2 values from 0.50 to 0.88. LiDAR or hyperspectral metrics alone

can yield fPAR estimation values with reasonable accuracies, and LiDAR model performed

better than hyperspectral model. For LiDAR model, fcoverintensity and CNRH were the selected

predictors of maize fPAR, while DCI and VOG2 were selected in the final hyperspectral vege-

tation index model. As expected, the combination of LiDAR and hyperspectral data improved

the accuracy of maize fPAR estimation to some degree, and LiDAR-derived fcoverintensity and

CNRH and hyperspectral-derived DCI predictors were included in the combination model.

The improvement was attributed to the fact that fPAR is a vegetation parameter that integrates

both canopy structure and spectral properties, and the data fusion approach in this study lever-

aged both LiDAR-derived 3D vegetation structure information and hyperspectral data-derived

canopy spectral signatures. Therefore, if both LiDAR and hyperspectral data are available, the

fusion of LiDAR and hyperspectral data is the best method to accurately estimate vegetation

variables such as fPAR.
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