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Abstract

Background: Evidence-based health indicators are vital to needs-based programming and epidemiological
planning. Agencies frequently make programming funds available to local jurisdictions based on need. The use of
objective indicators to determine need is attractive but assumes that selection of communities with the highest
indicators reflects something other than random variability from sampling error.

Methods: The authors compare the statistical performance of two heterogeneity measures applied to community
differences that provide tests for randomness and measures of the percentage of true community variation, as well
as estimates of the true variation. One measure comes from the meta-analysis literature and the other from the
simple Pearson chi-square statistic. Simulations of populations and an example using real data are provided.

Results: The measure based on the simple chi-square statistic seems superior, offering better protection against
Type I errors and providing more accurate estimates of the true community variance.

Conclusions: The heterogeneity measure based on Pearson’s c2 should be used to assess indices. Methods for
improving poor indices are discussed.

Background
Evidence-based health indicators are vital to needs-based
or results-based programming. Agencies frequently
make programming resources available to local jurisdic-
tions based on need. In 2008, the United States Depart-
ment of Health and Human Services distributed more
than $421 million in Mental Health Block Grant funds
based, in part, on the number of people at risk within
each state [1]. Each state then disperses funds to local
communities. The amount dispersed is often determined
by a demonstrable index of need.
The indicators used in public health funding contexts

vary considerably. Common indices include census
counts within a certain age group or the percentage of
people reporting a particular behavior from a popula-
tion-based surveillance survey, e.g., the percentage of
people reporting binge drinking in the past 30 days.
Mortality, arrest, remission, or recidivism rates are also
commonly used by different funding agencies. US gov-
ernment agencies such as the Centers for Disease

Control and Prevention provide yearly datasets such as
the Behavioral Risk Factor Surveillance System (BRFSS)
that include prevalence and trend data. State govern-
ments and other agencies support various other surveil-
lance systems for local assessments. For example, the
state of Iowa supports the administration of the Iowa
Youth Survey to all 6th, 8th, and 11th graders in the state
every three years.
The use of objective indicators in making funding

decisions can be very attractive for policymakers and
funders. A simple formula to determine which commu-
nity receives programming funding is transparent and
appears unbiased [2,3]. Targeting areas with high need
also appears to be a rational and evidence-based
approach. In the United States, there has been a recent
effort to rank the health of counties within states using
a collection of indicators [4,5]. Rankings or “league
tables” are extremely intuitive and make identification of
those locales with the greatest need deceptively easy.
However, this effort relies on two very basic assump-
tions - that the communities differ and that commu-
nities with the highest (or lowest) indicators truly reflect
the communities with the greatest need for public
health funding [6].
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Similar issues arise in the pay-for-performance pro-
grams that private health insurers, Medicare, and Medi-
caid use in the US and that the National Health Service
uses in United Kingdom. Pay-for-performance necessa-
rily requires using indices, often outcome indicators, for
rewards. Whether ranking hospitals or other institutions
or regions, the same assumption is made - that the
ranking indicators mostly reflect performance rather
than error.
An indicator would show a poor connection with

community needs or outcomes if the differences among
communities mainly reflected random variation. For
example, the BRFSS estimates of the percentage of
adults who drink heavily are based on a sample. Other
nonsurvey-based data are incomplete as well - for exam-
ple, outcomes of random compliance checks for liquor
or tobacco sales to minors. Whenever there is a possible
sampling error, observed differences among commu-
nities may be at least partially dictated by random error.
The question for policymakers is: How much of the
diversity among communities is error, and how much is
real variation?
While this question might be answered by reviewing

the communities’ indicator estimates and their standard
errors, this quickly becomes daunting. With more than
a few communities or more than two indices, a sum-
mary statement quantifying each indicator would be
invaluable in deciding their relative worth. Aside from
lack of convenience, there are other problems with sim-
ply relying on the standard errors [6]. One basic issue is
that the standard error of the indicator is not the stan-
dard error of the ranking, i.e., knowing the accuracy of a
single measurement does not indicate the accuracy of
that estimate’s ordering relative to the other commu-
nities. The relationship of standard errors of the indivi-
dual estimates to the standard errors of the relative
rankings is complex [7-9]. From another venue of bios-
tatistics, Gauch has noted that the problems of ranking
and selection are different statistical questions than
accuracy of estimation [10,11]. For example, the com-
munity with the highest estimated rate of obesity might
have a relatively large standard error, but that rate may
still be substantially distinguishable from the community
with the next highest rate. Conversely, the standard
errors might be very small, but the communities might
be very homogeneous, making the resolution difficult.
From a technical perspective, the statistical literature

provides a more formalized treatment. A region’s rank
can be formalized as the number of times a particular
region, say Region d, has a rate (pd) that is larger than
other regions, e.g., ∑(pd ≥ pd’), for all regions d and d’
and where the value within the parentheses equals 1
when it is true and 0 otherwise. Thus, each region is
compared to all regions, for a total of k2 comparisons,

where k is the total number of regions. Of course,
because rates within any region are measured with some
amount of error, there is a degree of uncertainty regard-
ing any comparison (pd ≥ pd’). One suggestion from the
small area estimation literature is to replace the ranks
with the sum of the estimated probabilities for each esti-
mated rate, i.e., [ ( )]’prob d dp p , where the simple
rates are replaced by the small area estimates [12,13].
This method tends to “shrink” the ranks toward the
median as a function of the spread of the estimates as
well as the size of the estimated standard errors. Each of
the possible comparisons also has a covariance that
needs to be considered, again magnifying the complexity
of the problem. Furthermore, the resulting sums of the
probabilities are not actually ranks, making interpreta-
tion difficult. Rao, in his seminal work on small area
estimation, suggests using triple goal estimators of Shen
and Louis when performing Bayesian estimates for
regional values [14,15]. Of particular interest is that the
triple goal method explicitly includes the rank ordering
and adequate interregional spread in the loss functions
used by the Bayes estimates. More importantly, the tri-
ple goal method explicitly attempts to provide good esti-
mates of the relative regional ordering rather than
simply good estimators for the rates, goals that are not
completely overlapping and will not necessarily result in
the same estimates.
In actual application, two studies of health indicator

performance (mortality rates and lead poisoning) across
a variety of geographic levels noted that the degree of
community homogeneity affected how well the indices
performed [16,17]. The degree of community homoge-
neity is not necessarily related to the size of the local
population or the corresponding size of the standard
error or estimate. In the context of hospital rankings on
performance measures, one English study noticed con-
siderable variation in the rankings, as much as half of
the league table [18]. A similar result regarding the
instability of rankings is given by O’Brien and Peterson
regarding hospital mortality rankings [19]. These consid-
erations may also explain inconsistencies in health rank-
ings using different indicators across provinces [20] and
communities [21] in Canada.
Both between-community heterogeneity and within-

community homogeneity must be considered simulta-
neously when assessing an index’s performance in
rankings. The present paper offers two proposed meth-
ods for assessing this issue, considering both within-
and between-community homogeneity simultaneously.
We compare the statistical performance of two het-

erogeneity measures applied to community differences
on a surveyed index. These measures may be useful to
screen indicators for heterogeneity among communities
due to true differences versus sampling error. The
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measures, ideally, would be useful for policymakers to
choose appropriate indicators for resource allocation,
funding, performance pay, ranking, and reporting. These
heterogeneity measures would not correct indicators for
sampling variability, but they would identify those indi-
cators showing more random variation or noise.
The two measures, one based on the work of DerSi-

monian and Laird (DL) [22] and one based on a simple
Pearson’s (P) chi-square, IDL

2 and I P
2 , assess the degree

to which the variation among communities corresponds
to the variation expected by chance (I2 ≤ 0), or if the
variation exceeds that caused by chance (I2 ® 1). Both
of the I2 measures have associated statistical tests to
determine if the variation is significantly different from
chance expectations. Both measures also provide a
means to estimate the actual range of real differences.
For this application, we restrict the discussion to indica-
tors or outcomes that are simple proportions, e.g., the
percentage of people who report heavy drinking within
the last 30 days.

Statistical background
A measure of heterogeneity or differences among units,
IDL

2 , was recently suggested in a meta-analysis context
[23,24]. The main goal of meta-analysis is to combine
results from a variety of studies on a topic and to sum-
marize and quantify the combined outcome. In meta-
analyses of clinical trials, k independent studies report a
treatment effect and its standard error. For the current
application, independent communities report an inci-
dence or prevalence, pi, where i reflects the ith commu-
nity. In a meta-analysis, the presence of heterogeneity is
a nuisance that requires specialized statistical treatment.
However, in our context, the heterogeneity measure is
the item of interest.

The IDL
2 measure used in meta-analysis is based on

Cochran’s Q, [25,26] as modified by DerSimonian and
Laird, [22]QDL. First, QDL is calculated; next, QDL is con-
verted to IDL

2 ; lastly, the variation among communities
can be estimated. The Q statistic, used to test for hetero-
geneity, is distributed as c2 with k - 1 degrees of freedom
(df). Under the null hypothesis that the studies are homo-
geneous, the expected value of QDL (i.e., a c2) equals the
df. Thus, QDL is a test that IDL

2 differs from zero.
Only a little modification to the meta-analysis notation

is necessary to fit QDL and IDL
2 to the present situation.

Weights (wi) used for the calculation of QDL are based
on the inverse of the sampling variance ( si

2 ) within a
community rather than a study. When the outcome
measure is binary and estimated from independent
observations, the sampling variance for the ith commu-
nity, si

2 , is pi(1 - pi)/ni, where ni is the total number of
observations within the community and pi is the

proportion of positive cases. Following DerSimonian and
Laird [22], we use the weights, w si i 1 2/ , to create a
pooled estimate across all units, p0 = Σwipi/Σwi. The test
statistic is, QDL =Σwi(pi - p0)

2.
The following equation converts QDL to

I I Q df QDL DL DL DL
2 2: ( ) /  . The QDL value represents

a standardized measure of the observed variance among
the k communities, and QDL minus the df value repre-
sents the degree of variance among communities that
exceeds the chance expectation. Thus, IDL

2 indicates the
proportion of true community heterogeneity over the
total observed variation. An IDL

2 of 0.75 would suggest
that 75% of the variation is not error variation in need
or outcome among the communities. This interpretation
of I2 led several investigators to point out the resem-
blance of IDL

2 to an intraclass correlation coefficient
used to assess the reliability [23,27,28]. As noted by
Shrout and Fleiss, the intraclass correlation can, under
certain conditions, be negative [28]. Similarly, IDL

2 can
be less than zero if the observed variation is less than
expected. In practice, values less than zero are reported
as zero.
Finally, DerSimonian and Laird [22] show that the true

(nonerror) between-community variation can be estimated

using: s Q df w w wcommunities DL i i i
2 20 max{ ,( - ) / [ - ( / )]}   .

The numerator contrasts the observed Q-value minus its
expectation (i.e., the df), which reflects the degree that the
observed Q-statistic exceeds the random noise. The
denominator returns Q to the original metric. Thus, this
value is interpretable as the actual variation among the
units, existing beyond random noise, and in the original
units, the incidence rates.
As an alternative to the DL method, we also include a

method based on a simple Pearson’s c2 statistic. For
example, the k communities would represent the rows
of a two-way frequency table, the two column entries
would represent the number of people reporting or not
reporting a behavior, and the c2-statistic can be calcu-
lated in the usual way. An algebraically equivalent form
of the c2-statistic is Σwi(pi - p•)

2, where wi is the inverse
of that community’s squared standard error si

2 , but
now p• is the overall (marginal) incidence rate across all
communities [29].

Replacing Q in the formula for IDL
2 with Pearson’s c2

gives, I dfP
2 2 2 ( ) /  . Since I P

2 represents the pro-
portion of variance among communities that exceeds
the random noise due to sampling error, and this mea-
sure is analogous to the intraclass correlation, i.e.,
s s scommunities communities error

2 2 2/ ( ) , the actual variance
among communities should be approximately
I sP observed

2 2 , where sobserved
2 is the calculated variance

among community rates.
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Methods
Sources of data
Data from the BRFSS, which involves yearly telephone
interviews across the nation, were used to illustrate
these methods. This is a complex, multistage survey.
However, for this application, we only analyzed raw
numbers from 2007 and 2008. The actual county-level
data we used were summary 30-day prevalence rates for
binge drinking for the 99 counties in Iowa, data avail-
able at the county level from the Iowa Department of
Public Health.
The other source of illustrative data came from sum-

mary reports of the 2008 administration of the Iowa
Youth Survey (IYS) [30]. The IYS is Web-based, in-
school survey of all 6th, 8th, and 11th graders in public
and private schools administered by the Iowa Depart-
ment of Public Health. Coverage is 83.5% of the enrolled
student population in Iowa, and 97,741 validated records
were received from students across the state.
Simulation studies. Simulations were performed within

MATLAB. MATLAB calculations for IDL
2 and the mod-

ified QDL [22] were validated against the Stata imple-
mentation of these statistics [31].
To assess the Type I error rates for QDL and Pearson’s

c2 within this context, we randomly generated k inde-
pendent binomial proportions representing k commu-
nities, each with 200 observations. We chose two
proportions in the simulations: 0.5 and 0.1 to represent
relatively common and less common rates. During each
simulation, the fixed population proportion (0.5 or 0.1)
would yield samples (ni = 200) with observed propor-
tions varying solely due to sampling error. Simulations
generated results for differing numbers of communities
(k): 20, 30, 50, and 100. We also used varying numbers
of observations within each simulation (ranging from
100 to 300). Because these results did not substantially
differ from those using the fixed sample size of 200,
only the fixed sample sizes are shown. We were inter-
ested in the Type I error rate using a nominal alpha
level of 0.05. Using 20,000 replications for each simula-
tion provides an (asymptotic) Monte Carlo error [32] of
0.0015, with the exact confidence interval of 0.0470 -
0.0531.
Another simulation assessed the resemblance of the

two I2 measures and the intraclass correlation. For each
of 20,000 iterations, we randomly selected a range of
incidence rates among communities using a uniform
distribution. The population incidence among commu-
nities ranged from a single fixed value of 0.5 to 0.5 ±
0.4; thus, the spread among communities would be 0
(center = 0.5, variance = 0) to 0.8 (center = 0.5, range
0.1 - 0.9, variance = 0.0533). Individual community rates
were randomly selected within the span and defined a
community’s true rate. Using that rate, we generated

two independent samples. This mimics a situation
where the set of communities was sampled two separate
times. The two samples from the same population para-
meters allowed us to calculate an estimated intraclass
correlation. The values of IDL

2 , I P
2 , and the observed

variance among the communities were recorded.

Results
Table 1 shows the observed Type I error rates for QDL

and the simple Pearson’s c2 -test. After each of 20,000
replications, we noted whether the table value for QDL

or c2 was “significant” at the nominal level of 0.05. The
c2-test consistently showed an observed Type I error
rate close to 0.05. In no instance did the observed Type
I error rate go outside the 95% confidence interval
(0.0470 - 0.0531) for this number of replications. How-
ever, the QDL-test consistently signaled heterogeneity
too often, with every Type I error rate exceeding the
upper limit of the confidence interval. The problem
with the QDL-test seems to increase with increasing
numbers of communities. This is particularly apparent
in the case of lower population incidence rates. Here,
the observed Type I error rate clearly exceeds any rea-
sonable expectation, even for an approximation, and
errantly overidentifies heterogeneity.
In the second simulation, the spread among commu-

nities was varied randomly from 0 to 0.8, centered at
0.5, which corresponds to between-community variances
of 0 to 0.0533. Two samples were taken from each of
20,000 randomly sampled populations in order to calcu-
late interclass correlations estimating the proportion of
between-community variation to total variation (between
and within). Figure 1 shows the plot of the intraclass
correlations versus IDL

2 (blue +) and I P
2 (green o). The

Pearson correlations between the intraclass correlation
and both IDL

2 and I P
2 were all greater than 0.98. Simi-

larly, the correlations between IDL
2 and I P

2 was 0.97.
The Spearman correlations were all greater than 0.99.

Thus, IDL
2 and I P

2 both measure a construct similar to

the intraclass correlation. One subtle difference between
IDL

2 and I P
2 is visible in the figure. IDL

2 produces slightly

Table 1 Type I error rates (P) with 20,000 simulations
and 200 observations per community

Population Incidence Rate

0.5 0.10

Number of
Communities

QDL Pearson’s
c2

QDL Pearson’s
c2

20 0.0602 0.0525 0.0836 0.0494

30 0.0601 0.0496 0.0917 0.0498

50 0.0619 0.0496 0.1060 0.0489

100 0.0642 0.0485 0.1295 0.0502

Note: 95% confidence bounds for P = 0.05 are 0.0470, 0.0531.
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but consistently larger estimates than I P
2 . For the first of

the pair of values from each population, the difference
averages 0.0112 (SD = 0.0024) with a range of 0.0076 to
0.0382. This difference increases with lower intercommu-
nity variation (Spearman r > -0.68). The larger values for
IDL

2 , particularly for low real values, corresponds to the
increased Type I error rate with this measure.

In a final set of simulations, we used IDL
2 and I P

2 to

estimate the real variation among communities. While
calculations were performed on 20,000 replicated sam-
ples, Figure 2 shows the results for 5,000 randomly
sampled estimates based on IDL

2 (blue +) and I P
2 (green

o). In these simulations, the population with the largest
possible variance produced communities ranging from an
incidence of 0.1 to 0.9 (range = 0.8, variance = 0.0533).
The red line in Figure 2 shows the true variance among
the communities (excluding sampling error). Clearly, the
estimates based on IDL

2 were nearly always too large and
very frequently exceeded the possible limit.
Simulations were also performed where the intercom-

munity variance was preset to 0 (no community var-
iance), 0.02, 0.04, and 0.06. The overall incidence rate
was 0.5 in 100 communities, with 200 observations per
community. A variance of 0.02 corresponds to the

communities ranging 0.5 ± 0.245 (i.e., ±0.5 * sqrt[var-
iance * 12]) with a uniform random distribution. These
estimates are shown in Table 2.

Here again, the measure IDL
2 overestimates the actual

nonerror variance among communities when there actu-
ally is variation, and the overestimation increases with
greater variance. The I P

2 measure appears to recon-
struct the variance accurately. Another set of simula-
tions (not shown) used a population incidence rate of
0.15 and with variances from 0 to 0.00005, with the
same pattern of results.

Binge drinking in Iowa counties
Across the 99 counties in Iowa, there were 8,301 indivi-
duals who responded to BRFSS survey questions in 2007
and 2008 regarding binge drinking during the past
30 days. Statewide, 1,268 people responded positively,
and 7,033 responded negatively. The counties varied
widely in both sample size and the 30-day incidence
rates. The mean sample size within counties was 85.59
(SD = 143.95), and the median was 44 (range: 15 -
1,136), reflecting the large number of rural counties in
the state. The mean 30-day prevalence was 0.145 (SD =
0.06), which ranged from a low of 0 to a high of .334.

Figure 1 Plot of intraclass correlations and IDL
2 (blue +) and I P

2 (green o) values against 100% agreement (red line).
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Compared to the BRFSS, the Iowa Youth Survey data
included a much larger number of responses from Iowa
youth, with a mean sample size of 971. The mean
county rate for binge drinking was 0.1324 (SD = 0.034),
ranging from 0.678 to 0.251.
Analysis results of the community variation appear in

Table 3. One of the smaller counties in Iowa only included
17 BRFSS interviews, of which none reported binge drink-
ing. This caused problems for calculating IDL

2 . The
within-county variance was zero, and this appears in a
denominator, resulting in an undefined number.
Both test statistics, QDL and Pearson’s c2, agree that

the communities vary more than by chance, suggesting
actual heterogeneity. Interestingly, the rank ordering of
Iowa counties using these two different data sources

shows significant, but not strong, agreement, Spearman
r = 0.21 (95% confidence interval [CI]: 0.01, 0.39). This
also suggests that some communities exhibit higher
rates of binge drinking than others. The low value of
the correlation is influenced in part by the degree of
error, particularly in the BRFSS estimates.
The two measures assessing the degree of true com-

munity variation, IDL
2 and I P

2 , disagree somewhat using
the BRFSS data, although both suggest that less than
40% of the community variation is attributable to actual
community differences. By implication, more than 60%
of the community differences are attributable to chance.
The mean BRFSS sample size of a little more than 85
interviews per community is, at least in part, responsible
for the high degree of error. With that mean sample
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size and a true population prevalence of 0.1412, the
exact confidence interval ranges from 0.075 to 0.234.
The IYS data represent a much larger sample size.

Both heterogeneity measures show close agreement for
the IYS data and suggest that this is a fairly strong mea-
sure, with more than 85% of the community variation
due to community differences. Interestingly, the esti-
mates of the actual community variance for the BRFSS
and IYS are in close agreement, variance roughly 0.0006,
based on the simple c2 procedure. Naively using a uni-
form distribution, this corresponds to a true range of
incidence rates of 8.49% centered near a 15% binge
drinking rate, i.e., 15% ± 4.24. While the estimates of
the range of incidence rates are similar, the Spearman
correlation of only 0.21 suggests that the county binge
drinking rankings are not entirely similar. Indeed, look-
ing at the raw data and selecting the 10 highest binge-
drinking counties according to the BRFSS, only one
county was so ranked according to the IYS.

Discussion
We presented three different uses for the homogeneity
measures, testing whether or not there are real differ-
ences among communities, measuring the degree of

actual heterogeneity using I2, and estimating the actual
amount of variation among rates. Since only values of I2

that are significant suggest any real heterogeneity, our
results suggest the first step would be to use Pearson’s
c2 test. Providing there is evidence for real heterogeneity
so that there is reason to believe that I2 is greater than
zero, the next step involves estimating I P

2 and perhaps
the actual variance.
The statistical test is important but only as a gate-

keeper and antecedent. When there are many commu-
nities and large sample sizes, trivial heterogeneity may
be significant. With 50 communities, an I2 value of 0.36
will be statistically significant (P < 0.05), even though
that value of I2 may be unimpressive for practical con-
siderations. When evaluating indices for policy deci-
sions, only those demonstrating I2 values closer to 1.0
will be of interest.
Interpretation of these heterogeneity measures is, in

one sense, straightforward. Since I2 bears a resemblance
to the intraclass correlation, 100 × I2 can be interpreted
as the percentage of the variability among communities
that is due to real differences among them. The comple-
ment, 1 -I2, is the proportion of error in the index. The
magnitude for what constitutes a good measure based
on I P

2 will vary depending on the situation; however,
values greater than 0.75 to 0.80 might be minimal for
decision-making. A value of 0.8 implies that 80% of the
variability among communities reflects real differences,
while error accounts for only 20%. I P

2 values closer to
0.5 might be mildly suggestive.
In our illustrative data, the IYS showed good measure-

ment quality, with I2 values greater than 0.85. Community
variability on this index was 85% real and 15% random
noise. The county differences in the BRFSS binge-drinking
indicator were mostly random variability, with I2 values
less than 0.40, i.e., 40% actual variability and 60% error.
Lower values of I2 suggest that the indicator should be
enriched or supplemented. Increasing the sample size
would enrich the indicator by reducing the amount of
noise for the community estimates. While it may not be
practical to increase sample size for the BRFSS, the same
end might be achieved by considering multiple years of
data. Alternatively, supplementing the indicator with addi-
tional correlated indicators may produce a more accepta-
ble composite summary indicator. Thus, we tentatively
suggest that stand-alone indices should have I2 values near
or above 0.8 for policy decisions. Lower-valued indices
may still be useful but would likely need to be supplemen-
ted with other indices or information. Another interesting
suggestion would be to weight composite indicators as a
function of their I2 values.
Of course, particularly poor performance of an indica-

tor may suggest that there is little or no community var-
iation in the trait of interest. Even when significant, the

Table 2 Mean (SE) Estimated Community Variance based
on IDL

2 and I P
2 , based on 20,000 random samples

Estimate Based on:

Community Variance Observed Variance IDL
2 I P

2

0 0.000 0.000 0.000

(0.000) (<0.001) (<0.001)

0.02 0.020 0.022 0.020

(0.002) (0.002) (0.002)

0.04 0.040 0.048 0.039

(0.004) (0.005) (0.004)

0.06 0.060 0.083 0.059

(0.005) (0.008) (0.006)

Note: Population incidence rate was 0.5 for all replications. Communities
varied using a uniform distribution.

Table 3 Community variation analysis using the BRFSS
and IYS for 30-day binge drinking

BRFSS BRFSS1 IYS

Df 98 97 98

QDL - 154.13 660.54

Probability - 0.0002 <0.0001

IDL
2 - 0.371 0.852

Estimated si
2 - 0.00084 0.00064

c2 137.42 134.12 691.31

Probability 0.0053 0.0075 <0.0001

I P
2 0.287 0.277 0.858

Estimated si
2 0.00061 0.00058 0.00067

1This column excludes one small county with a zero incidence.
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estimated intercommunity variance, si
2 , gives an actual

suggestion of how big the differences are in terms of the
raw rates. With a large enough sample size for many
communities, an indicator may provide a high I2 value,
but the actual variation may be epidemiologically or
clinically trivial.
We contrasted two different methods, one based on

meta-analysis using DerSimonian and Laird’s work [22]
and one based on a simple Pearson’s c2. From a purely
statistical perspective in this context, the performance of
the simple Pearson’s c2 was superior to the DL method.
The Pearson c2 method is easy to calculate and offers
better protection for Type I errors. I P

2 tends to mirror
the intraclass correlation better and provides more accu-
rate estimates of the true community variation in rates
when compared to IDL

2 . The calculation of IDL
2 also

becomes undefined if any of the community rates is zero.
Thus, the Pearson-based method has much in its favor.

Zero counts in communities preclude calculation of IDL
2

and may cause issues for I P
2 , especially if there are more

than a few such counts. Most assessments of the adequacy
of Pearson’s c2 in sparse tables are in the context of smal-
ler cross-tabulation tables. Even then, these assessments
focus on how well the c2 approximation provides adequate
probability estimates for a hypothesis test [29]. The pur-
pose of the c2 estimate used here is very different since it
is the basis of I P

2 . Furthermore, the number of commu-
nities involved tends to produce a table with a larger num-
ber of rows than is typical of a cross-tabulation table in
most analytical applications. One early paper suggests that
c2 may still function adequately with low frequencies of
observations, although perhaps with a correction (i.e.,
using df = k - 2 instead of k - 1) [33]. More work may be
required to adequately assess how well I P

2 functions with
zero counts, and it may possibly need to be adjusted using
two stage models [34], mixture models [35], or a general-
ized Poisson distribution [36].
The DL technique readily applies to health indices

other than rates. Means of behaviors (e.g., number of
drinks, miles driven) or other indices are appropriate
provided standard errors are available. For example,
many national datasets use complex sampling proce-
dures producing data where many basic assumptions
(e.g., independence) are violated. These data require
Taylor series or other approximations to produce the
standard errors around means, rates, or quintiles [37].
In these more complex situations, the estimated stan-
dard errors provide the information required to produce
the weights needed for calculating the DL-based
method. However, the generalization of the Pearson
method is still lacking, and we have only assessed the
performance of these methods when using rates and
percentages in this paper.

Other measures of heterogeneity exist, and we only
evaluated two. In part, our decision was based on these
measures’ ease of interpretation. For example, Higgins
and Thompson introduced their statistic, H. Like IDL

2 ,
H is based on the Q-statistic; however, it cannot be
interpreted as a percentage of variance due to heteroge-
neity. Another study of heterogeneity measures intro-
duces a measure similar to I P

2 , but it is based on Q
rather than Pearson’s c2 [38]. Sidik and Jonkman [39]
recently evaluated seven variants of heterogeneity mea-
sures. Further study is clearly needed to assess these
alternatives in the current context.
The heterogeneity measures also have some limita-

tions. Both the DL and Pearson methods are large sam-
ple approximations; however, for most epidemiological
applications, this will not pose problems since the sam-
ple size requirements are fairly low, e.g., expected values
greater than 5 in 80% or more of the communities [29].
Power has been cited as a problem with the Q-test, but
this is more of an issue for meta-analyses of clinical
trials where the number of studies (here, communities)
and the number of subjects is small in terms of typical
epidemiological surveillance standards [40]. For exam-
ple, with a true value for I2 = 0.5 and based on a power
analysis for the Pearson’s c2-test, there is more than
89% power to detect it in as few as 10 communities.
One limitation of our study is that we used a sample
size of 200 per community for our simulations. We also
performed simulations where we allowed the sample
sizes to vary (from 100 to 300). This corresponds to
between one and two years of BRFSS data for US coun-
ties. Thus, our results may not generalize to indices
measured on fewer numbers of observations. Further-
more, we did not assess the adequacy of either of the I2

measures when sample sizes might be grossly imbal-
anced. Finally, these measures of heterogeneity and
their significance tests assume independent observa-
tions. In this context, spatial or geographic correlations
among the communities would violate this assumption.
Semi-variograms of the exemplar data used here did not
demonstrate noticeable spatial correlation; however,
such checks should be performed before using these
methods.

Conclusions
When using indicators to decide how to target health
resources, the indicator should be assessed for its ability
to reflect true underlying community differences. Actual
variation in health needs, rather than chance variations,
should guide decisions about programming and resource
allocation. I P

2 showed good statistical qualities and is
suggested as an assessment tool for determining the
quality of health indicators.

Arndt et al. Population Health Metrics 2011, 9:3
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