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N‑Acetylcysteine (NAC) is an antioxidant, anti‑adhesive, and antimicrobial compound. Even though 
there is much information regarding the role of NAC as an antioxidant and anti‑adhesive agent, little 
is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we 
investigated the metabolic responses triggered by NAC at neutral pH. As a model organism, we chose 
the Gram‑negative plant pathogen Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus 
canker disease, due to the potential use of NAC as a sustainable molecule against phytopathogens 
dissemination in citrus cultivated areas. In presence of NAC, cell proliferation was affected after 4 h, 
but damages to the cell membrane were observed only after 24 h. Targeted metabolite profiling 
analysis using GC–MS/TOF unravelled that NAC seems to be metabolized by the cells affecting 
cysteine metabolism. Intriguingly, glutamine, a marker for nitrogen status, was not detected among 
the cells treated with NAC. The absence of glutamine was followed by a decrease in the levels of the 
majority of the proteinogenic amino acids, suggesting that the reduced availability of amino acids 
affect protein synthesis and consequently cell proliferation.

Bacterial biofilms are responsible for many diseases in plants, animals and humans in which biofilm formation 
is an essential step for host colonization and disease  development1–4. The difficulty for biofilm eradication in 
clinical and environmental settings resides in their multiple resistance mechanisms such as poor antimicrobial 
penetration, slow growth, adaptive stress responses and formation of persister  cells5–9.

The bacterium Xanthomonas citri subsp. citri, the causing agent of citrus canker disease, is one of the most 
destructive phytopathogen in the citrus  agribusiness10. Among its virulence factors, biofilm formation plays an 
essential role at early stages of infection by enhancing bacterial epiphytic  survival11–14. Importantly, multiple 
mutants of X. citri impaired in biofilm formation consistently exhibit a decrease in bacterial growth in planta and 
have reduced ability to elicit canker symptoms in susceptible  host15. This led us to hypothesize that compounds 
inhibiting biofilm formation may reduce its infection and enhance the control of citrus canker disease. Indeed, 
it was previously verified that N-Acetylcysteine (NAC), a cysteine analogue known to disrupt disulphide bonds 
in bacterial  biofilm16, was able to disrupt biofilm formation in X. citri as well as kill bacterial cells leading to a 
decrease in plant  disease17.

NAC is largely used in humans to decrease biofilm-based infections due to its properties as a mucolytic 
agent that breaks biofilms and also improves body healthy as an antioxidant  molecule16,18–20. Furthermore, NAC 
has antimicrobial effect inhibiting growth of many different Gram-negative and Gram-positive  bacteria8,20–24. 
Therefore, NAC is emerging as an interesting potential therapeutics molecule since it does not induce genetic 
resistance and is beneficial to human  health9,16.
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Despite the well-established role of NAC as a mucolytic agent and an antioxidant molecule, the mode of 
action of this compound in triggering death of prokaryotic cells is still unknown. It has been shown that due to 
the acid trait of NAC (pH < pKa) it can penetrates in the biofilm matrix and eventually kill 100% of the bacteria 
embedded in the  biofilm9, however many authors have shown the antimicrobial effect of NAC even at neutral 
 pH8,17,20,25,26. These results indicate that other factors might be also involved with the NAC antimicrobial property.

In this study we used the Gram-negative plant-pathogen X. citri as model to investigate the impact of NAC 
treatment in the primary metabolism of prokaryotic cells. By performing a time course analysis, we found out 
that growth started to be impaired after 4 h of NAC treatment, matching the metabolic alterations in most of 
the proteogenic amino acids. Our findings indicated that NAC interferes with nitrogen metabolism, reducing 
the availability of amino acids for protein synthesis, which might contribute to reduction in cell proliferation 
and activation of cell death. A molecular network was created, and compounds annotation was made on the 
basis of comparison with spectral database. When the metabolomics multivariate data analysis (MVDA) results 
were integrated in a multi-informational molecular network (MN)27, this approach highlighted metabolites that 
differed significantly with NAC treatment.

Results
Effect of NAC on bacterial cell growth. In previous experiments, we verified that 8 mg/mL of NAC was 
able to kill X. citri cells after 24 h of growth in a population starting from  104 colony forming unit (CFU)/mL at 
the beginning of the  treatment17. In this study, we analyzed the X. citri growth curve in the presence of 8 mg/
mL of NAC for 24 h to understand the primary metabolic changes that affect cell growth. In order to assess the 
metabolic changes, we used an initial population of  106 CFU/mL instead of  104 CFU/mL used by Picchi et al.17. 
With the higher cell population NAC impairs growth without killing all the cells, making it possible to evaluate 
the NAC effect on the cell metabolism (Supplementary Fig. S1).

Exponential growth was observed 4 h after X. citri inoculation, while the presence of NAC causes a significant 
reduction at this time point (Fig. 1). The cells concentration increased from  106 to  1010, but it was observed a 
significant reduction in cell growth in presence of NAC, increasing only one log, from  106 to  107, i.e., three logs 
difference in relation to the control. Aiming to analyze whether NAC was disrupting the cell membrane, we used 
SYTO9 and propidium iodide (PI) methodology to assess cell viability. SYTO9 penetrates both live and dead cells, 
whereas PI stains only cells with corrupted cell membrane and intercalates with the nucleic acids. Despite the 
significant lower number of cells 4 h after NAC treatment, the percentage of dead cells did not show a significant 
difference with the untreated control until 12 h (Fig. 2a and Fig. 2b). However, after 24 h a significant higher 
number of cells stained with PI (here represented in red) was observed following treatment with NAC, when 
approximately 20% of cells had their membrane permeabilized. These results demonstrated that the mechanism 
by which NAC acts as an antimicrobial molecule precedes disruption of the cell membrane.

Metabolic changes in X. citri subsp. citri cells exposed to NAC. To investigate changes on primary 
metabolism of the bacteria incubated with NAC, we performed a well-established gas chromatography-mass 
spectrometry (GC–MS)  method28. Since NAC was not included in the compound reference  library29, we first 
analyzed NAC standard in GC–MS. We were able to annotate two peaks at retention index (RI) of 554,630 and 
622,850 and the selective masses of 218, 260, 100, 115, 364, 173 and 184, 156, 114, 232, 274, 100, respectively. 
These features were included in the reference library and used for the annotation of the metabolites. For NAC 
quantification, we always considered the peak with the highest intensity.

Figure 1.  Growth curve profiles of Xanthomonas citri subsp. citri in presence of NAC. Six time points 1, 2, 4, 6 
12 and 24 h were evaluated after 8 mg/mL of NAC addition as well as non-treated control through OD and CFU 
measures. After 6 h, a significant lower growth was observed for the bacteria treated with NAC (P < 0.001).
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Figure 2.  Cellular permeability of Xanthomonas citri subsp. citri in the presence of 8 mg/mL of 
N-Acetylcysteine (NAC). (a) Live/Dead staining was performed on X. citri cells following a 0–24 h incubation 
with NAC. Blue-stained cells have intact membranes, whereas red-stained cells exhibit permeabilized 
membranes. Magnification of × 100; the scale bars on each panel represent 5 μm. (b) Percentage of living or 
dead bacterial cells following 4–24 h exposure to 8 mg/mL of NAC. At least 1000 bacterial cells were counted 
under a fluorescence microscope (n > 1000). The mean of two experiments with five technical replicates is 
shown. Asterisks show statistically significant differences using t-Student (***P < 0.001). Error bars represent the 
standard errors of the means.
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As bacterial growth was already reduced after 4 h of NAC treatment, we carried out a time series experiment 
in which samples were harvested during the lag phase (i.e., 0, 2, 4 h) and exponential phase (6, 12 and 24 h) to 
better assess the influence of NAC in bacterial growth. A total of 55 metabolites with known chemical structures 
were identified by a targeted  analysis30, except for glutamine all metabolites were detected in both treatments. 
These metabolites covered primary metabolism pathways which includes amino acid metabolism, glycolysis, 
and the tricarboxylic acid (TCA) cycle (Supplementary Table S1). Hierarchical clusters analyses (HCA) clearly 
split the samples into two main branches: one corresponding to NAC treatment and control samples (Fig. 3a). 
While samples treated with NAC did not show a define separation along the time points, the control samples 
could be further grouped into early phase (1–6 h) and late exponential (12–24 h) growth. In order to get a better 
overview of the metabolites leading these cluster patterns, we performed principal component analysis (Fig. 3b). 
Similarly, to the HCA results, in principal component analysis (PCA), PC1 separates the sample according to 
the treatment, explaining 46% of the variation. Not surprisingly, inspection of the loadings responsible for the 
PC1 separation shows NAC and cysteine largely contributed to the discrimination of the treatments followed 
by few amino acids and sugars (Supplementary Table S2). The dynamic of the cell proliferation was captured by 
PC2, which explains 26% of the variation in this dataset. This dynamic is, however, much more clearly in the 
control samples than in the NAC-treated samples. Such trend was mainly related to the differences in amino 
acids, glycerol, adenine, and trehalose. These results suggest that NAC treatment leads to metabolic rewiring 
which might affect cell proliferation.

Determinants of cell growth‑related metabolic changes. Metabolism directly participates in cell 
division and proliferation. As NAC application seems to interfere in cell proliferation, we first focused on the 
metabolic changes along the X. citri growth in the control condition. We selected only the metabolites, in which 
at least one time-point was significantly different with respect to the time point 0 in the control samples, result-
ing in 32 compounds (Table 1). In order to facilitate the comparison among the metabolites, we normalized the 
value of each metabolite in reference to their levels at time-point 0. We next carried out to k-means clustering 
analysis for the identification of metabolic modules whose patterns change along the growth curve (Fig. 4). The 
analysis allowed the discrimination of 4 clusters. Early changes in growth were mainly captured by the clusters 
2, 3 and 4. Despite the slightly different dynamic in the response, clusters 3 and 4 includes metabolites whose 
levels follow a rapid lowered of their levels along the growth curve. Cluster 2 captured the metabolites that have 
their levels increased within the first hours of the growth curve and progressively decrease when growth enters 

Figure 3.  Hierarchical Clustering Analysis (a) and Principal Component Analysis (b) HCA was performed by 
average linkage clustering method using Euclidean distance. Samples are named according to the time points 
(hours) and colored coded according to treatment (before treatment -gray; control-blue and NAC-red).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15558  | https://doi.org/10.1038/s41598-021-95113-4

www.nature.com/scientificreports/

the exponential phase. Most of the metabolites present in these three clusters seems to be important for the 
synthesis of the building blocks of the cells, as it is the case for adenine (nucleic acids); glucose, talose, mannose 
and trehalose (carbohydrates); succinate and hydroxypyruvate, which are precursors of TCA to generate energy 
and provides C skeleton for anabolic processes. Furthermore, two important nitrogen sources, asparagine and 
glutamine, as well as other proteogenic amino acids, such as alanine, isoleucine, proline, phenylalanine and 
serine were also part of these clusters. Metabolic changes related to the late stages of the growth curve were 
only identified in the cluster 1, including some amino acids valine, glycine, threonine, and tyrosine and other 
non-proteogenic amino acids like gamma aminobutyric acid (GABA), 5-oxoproline, whose levels positively cor-
relates with the progression of the growth curve.

NAC affects aminoacid metabolism in bacterial cells. To dissect the possible impact of NAC on 
metabolism, we next compared the dynamics of the metabolites along the growth curve when cells were treated 
or not with this compound using a heatmap analysis (Fig. 5). As already highlighted by PCA, NAC and cysteine 
levels dramatically increased over time. These changes were followed by slight increases in the levels of serine 
and hydroxypyruvate that are precursors on the cysteine pathway. Interestingly, glutamine was completely absent 
in the samples treated with NAC regardless of the time point. Glutamine is an important source of nitrogen in 
bacteria as it is required for the synthesis of a range of nitrogen-containing compounds, including amino  acids31.

Intriguingly, many amino acid levels (e.g., branched- and aromatic- amino acids, proline, methionine) were 
decreased over time in the NAC treated samples, including that NAC might interfere with nitrogen metabolism. 
Furthermore, cells treated with NAC seems to display a depletion in the C source in the late time points (fructose, 

Table 1.  Relative metabolite levels in the Xanthomonas citri cells under control used for k-means clustering. 
The metabolite levels of each time point were normalized to the time point 0 h (before treatment). Only 
metabolites which levels were significantly different from the control are displayed in this list (t-test, 
p-value < 0.05).

Metabolites

Time (h)

k-means cluster0 1 2 4 6 12 24

Similar to acetoacetate 1 1.0800 1.1802 1.3336 1.6184 2.2029 2.5196 1

Valine 1 1.0839 1.1636 1.3166 1.6522 2.8376 3.4291 1

Glycine 1 1.0818 1.2639 1.4811 1.9948 6.1002 15.5934 1

Threonine 1 0.9718 1.1172 1.1664 1.3529 1.6201 2.0833 1

Uracil 1 1.0293 0.9896 1.0312 0.8705 2.4626 6.4844 1

trans-4-Hydroxyproline 1 1.1968 1.2444 2.3758 4.6785 40.3410 132.5158 1

4-Aminobutanoate 1 1.2463 1.2084 1.1928 1.0709 1.1708 1.8711 1

5-Oxoproline 1 0.8994 1.0223 0.9479 1.0945 1.3349 2.1415 1

Tyrosine 1 1.0199 1.1798 1.2310 1.3618 1.9325 3.4222 1

Lactate 1 0.9160 0.9988 0.8345 0.7150 0.5465 0.5217 2

Glycerol 1 0.8150 0.8631 0.6898 0.3304 0.0320 0.0178 2

Similar to hydroxypyruvate 1 0.8982 0.9795 0.8508 0.7747 0.3372 0.2278 2

Serine 1 0.9357 1.0522 0.8838 0.7932 0.3181 0.2035 2

Asparagine 1 0.9075 1.1815 1.0515 0.9104 0.3146 0.1784 2

Shikimate 1 1.0423 0.9609 0.8819 0.6804 0.4346 0.4321 2

Adenine 1 1.0072 0.9859 0.8955 0.5836 0.0340 0.0177 2

Heptadecanoate 1 0.9402 0.9460 0.8298 0.7077 0.5165 0.4325 2

Saccharopine 1 0.8023 0.8920 0.8357 0.7209 0.2738 0.2255 2

Trehalose 1 0.7383 0.8674 0.6959 0.6531 0.2198 0.1388 2

Alanine 1 1.1296 1.1380 1.1424 1.1949 1.0470 0.6699 3

Isoleucine 1 1.0201 1.1260 1.2255 1.3914 2.1297 1.6064 3

Proline 1 1.0483 1.1667 1.2892 1.5480 3.9203 3.0405 3

Benzoate 1 0.9491 0.9801 0.8936 0.8239 0.5814 0.5164 3

Phenylalanine 1 0.9426 1.0598 1.0643 1.1590 1.6102 1.5431 3

Talose 1 0.8677 0.8738 1.1288 1.1868 1.0633 0.7141 3

Galactitol 1 0.8915 0.9160 1.0999 1.1581 1.0429 0.7371 3

Glucose 1 0.8639 0.8722 1.1220 1.1838 1.0608 0.7097 3

Glutamine 1 1.3184 1.9327 3.7215 5.6965 5.5168 2.3835 3

Spermidine 1 0.7965 0.9647 1.6143 2.2140 1.3715 1.7656 3

Similar to Glycolate 1 0.8656 0.7085 0.6009 0.4264 0.5559 0.9188 4

Succinate 1 0.3869 0.2734 0.3111 0.2009 0.1692 0.2674 4

Mannose 1 1.0389 0.9315 0.8525 0.6803 0.4217 0.4438 4
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glucose, trehalose etc.). Overall, the results suggest that the bacteria cells must metabolizing a lot of cysteine 
that ends up failing to eliminate so much toxicity and this affects the absorption of nutrients and the cell redox.

Untargeted identification of biomarkers of NAC treatment. In order to discover biomarkers using 
both supervised model (Optimized Potentials for Liquid Simulations—OPLS) and untargeted data analysis in an 
integrated manner, a statistically informed molecular network approach was  carried27. The MN allows not only 
to organize and classify a high number of mass spectra by similarity accelerating their annotation by comparison 
with spectral databases from different platforms but also allows to enrich the MN with  metadata32.

For this, the GC-TOF/MS data processing following the workflow described in Elie, Santerre and  Touboul33, 
allowed the detection of 1082 MS spectra. These were submitted to the Global Natural Products Social Network 
platform (GNPS) to generate a unique MN following the GC–MS  workflow34. The spectrum of each node was 
searched against the spectral database available at the GNPS and allowing the annotation of 269 (25%) metabo-
lites with cosine (similarity) score ranging from 0.98 to 0.50. Metabolites presenting cosine score > 0.75 were 
selected and annotated in the MN as presented below.

Subsequently, to identify untargeted markers in the MN, we integrated the statistical results from the metabo-
lomics MVDA in the MN, when 15 features with a variables importance for the projection (VIP) value > 1.0 
from the OPLS analysis (Supplementary Fig. S2) were integrated as a metadata in the MN. This metadata can be 
visualized though the size of the node in the MN. Such features were highlighted in the MN using larger nodes. 
Nodes with VIP values below 1 were kept in lower node size. In addition, the relative mass signal intensity of 
metabolites for NAC treatment and the untreated control samples can be visualized though the node colours. 
Furthermore, the relative MS signal intensity of metabolites at 0, 1, 2, 4, 6, 12 and 24 h following the NAC treat-
ment is displayed in the bar plot next to the node. The full statistically informed MN is provided in the Supporting 
information (Supplementary Fig. S3).

Using this method, it was possible to identify clusters with compounds that exhibit VIP values representing 
variance between NAC and control groups and their dynamics over time.

After analysis of the statistically informed MN, clusters were selected based on their node size. Using this 
criteria, 10 clusters were selected, herein named  MN1-MN10. A total of 21 compounds were evidenced in the 
selected clusters and assigned biomarker potential. Figure 6 shows the selected clusters and annotated com-
pounds in detail.

As demonstrated in the selected clusters, particularly to cells incubated with NAC, amino acids such as 
l-proline, l-leucine, l-valine, l-lysine, lyxosylamine and tyrosine were present in lower levels when compared 
with control. Carbohydrates as d-xylose, d-glucose, mannitol, d-tagatose, and d-ribose were present in lower 
levels as well and decreased over time as expected. On the other hand, metabolites such as glutamate, asparagine, 
methyl-3-methoxy-2-naphtoate, 5-methylcytosine and nitrotyrosine were found in high levels and to increase 
over time when compared to control.

These results are in agreement and complement the target approach evidencing clusters with amino acids 
and carbohydrates as markers for NAC treatment.

In order to map these compounds on to bacterial metabolic pathways, a list with the identified compounds 
in the depicted clusters from the MN was submitted to pathway impact analysis.

Figure 4.  K-means clustering to infer pattern of metabolites during X. citri growth. Graphs represent the 
metabolite pattern normalized to its respective time point 0 (i.e., before treatment), which are displayed in gray. 
The mean of each cluster is represented by the black lines.
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Pathway impact analysis. In an attempt to identify deregulated pathways in which these metabolites are 
related, the target and untarget identified metabolites which differed significantly were mapped on to bacterial 
metabolic pathways. For this, a targeted analysis integrating enrichment and topology analyses was performed 
using the Pathway Analysis workflow available on the MetaboAnalyst (version 4.0) online  platform35. The path-
ways impact analysis shows all matched pathways according to the p values from the pathway enrichment analy-
sis and pathway impact values from the pathway topology analysis for up- and down-regulated metabolites sepa-
rately. The identified pathways with high impact values are represented (Fig. 7). The detailed results of pathway 
analysis with significance levels and impact are presented in Supplementary Table S3.

This analysis showed that several pathways of amino acids, nitrogen and carbohydrate metabolism were signif-
icantly disturbed. Twelve pathways with P value < 0.05 were considered to be significantly affected after treatment 
with NAC. The down-regulated metabolites were located into amino sugar and nucleotide sugar metabolism and 
dicarboxylate metabolism, valine, leucine and isoleucine biosynthesis as well as degradation and novobiocin bio-
synthesis. The up-regulated metabolites were found in alanine, aspartate and glutamate metabolism, carbapenem 

Figure 5.  Heat map of metabolic responses to the control or NAC treated cells along 24 h X. citri growth. 
Metabolite levels were normalized by the mean of all samples from given metabolite and  log2 transformed. 
Values are means of up to 5 biological replicates. Red and blue colors represent increase and decrease of 
metabolites, respectively. Samples are arranged according to the treatment. Metabolites are grouped according to 
the HCA clustering.
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biosynthesis, nitrogen metabolism, d-glutamine and d-glutamate metabolism, cyanoamino acid metabolism, and 
taurine and hypotaurine metabolism. Some of the selected metabolites which were both up- and down-regulated 
shared the aminoacyl-tRNA biosynthesis.

Discussion
NAC is a cysteine analogue which has a mucolytic action due to the ability to break disulphide bridges of extra-
cellular proteins and consequently disrupts bacterial biofilm. In addition, NAC is a well-described antioxidant 
and safety molecule used in  medicine16. The molecular mechanisms underlying these two beneficial effects are 
well known, however, the mechanism by which NAC acts as antimicrobial is still poorly investigated. Recently 
it was shown that the acid pH of NAC is the key factor that facilitated the drug in entering the Pseudomonas 
aeruginosa biofilm matrix and killing the bacteria by diffusing through the cell wall. As the pH inside the bacteria 
is high (around 7.6), NAC dissociates and acidifies the cytoplasm, hence denaturing proteins and causing DNA 
damage leading to the cell  death9. On the other hand, the authors found that there was swelling of the bacterial 
colonies only in the presence of NAC which confirmed that the killing of bacteria at pH 3.4 was due to the action 
of NAC and not merely a pH effect. Thus, to avoid the interference of acid pH, in this study we adjusted the 
NAC solution to pH 6.8 aiming to investigate only the antimicrobial effect of NAC in bacterial cells. The neutral 
pH used in our experiments could explain why it was necessary more time to kill X. citri (8 mg/mL of NAC for 
24 h and Supplementary Fig. S1)17 compared with P. aeruginosa (10 mg/mL of NAC for 15 min)9 using a diluted 
culture to start cell growth. Likewise, no difference in the staining with SYTO9 and PI were observed in our 
experiments using NAC until 12 h of incubation. Thus, as PI penetrates in the disrupted cell membrane, we can 
conclude that the antimicrobial effect of NAC precedes cell membrane damage, since a significant percentage 
of cells with permeabilized membranes in presence of NAC was observed only after 24 h of incubation (Fig. 2), 
but the impairment in cell growth occurred just after 4 h (Fig. 1). Therefore, NAC increased the doubling time 
of the bacterial population, affecting the growth curve. Since there is no significative difference in the balance 
of potentially live and dead cells until 24 h of NAC incubation, this could result from two situations, just a small 
fraction of the population is actively dividing or the metabolism of the whole population of living cells is low, 

Figure 6.  Selected clusters  (MN1-MN10) from the statistically informed molecular network. VIP values 
greater than 1 (as seen in VIP plot) from the OPLS analysis were integrated in the molecular network and were 
differentiated through the node size. Larger nodes indicate features with VIP values greater than 1. Annotation 
of compounds was performed by comparison against Global Natural Products Social Molecular Networking 
spectral libraries. Green or rose indicate the relative mass signal intensity in NAC treatment and untreated 
control group, respectively. The bar chart next to the node in blue represents the mean relative intensity of 
the mass signal at times 0, 1, 2, 4, 6, 12, and 24 h of the NAC treatment group. The name of the identified 
metabolites with cosine > 0.75 is given in the boxes.
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increasing the doubling time. In addition, our results demonstrated that NAC even at neutral pH is penetrating 
the bacterial cells causing alteration and decreasing cell growth (Fig. 1).

Metabolomic profiling has the potential to provide insights into the physiological drivers associated with 
the alterations that affect bacterial growth in presence of NAC. Indeed, our results show that the metabolome 
of X. citri cells was significantly impacted by NAC compared to control, as verified in PCA and OPLS models 
(Fig. 3). Taken as a whole, the NAC metabolomics signature is characterized by a decrease in amino acids such 
as glutamine, l-proline, l-leucine, l-valine, l-lysine, lyxosylamine and tyrosine. The amino acids l-leucine 
and l-valine are two of the three (l-isoleucine) essential branched-chain amino acids (BCAA) required for the 
growth and survival of  bacteria36. It has been demonstrated that the enzymes belonging to the BCAA biosynthetic 
pathway in bacteria are an excellent potential source of targets to be explored for development of new antibac-
terial  agents37. The action of NAC in BCAA could be due to its thiol group, since the threonine dehydratase/
deaminase, an enzyme that plays an essential role in the biosynthetic pathway of BCAAs in microorganisms, 
is competitively inhibited by  aminothiols37,38. Therefore, the potential of NAC as an aminothiol could be better 
explored to interfere on BCAA biosynthesis of pathogenic bacteria. Similarly, we suggest that the decrease of 
the other amino acids in presence of NAC, could be also due the interference of the excess of thiol group in the 
enzymes involved with amino acids biosynthesis or protein synthesis. As these amino acids are sole for carbon, 
energy, and nitrogen resources, as well as protein syntheses, their decrease could explain the significant damage 
in cells growth observed in this study.

It is well known that high levels of intracellular cysteine present cytotoxicity to  bacteria39. The increase of 
cysteine derived from NAC addition explains the X. citri growth inhibition, which could be due either to the 
amino acid starvation and to the oxidative DNA damage because of the cysteine  cytotoxicity40,41. It is worth men-
tioning that addition of NAC and the consequent increase of cysteine correlates with absence of glutamine and 
increasing of glutathione. It is known that cysteine and glutamine are both necessary to glutathione biosynthesis. 
Since NAC leads to an increase of cysteine levels and glutathione also increases, we suggest that the absence of 
glutamine results from its use for the glutathione biosynthesis, reducing its pool to a non-detectable level. This 
increase of cysteine due to NAC addition could change the homeostasis of intracellular cysteine, inducing oxida-
tive stress and leading to cell death, similar to the observed by Park and  Imlay41.

The main deregulated metabolic pathways during time course of NAC treatment were arginine and proline, 
alanine, aspartate and glutamate, D-glutamine and D-glutamate, purine, pyrimidine as well as nitrogen metabo-
lisms (Fig. 5). Curiously, these pathways are somehow linked with nitrogen metabolism. In the cells inorganic 
nitrogen is assimilated into glutamate and glutamine, which are the major intracellular nitrogen  donor42,43. 
Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also 
important for cell survival in acidic environments, and changes in glutamate concentration accompany changes 
in  osmolarity44 that could cause cells death.

In our study we demonstrated that NAC without the interference of acid pH affected bacterial growth dis-
turbing the metabolic activity, especially for carbon and nitrogen pathways. We show that NAC was able to 

Figure 7.  Pathway analysis of altered metabolites of Xanthomonas citri subsp. citri incubated with 
N-Acetylcysteine (NAC). The graph summarizes the pathways analyzed with MetaboAnalyst 4.0. (a) 
Up-regulated metabolites. (b) Down-regulated metabolites. Larger circles, higher and closer to Y-axes, show a 
higher impact of the concerned pathway of X. citri. Colors indicate different levels of significance. The pathways 
with P < 0.05 are presented.
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act as antimicrobial molecule without initially affecting cell membranes but acting on targets in the cell. We 
suggest that, as verified for BCAA, as an aminothiol drug, NAC would be interfering with other enzymes more 
susceptible to competition with thiol altering its function and metabolism. In addition, the reducing property 
through its thiol-disulfide exchange can interact with target proteins with cysteine residue or thiol group via a 
thiol-disulphide exchange reaction harming protein  functions45. In this case, NAC action is actually dependent 
on modulating the redox states of cysteine residues of target  proteins46. Possibly the antimicrobial effect of NAC 
in bacterial cell is associate with the NAC concentration, where a dose that is high and toxic for bacteria is low 
and beneficial for superior organism  cells16,18,47. This work shows for the first time the molecular mechanisms 
in which NAC works as an antimicrobial molecule. The results showed in this study open new possibilities to 
better explore the potential of NAC to reach specific targets improving its efficiency and specificity to kill patho-
genic bacteria. It is particularly important in a scenario where the necessity of non-antibiotic drugs is increas-
ing face the constant occurrence of resistant bacteria. In addition, NAC has a well-described antioxidant and 
radical scavenging activity in eukaryotic cells, it is quite stable, inexpensive, and  safe16, features that encourage 
its improvement as antimicrobial compound. Even though NAC has been used for a long time in medicine, its 
use in agriculture was only recently  investigated8,17,48–50. Thus, the potential of NAC in agriculture could be also 
better explored aiming to incorporate practice to control phytopathogenic bacteria or improve plant heathy to 
produce food in a more sustainable  way51,52.

Material and methods
Growth curve and culture conditions. Inoculation was carried out by the addition of a single isolated 
colony of Xanthomonas citri subsp. citri strain  30653 into 10 mL of Nutrient Broth Yeast extract (NBY) nutrient 
medium (0.5% peptone (w/v), 0.3% meat extract (w/v), 0.2% yeast extract (w/v), 0.2%  K2HPO4, (w/v) and 0.05% 
 KH2PO4 (w/v))54 and grown overnight at 28 °C. The cell suspension was centrifuged, and the pellet was adjusted 
to an optical density (OD) of 0.1 (Abs 600 nm), corresponding to a bacterial concentration of approximately 
 106 CFU/mL. Each well of a 96-well microtiter plate containing NAC (8.0 mg/mL) was inoculated with 200 µL of 
the X. citri suspension. The growth was monitored at 0, 1, 2, 4, 6, 12, and 24 h of incubation at 28 °C by measuring 
the OD at 600 nm in a Varioskan Flash (Thermo Scientific). An aliquot from the same samples was collected for 
serial dilution and plated on NBY media. The plates were incubated at 28 °C for 48 h, followed by CFU counting. 
Controls (bacterial suspension without NAC) were also included in all evaluations. Three biological experiments 
with two technical replicates were performed.

Live and dead. The Live/Dead Baclight kit (Thermo- Scientific L7012) was used to evaluate the bacterial 
membrane integrity after incubation with NAC, pH = 6.8. The experiment was performed as described by Nazaré 
et al.55. Briefly X. citri with an initial inoculum of  106 CFU/mL were submitted to 4, 6, 12, and 24 h with 8 mg/mL 
of NAC, as described above. Mixtures of SYTO 9 and PI were incubated with the samples as specified (Thermo 
Fisher Scientific, USA). SYTO 9 (blue) can stain nucleic acids with intact or damaged membranes, while PI is an 
intercalating agent that stains the nucleic acid only in bacteria with damaged membranes and thus it is used to 
differentiate cells with permeabilized membranes. The samples were immobilized in agarose-covered slides as 
described by Martins et al.56. The cells were visualized using an Olympus BX-61 optical microscope, equipped 
with a monochromatic OrcaFlash- 2.8 camera (Hamamatsu, Japan). The imagens were recorded and analyzed 
using the software CellSens Dimension version 1.18 (https:// www. olymp us- lifes cience. com/ en/ softw are/ cells 
ens/). At least 1,000 cells were counted for each sample (n > 1000).

Sample preparation. Growth of X. citri for metabolomic analysis in presence of 8 mg/mL of NAC, pH = 6.8 
were cultured in 20 mL of NBY at 28ºC for 24 h. The growth condition was exactly the same as describe above for 
growth curve. Aliquots of 1 mL were collected at 0, 1, 2, 4, 6, 12, and 24 h for metabolite extraction and another 
aliquot was collected, plated on NBY solid medium to certify the NAC effect. For metabolite extraction, 1 mL 
of bacterial cell culture was sampled and filtered in polytetrafluoroethylene (PTFE) membrane with 0.22 μm 
pores. Bacterial pellets were extracted in 1  mL of a precooled (−  15  °C) mixture of methyl tert-butyl ether: 
methanol:H2O 3:1:1 (v/v/v), as previously described by Hummel et al.57. An aliquot of 100μL of the organic phase 
was dried and derivatized as described in Roessner et al.28.

GC‑TOF/MS analysis. An aliquot of 1 μL of each derivatized sample was injected in a splitless mode by 
autosampler Combi-PAL Agilent (Waldbronn, Germany) into an Agilent 7890 gas chromatograph coupled to a 
Pegasus II time-of-flight (TOF) mass spectrometer (Leco Corp., St. Joseph, MI, USA). Chromatogram acquisi-
tion parameters were described as Weckwerth et al.58. Prior to the analysis, biological samples were randomized. 
Quality controls, including blanks, pool of samples and mix of standards, including NAC were analyzed at the 
beginning of the run and after every 10 samples and were used to assess the quality of the run and performance 
of the equipment. Chromatograms were exported using the Leco ChromaTOF software (version 3.25) (https:// 
www. lecos oftwa re. com/ chrom atof) in .cdf files.

For targeted analysis. The cdf files were imported into R  software59. Peak detection, retention time align-
ment, and library matching were performed using Target Search R-package30. Peaks were manually validated 
using a reference library derived from the Golm Metabolome  Database29. Metabolites were quantified by the 
peak intensity of a selective mass. Metabolites intensities were normalized by dividing the OD of each biological 
replicate, followed by the sum of total ion count and  log2 transformed. The data were used for HCA and PCA 
analyzes using the R Statistical software. The hierarchical clustering analysis was performed based on Euclidean 
distance and used the ggplot2 package in R Statistical Software while principal component analysis was per-

https://www.olympus-lifescience.com/en/software/cellsens/
https://www.olympus-lifescience.com/en/software/cellsens/
https://www.lecosoftware.com/chromatof
https://www.lecosoftware.com/chromatof
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formed using pcaMethods bioconductor package. The figures quality was improved in inkscape (version 0.92.4) 
(https:// inksc ape. org/).

For untargeted analysis. The cdf files were then processed using MZmine 2.10 for peak detection, peak 
filtering, chromatogram construction, chromatogram deconvolution and alignment. The parameters used for 
data processing followed the method previously described by Elie, Santerre and  Touboul33. The resulting data set 
(Retention time × MS signal intensities) of the 80 samples generated in a peaklist of 2235 features with associated 
MS spectra. This resulting peaklist was exported as input for Molecular Network multivariate data analysis and 
Molecular Network generation.

Pathway analysis integrating enrichment analysis was performed using global test algorithms and topology 
analysis using relative-betweenness centrality algorithm using Pseudomonas putida KT2440 as reference pathway 
database library.

Molecular networking and metabolite annotation. A molecular network (MN) was created with 
the gas chromatography workflow available at Global Natural Products Social Molecular Networking (GNPS) 
(https:// gnps. ucsd. edu). The spectra data was filtered by removing all MS/MS fragment ions within ± 17 Da of 
the precursor m/z. MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the ± 50 Da 
window throughout the spectrum. The precursor ion mass tolerance was set to 20,000 Da and the MS/MS frag-
ment ion tolerance to 0.5 Da. A MN was then created where edges were filtered to have a cosine score above 
0.7 and more than 6 matched peaks. Further, edges between two nodes were kept in the network if and only if 
each of the nodes appeared in each other’s respective top 10 most similar nodes. Finally, the maximum size of a 
molecular family was set to 100, and the lowest scoring edges were removed from molecular families until the 
molecular family size was below this threshold. The library spectra were filtered in the same manner as the input 
data. All matches kept between network spectra and library spectra were required to have a score above 0.75 
and at least 6 matched peaks. The molecular networks were visualized using Cytoscape software version 3.8.0 
(https:// www. cytos cape. org)60.
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