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The intestine is divided into specialized tissue areas that provide distinct microenviron-
ments forT cells. Regulation ofT-cell responses in the gut has been a major focus of recent
research activities in the field.T cells in the intestine are regulated by the interplay between
host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue fac-
tor that plays important roles in regulation of immune responses. In the large intestine,
the influence of RA diminishes, but that of commensal bacterial products increases. RA,
gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or
effector functions ofT cells. Coordinated regulation of immune responses by these factors
promotes well-balanced immunity and immune tolerance. Dysregulation of this process
can increase infection and inflammatory diseases.
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INTRODUCTION
T cells are highly plastic and readily adopt new phenotypes in
response to changes in environmental cues. T cells are heteroge-
neous in T-cell receptor (TCR) specificity, trafficking ability, and
effector phenotype. Specialized organs and tissue areas produce
regulatory factors that stimulate and change the T-cell phenotype,
and only the T cells that have the capacity to respond to these
tissue factors can expand and persist in specialized tissue sites.
Tissue factors can be any molecules produced constitutively or
inducibly in specialized tissue areas and regulate T cells. These
factors include host metabolites, microbe-associated molecular
patterns (MAMPs), microbial metabolites, cytokines, hormones,
and inflammatory mediators. Tissue factors can promote or sup-
press the activation, expansion, differentiation, and survival of T
cells. They can act on T cells during TCR activation and skew the
phenotype of differentiating T cells. Tissue factors can also affect
the phenotype of antigen-presenting cells (APC) such as dendritic
cells (DCs) to indirectly affect T cells. Antigen and co-stimulation
signals are primarily provided by APC for T-cell activation. How-
ever, these signals alone are not sufficient to effectively drive or
skew T-cell differentiation for immune responses tailored to spe-
cific pathogens or inflammatory responses. Cytokines play central
roles in T-cell differentiation. They can be produced by not only
DCs but also other cells in tissues. Production of cytokines by DCs
and tissue cells can be regulated by the tissue factors for indirect
regulation of T cells. Together with cytokines, tissue factors play
important roles in determining the fate of T cells in specialized tis-
sue microenvironments. T-cell responses in the intestine are regu-
lated by the interplay between host and microbial factors. Retinoic

Abbreviations: RA, retinoic acid; DCs, dendritic cells; MAMPs, microbe-associated
molecular patterns; PGE2, prostaglandin E2; GF, germ free; Tregs, regulatory T cells.

acid (RA) and gut microbiota distinctively regulate differentiation,
migration, and effector functions of T cells. Moreover, inflamma-
tory mediators such as prostaglandins can modify the effects of
tissue factors. In this article, we will discuss the interacting roles
of these factors in regulation of T cells in the intestine.

BASIC FACTORS FOR T-CELL ACTIVATION AND
DIFFERENTIATION
The intestine has the highest levels of Th17, Th22, and FoxP3+

T cells in the body. Thus, one can say that the intestine produces
more (in quantity and/or number of different types) factors that
support the effector or suppressor T-cell subsets. Th1 cells produce
IFN-γ; Th17 cells produce IL-17; Th22 cells produce IL-22; Th2
cells produce IL-4/IL-5/IL-13; Tr1 cells produce IL-10; regulatory
T cells (Tregs) express FoxP3 and may produce IL-10, IL-35, and
TGFβ1 as their effector cytokines (Zhou et al., 2009; Witte et al.,
2010; Pot et al., 2011). In addition, Th9 cells produce IL-9 (Kaplan,
2013). Generation of these T-cell subsets requires distinct cytokine
signals and intracellular molecules (Bluestone et al., 2009; Zhou
et al., 2009).

Activation of TCRs is required for cytokine and tissue factors
to affect T-cell differentiation. TCRs are activated by antigen pep-
tides presented on MHC molecules expressed by APC. Antigens
that activate TCR are the primary factor that induces T-cell activa-
tion (Sundrud and Nolan, 2010). The affinity and antigen-specific
activation of TCR create various activation signals for heteroge-
neous outcomes (Garbi et al., 2010; Edwards and Evavold, 2011).
TCR activation leads to a series of cell signaling events leading to
activation of several key transcription factors such as AP-1, NFAT,
and NFkB (Sundrud and Nolan, 2010). For proper activation of T
cells, additional signals should come from co-stimulatory recep-
tors such as CD28 (Acuto and Michel, 2003). Other co-stimulatory
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receptors include OX40, ICOS, CD137, GITR, and LIGHT for sur-
vival, expansion and differentiation of T cells (Redmond et al.,
2009; Chen and Flies, 2013). Also, there are co-inhibitory recep-
tors such as CTLA4, PD1, and BTLA to dampen or modify the
TCR signaling (Sumpter and Thomson, 2011; Pasero et al., 2012).
Antigen and co-stimulation signals can activate T cells but these
two are not sufficient for generation of functionally specialized
effector or suppressor T cells in the periphery.

For efficient activation, expansion, and differentiation of T cells,
major T cell-activating and differentiating cytokines are required
(Korn et al., 2009; Zhou et al., 2009; Kaplan, 2013). IL-2 is a pro-
totype cytokine for proliferation and differentiation of T cells into
Tregs and effector T cells (Liao et al., 2011). However, IL-2 sup-
presses the induction of Th17 cells. IL-4 is a cytokine that induces
T-cell differentiation into Th2 cells. However, IL-4 inhibits the
generation of induced FoxP3+ T cells (Nagase et al., 2007; Dardal-
hon et al., 2008). IL-6 and IL-23 promote the generation of Th17
cells. IL-12 promotes the generation of Th1 cells but suppresses
that of Th2 cells. IL-7 and IL-15 promote homeostatic prolif-
eration of T cells (Carrette and Surh, 2012; Hong et al., 2012).
IL-21 promotes the generation of T-FH and other T cells (Crotty,
2011). IL-10 and IL-27 promote the generation of T cells produc-
ing IL-10 (Tr1) (Awasthi et al., 2007; Batten et al., 2008). These
cytokines induce the activation and expression of subset-specific
master transcription factors such as RORγt/STAT3 (Th17 cells),
GATA3/STAT4 (Th2), T-bet/STAT6 (Th1), FoxP3/STAT5 (Tregs),
and c-Maf/AHR (Tr1) (Korn et al., 2009; Zhou et al., 2009; Pot
et al., 2011). The cytokines can generate specialized effector T cells
but not necessarily tissue-specific T cells.

EFFECTOR T CELLS HAVE TISSUE-SPECIFIC MIGRATORY
BEHAVIORS
The tissue-specificity of T cells is mainly regulated by traffick-
ing receptors. T cells are arguably the most migratory immune
cells in the body. The migration ability of T cells is defined by
the trafficking receptors they express. Naïve T cells made in the
thymus uniformly express CCR7 and CXCR4 for migration into
the secondary lymphoid tissues (Campbell et al., 2003). Addition-
ally, naïve T cells express CD62L for interaction with peripheral
node addressin (PNAd) expressed on high endothelial cell venules
(HEV) in the T-cell areas of lymph nodes (von Andrian, 1996).
Because of their trafficking-receptor phenotype, naïve CD4+ T
cells seldom migrate to non-lymphoid tissues. Naïve CD4+ T cells
also express low levels of α4β7 to assure migration of some naïve
T cells to gut-associated lymphoid tissues at a basal level (Mackay
et al., 1996; Rott et al., 1996). T cells change their trafficking-
receptor phenotype during T-cell activation (Kim et al., 2001; Kim,
2006; Lee et al., 2007). This is so called “the trafficking-receptor
switch in the secondary lymphoid tissues,” and it is driven by the
antigen priming process regulated by DCs (Kim et al., 2003; Lee
et al., 2007). Interestingly, the outcome of the trafficking recep-
tor switch on antigen-primed T cells is not uniform. Rather, it
is heterogeneous depending on the tissue sites and conditions
of antigen priming. This heterogeneity in the trafficking-receptor
switch generates tissue-specific effector or suppressor T cells. Tis-
sue factors are drained into lymph nodes together with antigens
to activate T cells. A common change occurring during T-cell

activation is reduced expression of CCR7 and CD62L, two of
the best known homing receptors for migration into secondary
lymphoid tissues. Some memory T cells retain these receptors to
come back to lymphoid tissues. Memory/effector type chemokine
receptors include CCR1-6, CCR8, CCR9, CCR10, CXCR3, CXCR5,
and CXCR6 (Kim, 2005). In mesenteric lymph nodes (MLN) and
Peyer’s patches, many T cells up-regulate CCR9 and α4β7. In
peripheral lymph nodes (PLN), P-selectin glycoprotein ligand-1
(PSGL-1), CCR4, and CCR8 are expressed on T cells to make skin-
homing cells (Ohmori et al., 2006). Th1 cells have the tendency
to express CXCR3, CCR5, and CXCR6 (Kim et al., 2001). Th2
cells express CCR4, CCR8, and/or CRTH2 (Campbell et al., 1999;
Nagata et al., 1999). Th17 cells express CCR6 and most mem-
ory/effector type chemokine receptors (Annunziato et al., 2007;
Hirota et al., 2007; Lim et al., 2008). Trafficking receptors for other
tissues are less clear but generally the non-gut memory/effector
receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), E-
selectin ligand-1 (ESL-1), CXCR3, CCR5, and CCR4 are expressed
highly by the T cells migrating to inflamed tissues (Kim, 2006,
2009).

Certain memory/effector T cells do not actively recirculate
through the blood system but rather reside in non-lymphoid
tissues such as skin and intestine (Gebhardt et al., 2009; Maso-
pust et al., 2010; Wakim et al., 2010). These T cells are termed
tissue-resident memory T cells (TRM) and play important roles
in fighting pathogens and mediating tissue inflammation. TRM
have been extensively studied for CD8+ T cells, but some CD4+

T cells have this phenotype as well (Gebhardt et al., 2011). TRM
express CD69 and CD103 but are low in expression of CCR7 and
CD62L (Hofmann and Pircher, 2011; Shinoda et al., 2012). CD69
down-regulates S1P1, which is required for recirculation of T cells
(Shiow et al., 2006).

RA IS AN INTESTINAL TISSUE FACTOR
Retinoic acid is produced from retinol absorbed in the gut. Epithe-
lial cells express cellular retinol binding proteins such as CRBP and
CRBP II for retinoid uptake from the gut lumen (Levin, 1993).
Retinol can be transported and stored in the liver and fat. Accu-
mulation of retinol and RA at high levels in tissues is toxic, which
is prevented by RA-synthesizing and degrading enzymes. Retinol
is metabolized into all-trans-RA (At-RA) and 9-cis-RA (Duester,
2000; Mark et al., 2006). The conversion of retinol into RAs is regu-
lated by several enzymes such as alcohol dehydrogenase and retinal
dehydrogenases. Expression of these enzymes is tightly regulated in
cells and tissues. RA functions locally and globally. As established
for embryo development, RA is produced by specialized cells and
affects cell proliferation and death in tissue microenvironments.
ALDH1a1 and ALDH1a2, encoded respectively by Aldh1a1 and
Aldh1a2 gene, oxidize retinal to make RA. Expression of ALDH1a2
and production of RA are induced by a number of factors includ-
ing RA, PPARγ ligands (Szatmari et al., 2006; Housley et al., 2009),
toll-like receptors (TLR) ligands, GM-CSF and IL-4 (Yokota et al.,
2009). GM-CSF and IL-4 cooperatively induce ALDH1a2. RA is
degraded by CYP26 (Haque and Anreola, 1998). CYP26 is induced
by RA or MAMPs that activate primarily through TLRs to limit
RA availability in tissue microenvironments and during immune
responses.
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Retinoic acid is present at nanomolar levels in the blood circu-
lation (Napoli et al., 1985). Tissues such as the intestine, liver, and
eyes have high expression of the RA-producing enzymes (Nieder-
reither et al., 2002), and the RA level is expected to be high in these
tissues. In the intestine, epithelial cells, DCs, and macrophages
express RA-synthesizing enzymes and produce RA. DCs and
macrophages express ALDH1a1 and ALDH1a2 and can present
RA for T cells undergoing activation (Iwata and Yokota, 2011).
The RA produced by intestinal epithelial cells would effectively
affect the T cells in the intraepithelial compartment.

RA REGULATES T-CELL EFFECTOR FUNCTION
Retinoic acid signals through RAR and RXR heterodimers. T cells
highly express RARα and RXRs (Iwata et al., 2003; Kang et al.,
2007). Expression of RARα in T cells is augmented by RA (Halevy
et al., 1994; Kang et al., 2007). The first function of RA reported
for T cells is enhancement of cytotoxic T-cell function against allo-
geneic tumor cells (Dennert and Lotan, 1978; Dennert et al., 1979).
RA is considered an anti-cancer agent for its activity to decrease
tumor growth (Tang and Gudas, 2011). The relative contributions
of the RA effect on tumor cells versus immune cells have yet to be
determined. While RA promotes IL-2 and IL-2Rβ expression by
T cells (Dennert, 1985; Ballow et al., 1997; Sidell et al., 1997), the
positive effect of RA on anti-tumor immunity is at odds with the
anti-inflammatory effect of RA and related RA analogs (retinoids)
in the immune system (Newton et al., 1986). Retinoids ameliorate
cutaneous inflammation caused by acne or lupus erythematosus.
RA therapies decreased T-cell numbers in inflamed skin lesions.
Others reported that T cells were even increased after treatment
with RA in normal skin (Fisher et al., 1991). It seems that RA would
decrease inflammatory T cells but may be required for maintain-
ing some T cells in the skin in the steady state. The positive effect
of RA on T cells is perhaps due to its cofactor function in T-cell
activation. T cells did not proliferate properly in the absence of
retinol or its metabolites (Garbe et al., 1992). The negative effect
is perhaps mediated through induction of a Treg phenotype in T
cells or direct suppression of effector T cells (Stosic-Grujicic and
Ejdus, 1994).

Another potential function of RA in regulation of T cells is
their effect on Th1/2 polarization. In vitamin A-deficient mice,
Th1 cells were increased at the expense of Th2 cells (Cantorna
et al., 1995). The low Th2 response is in line with the function of
RA in enhancing Th2 cells, a process mediated by the RXR pathway
(Hoag et al., 2002; Stephensen et al., 2002; Iwata et al., 2003). In
another study, Th2 and Tr1 cells were increased and Th1 cells were
somewhat decreased in vitamin A deficiency (Stephensen et al.,
2004). Our study, published in 2009 (Kang et al., 2009), showed
that neither hypo- nor hyper-vitamin A condition had significant
changes in Th1 and Th2 cells. The only exception was the small
intestine, where all effector T cells including Th1 and Th2 cells were
decreased. In the “pinkie” mice where RXR function is insufficient
due to a mutation, the Th1 response was greatly increased (Du
et al., 2005). This effect of the mutation, however, is not entirely
due to RA signaling deficiency as RXRs pair also with other nuclear
hormone receptors such as vitamin D receptor (VDR), peroxisome
proliferator-activated receptors (PPARs), liver X receptor (LXR),
bile acid/farnesoid X receptor (FXR), androstane receptor (CAR),

pregnane X receptor (PXR), and thyroid hormone receptor (TR).
Overall, vitamin A or RA can affect Th1 and Th2 responses. While
the mechanism for this regulation is still unclear, it would be a
mixture of direct and indirect regulation. RA can support T-cell
activation for basic effector functions. However, RA does not act
as a Th1/2 cell polarizing agent. RA can act on other cells, such
as DCs and Tregs, to indirectly regulate the Th1/Th2 response.
Important functions of RA in regulation of T cells and DCs are
highlighted in Figure 1.

Interestingly, the functions of RA at low and high concentra-
tions appear different from each other. RA at high concentrations
(>5 nM) induces tolerogenic APC and FoxP3+ T cells (and gut-
homing receptors as discussed later in this article). RA at low
concentrations (<3 nM) is required for optimal activation of T
cells for formation of effector T cells. High concentrations of RA
are found in the small intestine and possibly in other tissues where
ALDH1a1 and ALDH1a2 are highly expressed. Most tissues, how-
ever, would have low concentrations of RA, which are just enough
to support the general effector T-cell response but not the hom-
ing receptor expression. In this regard, it has been observed that
the RA signal is required to mount an effector T-cell response
during infection (Hall et al., 2011). In vitamin A or RARα defi-
ciency, effector T cells fail to migrate and perform their functions
in tissue sites of active immune responses. This phenomenon has
been observed in infection and graft rejection models (Hall et al.,
2011; Pino-Lagos et al., 2011). Paradoxically, RARα agonists have
been used to suppress graft rejection responses (Seino et al., 2004).
Again, the impact of RA is determined, in part, by the available
concentrations of RA in the body. This point is summarized in
Figure 2A.

INDUCTION OF GUT-HOMING RECEPTORS BY RA
GENERATES THE T CELLS POPULATING THE INTESTINE
A clear function of RA is to induce gut-homing receptors and
to suppress lymph node/non-gut tissue-homing receptors on T
cells. RA directly induces CCR9 and α4β7 and decreases CCR7
and CD62L expression (Iwata et al., 2004; Kang et al., 2007). RAR
activation is important for the induction of gut-homing receptors,
and co-activation of RXRs further boosts the effect of RAR activa-
tion (Takeuchi et al., 2010). α4β7 is composed of Itg-α4 and Itg-β7
subunits. Itg-α4 is induced by RA in T cells (Kang et al., 2011).
Itg-β7 is constitutively induced during T-cell activation and fur-
ther induced by RA and TGFβ1 (Lim et al., 1998; Kang et al.,
2011). CCR9 is the small intestine-specific receptor, and α4β7 is a
pan-gut-homing receptor (Kim, 2005). CCL25 is the chemokine
that activates CCR9 and attracts CCR9-expressing T cells (Kunkel
et al., 2000; Wurbel et al., 2000). Induction of the two gut-homing
receptors by RA occurs in T cells (both CD4 and CD8) and B cells
(Iwata et al., 2004; Saurer et al., 2007; Svensson et al., 2008; Mora
and von Andrian, 2009). RA-dependent expression of CCR9 and
α4β7 is important for migration of all T cells, including Th1, Th2,
Th17, and FoxP3+ T cells, into the small intestine (Kang et al.,
2009; Wang et al., 2010, 2013). RA also promotes the formation
of CCR9+ plasmacytoid DCs and α4β7+ pre-mucosal DCs in the
bone marrow (Zeng et al., 2012). In vitamin A deficiency, T cells
fail to express CCR9 and express α4β7 at reduced levels (Iwata
et al., 2004; Kang et al., 2009). Signaling through RARα and BATF
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FIGURE 1 | Major functions of RA in regulation of DCs andT cells in the
intestine. RA develops specialized DCs with the capacity to express
ALDH1a2, TGFβ1, Arg1, and other regulators of lymphocytes. RA directly
activates T cells for induction of CCR9 and Itgα4, the latter of which pairs with
Itg-β7 to make Itg α4β7. These gut-homing receptors are required for T and B
cell migration to the lamina propria of the small intestine. α4β7 is important
also for lymphocyte migration into the colon, Peyer’s patches, and mesenteric
lymph node. Up-regulated ALDH1a2 increases RA production from
retinaldehyde. Biologically active TGFβ1 is also produced by
αVβ6/β8-expressing mucosal DCs to induce FoxP3+ T cells in the
gut-associated lymphoid tissues. TGFβ1 induces CCR6, whereas RA induces

CCR9 and Itg-α4. Arginase1 is induced by RA in DCs to deplete available
arginine, and this promotes the generation of FoxP3+ T cells. RA at
physiological concentrations does not decrease the numbers of Th17 cells and
other effector T cells. Rather, through induction of the gut-homing receptors,
RA is required for normal population of major T-cell subsets and IgA+ B cells in
the intestine. RA, while it induces FoxP3+ T cells, suppresses the formation of
IL-10+ T cells, leading to enrichment of FoxP3+ T cells at the expense of IL-10+

T cells. Thus, RA helps create a unique blend of effector and regulatory T cells
effective in protection of the small intestine. In the colon, the influence of
microbial factors increases to either promote or suppress RA-regulated T cells
and DCs.

are critical to normally express CCR9 and α4β7 on T cells (Wang
et al., 2013). BATF, an AP-1 family transcription factor, is induced
upon T-cell activation (Dorsey et al., 1995). Without BATF, induc-
tion of CCR9 and α4β7 by T cells did not occur in vitro and in vivo
(Wang et al., 2013). This led to defective migration and function
of effector T cells in the intestine. BATF-deficient Tregs were also
defective in migration and suppression of T-cell mediated tissue
inflammation in the intestine (Wang et al., 2013). Oral immu-
nization induces Tregs in the intestine for promotion of immune
tolerance to the antigens (Chen et al., 2003). CCR9- or vitamin A-
deficient mice fail to induce oral immune tolerance because T cells,
including Tregs, cannot migrate to the small intestine (Strober,
2008; Cassani et al., 2011).

RA INDUCES FoxP3+ T CELLS FOR PROMOTION OF IMMUNE
TOLERANCE
Retinoic acid promotes the formation of FoxP3+ T cells from
naïve T cells (Benson et al., 2007; Coombes et al., 2007; Kang et al.,
2007; Mucida and Cheroutre, 2007; Mucida et al., 2007; Scham-
bach et al., 2007; Sun et al., 2007; Elias et al., 2008). RA can induce
FoxP3 expression when added during activation of naïve CD4+ T
cells. This process is enhanced by TGFβ1. It is still not completely

understood how RA induces FoxP3 gene expression. Direct and
indirect roles have been proposed. Expression of the FoxP3 gene
is induced by a number of different ways (Maruyama et al., 2011).
RA can promote some of these pathways to induce the FoxP3
gene. An indirect mechanism through suppression of cytokines
produced from effector T cells was proposed (Hill et al., 2008).
In this regard, IL-4 and IL-6 can suppress the induction of FoxP3
expression (Kastner et al., 2010). RA suppresses the expression of
these cytokines to indirectly induce the expression of FoxP3 gene
by TGFβ1. Similarly, RA can affect the expression of key tran-
scription factors such as STAT6, which regulates IL-4 expression.
RA suppresses the function of STAT6 in an unknown manner to
support FoxP3 induction by TGFβ1 (Takaki et al., 2008). The RA
function in induction of FoxP3 expression is not through regu-
lation of STAT3/STAT5 (Elias et al., 2008), which is activated by
many cytokines and growth factors including IL-2. IL-2 is required
for normal induction of FoxP3+ T cells in the periphery (Cheng
et al., 2011).

While RA enhances FoxP3+ T cells, RA suppresses another
major subset of Tregs, IL-10-producing T cells (Tr1 cells) (May-
nard et al., 2009). In vitamin A deficiency, IL-10+ T-cell numbers
were increased. Thus, the suppressive function of RA on IL-10+ T
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FIGURE 2 |The gradients of RA and bacterial products in the
intestinal tract and systemic tissue sites cooperatively regulateT
cells. (A) Induction of CCR9 by RA occurs at high RA concentrations. The
function of RA to support the basic effector T-cell response occurs at
relatively low RA concentrations. In vitamin A deficiency, the basic T-cell
response such as generation and migration of effector T cells is impaired.
(B) While RA boosts the generation of FoxP3+ T cells and homing of all
T-cell subsets to the small intestine, it suppresses the formation of

IL-10-producing Tr1 cells. In the large intestine, the RA concentration
decreases, whereas commensal bacterial cells increase in number. In
this tissue environment, it is the microbial products and TLR-mediated
signals that are dominant in regulation of T cells. Bacteria-derived
MAMPs affect many types of T cells in a microbe-specific manner. This
segment-dependent distribution of the two classes of regulatory factors
would help mount immune responses necessary for different segments
of the intestine.

cells has been verified in vivo. The RA acting on T cells is thought
to be derived from DCs and affects T cells in a paracrine man-
ner. DCs highly express ALDH1a2 to produce RA (Iwata, 2009).
Defective generation of tolerogenic DCs in the intestine provides
another explanation for the dysregulated T-cell response in vita-
min A deficiency. The effect of RA on DCs is discussed in detail in
the next section.

RA AFFECTS THE PHENOTYPE OF DCs AND MACROPHAGES
While RA can act directly on T cells undergoing activation, it
can also change the phenotype of DCs and macrophages to indi-
rectly affect T-cell differentiation and function. RA regulates the
differentiation of myeloid cells (Breitman et al., 1980; Takenaga
et al., 1980; Flynn et al., 1983). High retinol conditions promote
the differentiation of mouse hematopoietic progenitor cells into
DCs, whereas low retinol conditions generate more neutrophils
in vitro (Hengesbach and Hoag, 2004). In general, RA generates
DCs with a low T-cell activation capacity. It was observed that
RA can generate DCs from human cord blood monocytes with a
decreased ability to produce IL-12 and activate T cells (Tao et al.,
2006). Similarly, 9-cis-RA, which activates both RAR and RXR,
induced IL-10 but decreased IL-12 expression in cultured human
monocytes. It was also observed that 9-cis-RA can interfere with
human DC maturation (Zapata-Gonzalez et al., 2007). RA also
drives bioactive TGFβ production by DCs through suppression of
SOCS3 and subsequent activation of STAT3 (Feng et al., 2010).
RA decreased the adherence of BM-DCs and induced expression
of matrix metalloproteinase-9 (Lackey et al., 2008). The function
of RA in generating tolerogenic DCs is in line with their ability to
induce FoxP3+ Tregs (Feng et al., 2010). RA induces expression
of Arginase1, which enhances the FoxP3+ T cell-inducing ability

of DCs (Chang et al., 2013). The mouse Arginase1 gene promoter
has RAR binding sites which mediate the expression of Arginase1
in response to RA. RA-treated DCs were not able to induce Th17
cells, whereas DCs developed with an RAR antagonist were highly
efficient in induction of Th17 cells (Chang et al., 2013). Thus, RA
generates DCs with a reduced ability to make effector T cells such
as Th17 cells but an enhanced ability to induce FoxP3+ T cells. The
function of RA in regulation of DCs and T cells in the intestine is
summarized in Figure 1.

On the contrary, RA can also induce inflammatory DCs in
certain conditions. It has been observed that RA can promote dif-
ferentiation of human monocytes into IL-12-producing DCs that
express CD1a (Mohty et al., 2003). In another study, monocyte-
derived DCs that were pretreated with RA, acquired the ability to
secrete IL-6 and TGFβ1 (Saurer et al., 2007). RA, together with
IL-15, can activate DCs to produce IL-12 (DePaolo et al., 2011).
This process is mediated by JNK activation and may induce an
inflammatory T-cell response to dietary antigens. Thus, while RA
promotes tolerogenic DCs in a steady state, it can also generate
proinflammatory DCs in response to other factors.

RA changes the phenotype of DCs into intestine-residing DCs.
Small intestine lamina propria-residing DCs can produce RA
and efficiently induce FoxP3+ T cells (Sun et al., 2007). Certain
subsets of DCs and macrophages highly express ALDH1a2 and
produce RA. These cells are efficient in induction of FoxP3+ T
cells. Another factor is TGFβ1, which is expressed as the inactive
latent form. CD103+ DCs in the intestine express αV-containing
integrins, which binds through the RGD motif of LAP-TGFβ and
activates the cytokine for induction of FoxP3+ T cells (Worthing-
ton et al., 2011). However, the RA-producing and FoxP3-inducing
ability is not unique to the mucosal DCs. In skin-draining lymph
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nodes, DCs that don’t express CD103 can produce RA and induce
FoxP3+ T cells (Guilliams et al., 2010). A limiting factor in this case
is the availability of retinol in the skin. Compared to the gut where
retinol is absorbed, the retinol level in the skin is expected to be
low. In vitamin A deficiency, the DCs in gut-associated lymphoid
tissues and lamina propria abnormally expressed langerin, which is
typically expressed by skin-residing dermal langerin+ DCs (Chang
et al., 2010). The DCs in the spleen of vitamin A-depleted ani-
mals were also abnormal with increased CD8α+ lymphoid DCs
(Duriancik and Hoag, 2010).

Another function of mucosal DCs is to induce IgA-producing
B cells through their RA-producing ability. RA promotes IgA
production in B cells (Tokuyama and Tokuyama, 1995). DCs in
the MLN and Peyer’s patches have the capacity to induce IgA-
producing B cells in co-culture (Mora et al., 2006), a process
enhanced by IgA-inducing cytokines such as IL-5 and IL-6. Human
monocyte-derived DCs, developed in the presence of RA in vitro,
had a similar ability to induce IgA-producing B cells (Saurer et al.,
2007). The DC-induced class switch recombination can occur in
any lymphoid tissues but it is most clear in isolated lymphoid
follicles where no or few T cells are present (Tsuji et al., 2008).
In addition to regular myeloid DCs, follicular DCs (FDCs) are
present in germinal centers and regulate B cell differentiation into
plasma B cells. Stimulation of FDCs by bacterial products and
RA synergistically enhanced the ability of FDCs to induce IgA+ B
cells (Suzuki et al., 2010). This process is mediated by enhanced
expression of the chemokine CXCL13, the survival factor BAFF,
and TGFβ1.

COMMENSAL BACTERIA PRODUCE TISSUE FACTORS THAT
AFFECT T CELLS
Commensal bacteria are present mainly in the large intestine
(Figure 2B). They are also found in low numbers in the small
intestine, particularly in the ileum. Commensal bacteria signifi-
cantly affect immune responses to pathogens and are themselves a
subject of immune responses during infection by pathogens (Hand
et al., 2012). Successful population of T cells in the intestinal tis-
sue requires host-specific microbiota (Chung et al., 2012). In other
words, the human microbiota is not effective in activating T cells in
mice, and it is expected that the same is true for the mouse micro-
biota in humans. This information suggests that the microbiota
that grows in a species has been selected by the immunological
and other pressures of the host. Alternatively, the host and micro-
biota may have been co-evolved over a long time period to support
and regulate each other.

Comparison of germ-free (GF) and specific pathogen-free
(SPF) mice revealed the important role of the gut microbiota in
normal population of the intestine with T cells. A GF condition
did not affect the number of FoxP3+ T cells in the small intes-
tine but it greatly decreased the T-cell population in the colon
(Atarashi et al., 2011). This resistance of the small intestinal T cells
is interesting but the reason for this resistance is unknown. A GF
condition decreased the presence of Th17 cells in both the small
and large intestine. Th1 cells in the intestine were not affected, but
IL-10-producing T cells were decreased in GF mice (Atarashi et al.,
2011). TLRs play important roles in conveying some of the micro-
bial signals to host cells for regulation of T cells. The important

roles of TLR-activating molecules in regulating innate immune
cells are well established (Mills, 2011). T cells express certain TLRs
and can be under the direct control of microbes. For example,
TLR2 signaling in T cells enhances the generation of Th17 cells
(Reynolds et al., 2010).

It was observed more than a decade ago utilizing monoassoci-
ating GF mice that segmented filamentous bacteria (SFB) potently
stimulated the mucosal immune system (Talham et al., 1999). SFB
increased activated T cells and IgA production in both the small
and large intestine. In contrast, the effects of Clostridia bacteria on
T cells and B cells were largely limited to the large intestine (Talham
et al., 1999). SFB, while inefficient in inducing T-cell-mediated col-
itis by themselves, were required to induce colitis together with a
defined cocktail of SPF bacteria (Stepankova et al., 2007). SFB
were required for efficient formation of T cells expressing IL-17
and IL-22 in the intestine (Ivanov et al., 2009). These effector T
cells confer enhanced immunity against C. rodentium infection.
SFB are physically associated with intestinal epithelial cells. The
intestinal epithelial cell surfaces that SFB interact with are devoid
of microvilli for tight interaction between SFB and epithelial cells.
This interaction would, in part, make SFB highly effective in stim-
ulating the mucosal immune system. Intestinal colonization with
SFB changes the gene expression profile of the host cells in the
intestine. Serum amyloid A (SAA), induced by SFB in the termi-
nal ileum, can stimulate DCs to promote Th17 cell differentiation
(Ivanov et al., 2009). SFB also affect T-cell responses in other tis-
sues. Induction of encephalomyelitis was mediated by Th17 cells
and was enhanced by SFB in the intestine (Lee et al., 2011). While
GF animals didn’t develop the disease, the GF mice colonized with
SFB developed encephalomyelitis.

Clusters IV and XIVa of the genus Clostridium are effective in
inducing FoxP3+ T cells in the colon (Atarashi et al., 2011). Inoc-
ulation of mice with Clostridia decreased colitis and IgE-mediated
allergic response. The determinant of Clostridia inducing FoxP3+

T cells is not clear but the effect is MyD88-dependent, suggesting
potential roles of TLRs. A bacterial polysaccharide from Bac-
teroides fragilis can also increase FoxP3+ T cells that produce IL-10
(Mazmanian et al., 2005). TLR2 is required for induction of FoxP3
and IL-10 in T cells by the polysaccharide. This polysaccharide,
when administered via oral gavage was effective in inducing Tregs
and ameliorating TNBS-induced colitis in mice. The bacteroid
polysaccharide decreased numbers of Th17 cells in the mesen-
teric lymph node and increased Th1 cells in the spleen (Round
and Mazmanian, 2010). The TLR2 expressed on FoxP3+ T cells
is important for this process, and, interestingly, colonization of B.
fragilis in the gut was inhibited by Th17 cells in the host (Round
et al., 2011). Thus, the interaction is bi-directional between the
host and microbiota, resulting in sustained immune tolerance and
control of commensal bacteria.

Probacteria, such as Bifidobacteria and Lactobacilli, suppress
some inflammatory diseases. These probiotic bacteria can promote
production of IL-10 and Tregs and ameliorate TNBS-induced
colitis (Di Giacinto et al., 2005). Similarly, Bifidobacteria and
Lactobacilli had protective effects on allergic responses in lungs
and intestine (Lyons et al., 2010). Bifidobacterium breve induced
IL-10-producing T cells in the large intestine and can suppress T-
cell-mediated colitis (Jeon et al., 2012). DCs produce Tr1-inducing
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cytokines such as IL-27p28, Ebi3, and IL-10 in response to B. breve.
The identity of the molecule(s) of B. breve inducing the response
is unclear but this response was again dependent on Myd88 and
TLR2 expressed by DCs.

Along with TLR ligands, microbial metabolites have the poten-
tial to affect tissue cells and T cells. Short chain fatty acids (SCFAs)
are the most abundant microbial metabolites in the intestine.
SCFAs are anaerobic fermentation products derived from dietary
fibers by commensal bacteria. SCFAs constitutively activate epithe-
lial cells in the intestine via GPR41 and GPR43 (Kim et al., 2013).
This activation is important for prompt activation of epithelial
cells for production of inflammatory cytokines and chemokines
for mounting immune responses to pathogens, including leuko-
cyte recruitment and induction of effector T cells (Kim et al.,
2013).

INTERACTION AMONG RA, MICROBIAL FACTORS, AND
INFLAMMATORY MEDIATORS
Host tissue factors such as RA and microbial factors have profound
effects on T cells. The functions, and production sites and condi-
tions of these factors are different. Therefore, these factors either
positively or negatively regulate the distribution and function of
T cells in the intestine. Some of the function of RA is counter-
regulated by TLR activation and inflammatory signals (Maynard
et al., 2009). MyD88 is a signaling molecule that mediates the sig-
nals from most TLRs except TLR3 and activates NFkB in immune
cells (Feng et al., 2010). MyD88 signaling is required for opti-
mal RA-induced expression of ALDH1a2 in DCs. The ability of
mucosal DCs to induce IgA-producing B cells is partially depen-
dent on the presence of intestinal commensal bacteria, and can be
induced by LPS in culture (Massacand et al., 2008). Consistently,
the TLR1/2 signaling pathway mediated by MyD88 is required for
the RA-dependent function of DCs in promoting IgA-producing
B cells (Wang et al., 2011). Thus, microbial factors cooperate with
RA in regulation of the immune system. RA and microbial factors
cross-regulate the generation of FoxP3+ cells and IL-10+ T cells.
Microbial factors promote IL-10+ T cells but RA promotes FoxP3+

cells. The significance and impact of this differential regulation are
yet to be established.

Prostaglandin E2 (PGE2) is produced during a variety of
inflammatory responses and regulates a number of physiological
and immunological processes in the body (Kalinski, 2012; Sreer-
amkumar et al., 2012). It has been reported that prostaglandin E2
(PGE2) is a negative regulator of ALDH1a2 through enhancing the
expression of inducible cyclic AMP early repressor (ICER) (Stock
et al., 2011). Blocking of PGE2 signaling greatly enhanced the RA
effect on induction of ALDH1a2-producing DCs and CCR9+ T

cells in mice (Stock et al., 2011). Thus, inflammatory mediators can
reverse the RA effect on T cells. The cytokine IL-15, produced dur-
ing immune responses and tissue inflammation (Perera, 2000), can
also turn the tolerogenic activity of RA into inflammatory activity
for DCs (Arranz and Garrote, 2011; DePaolo et al., 2011).

CONCLUSION AND FUTURE STUDIES
In sum, host factors exemplified by RA and a myriad of microbial
factors regulate each other’s activities in affecting T cells in the
intestine. It is expected that inflammatory mediators further reg-
ulate the effects of RA and microbial factors. Despite the progress
made so far, the functions of RA in the regulation of T cells and
APC are not fully understood. The function of RA in regulation
of T cells appears comprehensive and complex. While the over-
all positive effect of vitamin A on T-cell-mediated immunity and
immune tolerance in vivo is established, the specific functions of
RA on individual cell types including various T-cell subsets, APC,
and tissue cells are yet to be elucidated. Another poorly understood
area is the gene expression program regulated by RA in T cells and
APC. We don’t fully comprehend how the RA signal regulates the
expression of functionally important genes in T cells and APCs.
RA and other signaling pathways such as TCR and co-stimulatory
signals can cross-talk. This potentially important interaction war-
rants more studies. Interaction or cooperation between RARs and
other transcription factors (e.g., BATF) is also important. Beyond
RA, MAMP-regulated T-cell responses also need more studies in
terms of gene expression and signaling interaction with RA or
other tissue factors. These intricate interactions would be impor-
tant for precise regulation of T cells in time and space to maximally
benefit the host. Imbalance or dysregulation of the factors would
lead to insufficient or uncontrolled T-cell activities and diseases
in the intestine and other parts of the body. More studies on CD8
T cells, γδ T cells, and other functionally important T-cell subsets
are needed to understand regulation of the entire T-cell network
in the intestine. We are only beginning to unravel the regulatory
mechanisms for these factors. It is expected that we will witness
more of these host and microbial factors that can regulate T cells
and APC in the future.
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