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Ants, mice, and dogs often use surface-bound scent trails to
establish navigation routes or to find food and mates, yet their
tracking strategies remain poorly understood. Chemotaxis-based
strategies cannot explain casting, a characteristic sequence of
wide oscillations with increasing amplitude performed upon sus-
tained loss of contact with the trail. We propose that tracking
animals have an intrinsic, geometric notion of continuity, allowing
them to exploit past contacts with the trail to form an estimate
of where it is headed. This estimate and its uncertainty form
an angular sector, and the emergent search patterns resemble a
“sector search.” Reinforcement learning agents trained to execute
a sector search recapitulate the various phases of experimentally
observed tracking behavior. We use ideas from polymer physics to
formulate a statistical description of trails and show that search
geometry imposes basic limits on how quickly animals can track
trails. By formulating trail tracking as a Bellman-type sequential
optimization problem, we quantify the geometric elements of
optimal sector search strategy, effectively explaining why and
when casting is necessary. We propose a set of experiments to
infer how tracking animals acquire, integrate, and respond to past
information on the tracked trail. More generally, we define nav-
igational strategies relevant for animals and biomimetic robots
and formulate trail tracking as a behavioral paradigm for learning,
memory, and planning.

tracking | algorithm | behavior | optimization

Experimental studies demonstrate the ability of ants, dogs,
humans, and rodents to track odor trails (1–6). Rodents

accurately track trails in the dark, remaining close to the trail and
casting when contact is lost (Fig. 1A) (5). Carpenter ants closely
follow a trail while sampling it using a “crisscross” pattern with
their two antennae (Fig. 1B) (1). Current models of this behavior
rely on variants of chemotaxis (7) based on continuous estimates
of the rising and falling odor gradients as the trail is crossed.
One such strategy compares simultaneous odor concentrations
detected by two spatially separated sensors (8). Yet, rats with
a blocked nostril (5) and ants with a single antenna (1) are
still able to track trails, although less accurately. An alternative
chemotaxis strategy has the animal measuring odor gradients
along its trajectory and turning when a significant decrease is
perceived (5).

While chemotaxis-based strategies can allow for trail tracking
when trails are continuous, they fail when trails are broken and
gradients are absent, which is certainly relevant for animals track-
ing trails in the wild. In experiments with broken trails (1, 5), the
absence of signal triggers casting, which is a fundamental feature
shared with olfactory searches in a turbulent medium (9–11).
Even though turbulent searches also feature sporadic cues, air-
borne odor signals tend to be localized in a cone, and even within
the cone, the signal is highly fluctuating (12, 13). Therefore, be-
yond qualitative similarities between terrestrial trail tracking and
airborne olfactory searches, the specific statistics of detections,
geometric constraints, and behavioral patterns are distinct.

In contrast with chemotaxis-based algorithms, we propose
an alternative framework built on the searcher exploiting past
contacts with the trail to maintain an estimate of the trail’s
local heading and its uncertainty. A minimal memory of the

approximate locations of the two most recent contacts suffices
to delineate an angular sector of probable trail headings that
radiates from the most recent detection point. The resulting
“sector search” provides a quantitative description of trail-
tracking behavior that unifies its various phases and yields specific
experimental predictions.

Results
We first show that reinforcement learning (RL) based on the
sector search idea can recapitulate natural behavior. An RL
agent in this scheme learns to traverse the trail as quickly as
possible while minimizing the probability of losing it (Materials
and Methods has details). Our in silico RL experiments show
that general aspects of animal tracking behavior naturally emerge
(Fig. 1 C and D). Specifically, casts are observed around the
most likely heading of the trail, and their amplitude is within the
angular sector defined by the initial uncertainty σ of the trail’s
heading φ. The reason for the oscillatory pattern of casting is
intuitive. Indeed, while moving along a path C without detecting
the trail, the estimated heading’s probability distribution P(φ)
(Fig. 1E) is updated into PC(φ) as

P(φ)→ PC(φ)∝ ΓC(φ)P(φ) [1]

where ΓC(φ) is the probability of not detecting the trail headed
along φ. Irrespective of the explicit form of ΓC(φ), the depletion
of headings already explored generally leads to a bimodal poste-
rior distribution, with the two modes at the edges of the angular
sector (Fig. 1E). The search process is analogous to an agent
“foraging” for the trail at two spatially separated patches. The
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Fig. 1. Sample trail-tracking trajectories from previous experiments and our RL simulations. (A) A rat (head position in red) tracking a trail (in black). Note
the wide casts on extended loss of contact with the trail. Data reproduced from ref. 5. (B) A carpenter ant tracking an odor trail (black) using a stereotyped
crisscrossing strategy (1). (C and D) Sample trajectories obtained from RL for agents with one sensor (C) and two sensors (D) recapitulate experimentally
observed tracking patterns in A and B. (E, Left) Search paths executed by RL agents with a single sensor upon loss of contact with the trail. (E, Right) The
initial prior distribution (E, Bottom Right) over trail headings transforms into a bimodal posterior distribution (E, Top Right and E, Middle Right), which
drives the oscillatory pattern of casting. (F) RL agents with two sensors show a characteristic crisscrossing pattern close to the last detection point. The search
path is similar to the single-sensor agent at long distances (SI Appendix, Fig. S1A). (G) RL agents show a trade-off between tracking speed (rescaled by the
sector angle σ, sensor size a, and sampling frequency ω) and the probability of losing the trail entirely.

emergence of oscillations is then understood in terms of marginal
value theory (14, 15); we show using a minimal model of casting
(Materials and Methods) that the turning point of a cast occurs
when the marginal value of continuing on one side of the sector
(i.e., without paying the cost of traveling) is outweighed by the
probability of finding the trail on the opposite side.

We proceed now by establishing geometric limits on tracking
speed. A typical RL curve for the probability of losing the trail vs.
speed is shown in Fig. 1G. Its monotonicity epitomizes universal
limits that “staying on the trail” imposes on tracking speed. Intu-
itively, searching slowly reduces the distance between detections
(the interdetection interval [IDI]), decreasing the uncertainty in
the estimate of the trail’s heading and thus, the probability of
losing the trail. However, these benefits come at the cost of slow
forward progression along the trail. In contrast, moving quickly
reduces the detection rate, leading to longer IDIs, increased
uncertainty, and loss probability.

We quantify the above trade-off using simple scaling argu-
ments. Suppose the tracking agent has a sensor of size a, samples
at a frequency ω, and moves with a fixed forward speed v. As
shown in Fig. 2A, the angle subtended by the detector at distance
r from the last contact is a/r . The agent searching over an angular
sector then scans at a rate dφ/dt = ωa/r � ωa/vt . Integrating
the above expression for the angular rate, v

aω

∫
dφ=

∫
dt/t ,

we obtain the typical time for searching over a sector angle σ:
tc ∼ ω−1eσv/aω . The corresponding distance L∼ vtc is obtained
using r ∼ vt . The heading of the trail is known with uncertaintyσ,

which is the opening angle of the conical sector shown in Fig. 2A.
Uncertainty is expected to depend on the distance L′ from the
previous detection as σ(L′) = (L′/�)γ , where � and γ charac-
terize the statistics of trails (below and Fig. 2D). Importantly,
a stable strategy for long-term tracking requires that successive
IDIs should on average be equal (i.e., L= L′). Combining L=

vtc with L′ = σ1/γ� and the expression for tc , we finally obtain
an upper bound on the tracking speed v:

v1+γ

a�γω1+γ
= (ωtc)

−γ log(ωtc)≤ γ−1e−1. [2]

Its maximum vmax ∼ ω(a�γ)
1

1+γ defines the optimal stable track-
ing speed in terms of the tracker’s sensory parameters and trail
statistics. The basic element that leads to this bound is the
geometric factor 1/r that underlies searching over an angular
sector. The result from Eq. 2 that ωtc is of order one (e1/γ)
explains experimental observations (Fig. 1) that tracking animals
typically take only a few samples to reestablish contact with the
trail.

The above argument implies that tracking speed depends on
the trail statistics via the relation between uncertainty and the
distance between points of contact. We use ideas from polymer
physics to quantify how this relationship depends on geometric
properties of the trails. Specifically, we ask how detecting the trail
at a set of points r0, r1, r2, . . . (Fig. 2B) constrains the searcher’s
estimate of its future heading. We consider the case when the
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Fig. 2. History dependence and trail models. (A and B) Trail tracking naturally splits into distinct episodes punctuated by trail detections by the searcher. In
each episode, we propose that the tracker searches for the trail using an estimate of the trail’s heading updated based on the past points of contact with
the trail and a model of trail statistics. We affix a polar coordinate system with the origin at the most recent contact point and the azimuthal angle defined
relative to the estimated trail heading. The uncertainty σ fixes the angular width of the search. The searcher moves forward with a speed v while sampling
at a frequency ω. A sensor of size a spans a/r radians at distance r, which determines the rate at which the angular space is searched. (C) To estimate where
the trail is headed and its uncertainty from past contacts, the tracker can either use local anisotropy estimated from a single contact (C, Left) or extrapolate
from previous points of contact using a model of trail statistics (C, Center and C, Right). In the latter case, the most likely trail paths (dashed blue lines)
are similar to interpolated splines, which capture basic geometric notions of persistence in heading and curvature. (D) The uncertainty in trail heading (in
radians) as a function of the distance, L, between points of contact for the GWLC model of trails discussed in the text. λ is the correlation length scale of
the trail’s curvature. SI Appendix, Fig. S3C illustrates the various scaling regimes exhibited by the GWLC model. (E) The correlation between trail heading at
the most recent and second most recent points of contact for the GWLC model changes with the distance between these points, yet it is generally expected
to be negative. (F) The expected search distance, vtc, against the distance, L, between the previous two points of contact for a/λ = 0.1 and v/aω = 5, 6.25
(black and gray, respectively) (discussion above Eq. 2). The point of intersection with the 45◦ dashed line is the condition for a stable tracking strategy. The
gray curve corresponds to vmax beyond which tracking is unstable.

searcher keeps track of the two most recent points of contact with
perfect memory of their location. A more extended memory is
discussed further below; an imperfect memory adds to the un-
certainty and can be easily accommodated within the framework
developed below. Intuition for the two-point case is provided
by the familiar “curve” tool in graphical design software, which
draws a cubic spline through a set of prescribed points (Fig. 2C).
The tool captures the simple intuition that tangents to a curve
are continuous (i.e., the trail’s heading has local persistence),
which is a plausible, minimal assumption about trails. We show
in SI Appendix that cubic spline interpolation corresponds to
the most likely path (through a fixed set of points) in the so-
called worm-like chain (WLC) ensemble (originally introduced
for polymers) (16, 17). In this ensemble, the tangent direction
undergoes diffusion with rate κ, and the uncertainty is then σ =

(κL/3)
1
2 , which determines the two parameters: the scaling law,

γ = 1/2, and the correlation length scale, �= 3κ−1, in Eq. 2. Ac-
tual trails could be smoother and have a well-defined curvature
(the rate of change of heading) that persists on a characteristic
length scale λ. We capture this ensemble of curves by introduc-
ing two additional parameters: persistence length λ and typical
radius of curvature ξ (Materials and Methods). Uncertainty is
then given by σ ≈ L/2ξ (hence, γ = 1 and �= 2ξ) at distances
L< λ, while diffusive scaling is recovered at larger distances with
an effective diffusivity κ= 2λξ−2. This extended model defines
a generalized worm-like chain (GWLC) ensemble with cross-
overs across the various regimes (Materials and Methods). In
summary, the model leads to a “propagator,” which encodes how
information about past contacts is integrated to form an estimate
of the trail’s heading while taking into account geometric aspects

of trails. A general feature is that the headings at two consecutive
contacts are anticorrelated (Fig. 2E), which reflects the bending
of the spline relative to the chord seen in Fig. 2C. We emphasize
that although the general strategy of the agent depends on the
statistical properties of the trail ensemble, the specific actions
taken by the tracking agent along a particular trail, such as
reorientation based on the most likely trail heading, will depend
on the history of contact points via the propagator for the WLC
(or GWLC) model.

Why and when do searchers need to cast? The question stems
from our previous result that a few samples are typically sufficient
to reestablish contact with the trail. To address it quantitatively,
we consider again the setup of Eqs. 1 and 2. The nondetection
probability averaged over the ensemble of trails that pass through
past contact points is

ΓC = 〈e−ω
∫
C

ds
v
Ia (r(s),y(s))〉y , [3]

where s parametrizes the searcher’s path C and the Boolean
indicator function Ia measures if the agent at r(s) is within
sensing range a of the trail at y (i.e., the integral is the time
spent in contact with the trail). Numerical simulations of the
search show a power law scaling regime for ΓC , which is cut off at
short distances by the initial surge and at long distances by trails
escaping out of the casting envelope (Fig. 3 A–C). We proceed
to explain these three regimes shown in Fig. 3B. Intuitively, at
short radial distances r < a/σ ∼ v/ω (the latter from Eq. 2), the
sensor covers the entire sector of likely headings, the searcher
can just move forward, and ΓC ∝ e−ωr/v (Fig. 3B). Casting sets
in if the searcher reaches, without detection, a distance r �
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Fig. 3. The role of casting in trail tracking. (A–C) The probability of not detecting the trail at distance L decays exponentially during the initial forward
surge (red) and as a power law during casting (blue) over a conical envelope. The searcher often finds the trail within the initial surge (mean in B), whereas
casting determines the probability of losing the trail (determined by the upper cutoff) if the trail is not found during the surge. Beyond a characteristic
length scale �, the detection rate becomes negligible (green region in B) as trails initially well inside the casting envelope escape out of the envelope (C).
(D and E) The casting policy obtained from Bellman optimization. The specific casting strategy depends on trail statistics, shown here for diffusive and
curvature-dominated trail ensembles (scaling exponent γ = 0.5, 1.0) in blue and red, respectively. Note the increasing casting angle and the slowing down
of the agent at r ≈ � (E). (F) The trade-off between the probability of missing the trail for fixed 〈L〉 and searcher speed v.

a/σ (i.e., when the sector is not fully covered any longer by
the sensor of size a). The sector geometry in Fig. 3A implies
that the length of a single casting sweep is proportional to r.
A fixed forward speed then implies that the distance between
successive encounters with the trail also scales with r. Hence, the
number of times the searcher crosses the trail (and thus, the time
spent on the trail) per unit radial distance decreases as 1/r . This
1/r scaling in the overlap then leads to a logarithmic integral
in the exponent of Eq. 3 and thus, a power law regime ΓC ∝
r−β during casting. The optimal exponent β∗ depends on the
statistics of the trails, yet it generally satisfies β∗ > 1 (β∗ = 1.63
for the curvature-dominated GWLC model) (Eq. 19). Since ΓC is
a cumulative distribution, β > 1 implies that the mean distance
is indeed determined by the lower cutoff (i.e., the trail is typically
found in a few samples, as estimated in Eq. 2). However, the
power law decay implies that casting phases are frequent and can
span up to the upper cutoff where all aspects of trail statistics and
search geometry come into play, as discussed below.

How should an agent perform sustained casts so as to mini-
mize the probability of losing the trail while maximizing tracking
speed? To go beyond the above scaling arguments, we now con-
sider the geometry of sector search in detail. The searcher’s path
is parameterized by the sequence of turning points of its casting
trajectory {rk , θk} (in polar coordinates with respect to the most
recent point of contact), which are to be optimized. We maximize
the average tracking speed L/T , where L and T are the distance
and duration between the most recent and the subsequent point
of contact with the trail, respectively. As discussed previously,
the uncertainty estimated for a bout of sector search depends
on the IDI. To constrain the uncertainty, we therefore constrain
the average, 〈L〉. Hence, we consider the following optimization
problem:

Vv ,Λ = max
{rk ,θk}

[〈
L

T

〉
− Λ 〈L〉

]
, [4]

where Λ is the Lagrange multiplier enforcing the 〈L〉 constraint.
The turning points and the searcher’s speed v affect the probabil-
ity of detecting the trail in a single cast, which is implicit in the ex-
pectation in Eq. 4. We solve the Bellman equation corresponding
to the above optimization problem using dynamic programming

(Materials and Methods), which sequentially optimizes for the
turning points by considering at each step the two possibilities
that either the trail is detected during the cast or the agent
advances to the next cast. The probabilities for these two events
are controlled by the nondetection probability given by Eq. 3.
In the event of no detection, the estimate of the trail’s heading
is updated according to Eq. 1. The resulting optimization yields
a search strategy with an increasing sequence of casting angles
(Fig. 3D). The specific casting strategy depends on how trails
meander and curve (Fig. 3E). The choice of v controls the trade-
off between the tracking speed and the probability of losing the
trail entirely (Fig. 3F). Independent of the choice of v and 〈L〉,
azimuthal excursions are by and large conical but extend dramati-
cally (Fig. 3 D and E) when trails that were initially inside the cone
escape from it with high probability (Fig. 3C). This happens at a
distance that scales with � but also depends on the sector enve-
lope, which in turn, depends on σ (recall that � is the correlation
length of the trail heading). Intuitively, at length scales ∼ �, the
trail’s heading decorrelates from its initial value, the relevance of
information on past detections has expired, the trail is effectively
lost, and it is optimal to stop progressing forward.

Experimental Tests
A number of transformative experimental assays are suggested by
our theoretical framework. The broad theme is whether and how
animals adapt their behavior to the statistics of trails. For field
experiments, it would be informative to measure the statistics
of natural trails, analogous to the statistics of natural images
that has brought insight into the adaptation of visual responses
(18–21). Specifically, one can measure the autocorrelation of
local heading and curvature of natural trails, which would test
the validity and fix the parameters of our WLC-type models. In
laboratory settings, the statistics of trails can be controlled by
varying persistence or curvature or using broken trails (Fig. 4A).
The general issue of adaptation is articulated in the following
four specific questions that stem from our work.

First, how long after the loss of contact do animals “give
up” tracking? Our prediction is that they should when they get
beyond the characteristic correlation length of the trails. At this
point, the value of past information has expired, and it is best to
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Fig. 4. Behavioral assays to dissect trail-tracking strategies. (A) A tracker executing a sector search often maintains continuous contact with the trail (A,
Left). Extended sector searches can instead be systematically elicited using broken trails (A, Right). The subsequent search envelope’s orientation and width
relative to past contact points inform the tracker’s internal estimate and uncertainty σ of the trail’s heading. (B) We propose dashed trails as an assay to infer
how a tracking animal integrates past information. The distance between dashes forces contact points to be separated by at least δL, and the subsequent
search sector yields an estimate of σ. (C) Our theory predicts that the most likely trail heading φML is proportional to the angle ψ between the line segments
joining points of contact (red dots), with a prefactor that depends on the distance δL between the two most recent contact points, the trail model and
memory. (D) Automated behavioral tracking of rodents on a treadmill allows control of tracking speed and trail statistics (5, 22). (E) The mean distance to
the trail with speed in simulations of sector search (as in A, Left), which recapitulates the linear relationship (dashed line) observed in experiments with rats
(5). We use a sector search strategy, where the longitudinal speed v is fixed and the tracker rapidly casts within a conical envelope (SI Appendix, Fig. S4A
shows a sample trajectory in a single bout). For each v, we simulate 100 trials, where each trial consists of successive 10 successful contacts with the trail.
Trails are generated from the GWLC ensemble with κ = 0, ξ/λ = 3, a/λ = 0.1. Error bars are one SEM.

turn back or start a new search. This prediction can be tested by
varying trail statistics, interrupting the trails, and measuring when
animals give up.

Second, does the amplitude of casting depend on the statistics
of trails and the IDI? We predict that it should, and the specific
quantitative relationship is a signature of the underlying predic-
tive model employed by the animal (Fig. 4B). Our prediction
should be contrasted with the nonadaptive casting envelope as-
sumed in ref. 5. The IDI can be experimentally manipulated by
generating dashed trails as shown in Fig. 4B, which forces the
animal to detect the trail sporadically yet at controllable intervals.
It would be particularly informative to verify whether or not
animals include curvature in their estimates of the trails’ future
heading or limit to persistence.

Third, what is the memory of past trail contacts? Experiments
with forked trails (5) show that rats exhibit a predictive compo-
nent, suggesting a memory that extends over the recent past. Our
theory posits that the tracker remembers (at least) the two most
recent detection points. For the case of two-point memory, we
predict the sector search is oriented along the line connecting
those two points. If more than two points are remembered,
the expected heading deviates from this line (by an angle that
we calculate explicitly in SI Appendix) as illustrated in Fig. 4C.
Note that the heading is not an average of the past headings, as
assumed in ref. 5, and actually depends on the IDI between recent
contacts; this prediction could again be tested by using curved,
dashed trails as in Fig. 4B.

Fourth, does the tracking speed vary with the typical IDI,
reducing with increased uncertainty as predicted by the speed–
accuracy trade-off Eq. 2? This can be tested by varying the speed,
for instance, of the treadmill in ref. 5 (Fig. 4D) and measuring
tracking accuracy. Available data for three speeds in ref. 5 are
captured by our theory (Fig. 4E), which highlights the importance
of revisiting those pioneering experiments and measuring addi-
tional quantities, namely the explicit prediction in Fig. 3F.

Conclusion
In conclusion, we show that an optimized sector search strategy
based on the memory of two or more recent detection events

yields an oscillatory search path with increasing amplitude that
naturally unifies the observed low-amplitude “zigzagging” and
larger-amplitude “casting” behaviors into the same quantitative
framework. This framework elucidates the geometric and com-
putational constraints faced by tracking animals and identifies
general features of the algorithms that efficiently solve the task,
which can also be implemented for robotic applications. Insights
and predictions developed here impact and should inform the
design and analysis of future animal behavior experiments.

While the computational constraints discussed in this work
apply generally, animals may face an additional set of species-
specific physical and physiological constraints that influence
aspects of their trail-tracking strategies. For example, inertial
effects and gait constraints will affect the rate at which an animal
sweeps across a sector and consequently, its speed selection.
Further flexibility is offered by extra degrees of freedom in the
sensorimotor apparatus, such as modulation of the inhalation
rate or independent control of segments of an ant’s antennae.
In our model, the sensorimotor mechanism impacts the strategy
via the probability of detection of the trail from the animal’s
sensors, which we have assumed to be fixed. Indeed, without
additional trade-offs, our model implies that the optimal strategy
is to simply pick the parameters that maximize the probability of
detection (i.e., the maximal sensor size and sampling frequency).
Physiological constraints may impose trade-offs (e.g., between
the strength and rate of inhalation), which then lead to an
altogether new dimension in the animal’s decision making. We
postpone a detailed examination of these trade-offs and how they
influence the trail-tracking strategy to future work.

We have assumed that the searcher’s behavior is guided by a
model of continuous trails and investigated how an animal should
behave in the presence of a sporadic break (a common pertur-
bation in experiments). Recurrent breaks in the trails can be
incorporated into the decision-making framework by introducing
an additional term in the exponent of Eq. 3 for the presence or
absence of a trail. When averaged over the trail ensemble and
the statistics of brokenness, the effect of broken trails appears
as a reduced detection rate if the breaks are much shorter than
the correlation length scale �, and the general conclusions remain
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unaffected. However, if the breaks last longer than �, the trail
is “patchy,” with each patch containing little information about
the location of the next patch. In such a scenario, a strategy
that employs biased random exploration or foraging may prove
optimal.

Materials and Methods
An RL Framework for Trail Tracking. Trail tracking naturally splits into discrete
episodes where after each loss of contact, the tracker searches and attempts
to reestablish contact with the trail. We use RL to identify optimal search
strategies for each episode and explore how factors such as sensory config-
uration or movement constraints influence the strategy. The task is a one-
dimensional search over angular space θ, the geometry of which is illustrated
in Fig. 2A. The tracker controls its tangential speed u(t) ≡ rθ̇, while its radial
speed v is kept constant. For simplicity, we focus here on the configuration
featuring a single sensor of size a sampling with a Poisson frequency ω. The
generalization to two sensors is found in SI Appendix.

In each episode, the (Bayesian) agent maintains a posterior probability
distribution function (PDF) P(φ) over possible trail headings, which is con-
tinuously updated based on the locations already visited until the trail is
recontacted. The agent’s strategy of decisions about its future trajectory
a priori depends on the full high-dimensional distribution P(φ), which is
difficult to learn. To circumvent this issue, we formulate the search task using
a tractable parametrization of the posterior as a mixture of K Gaussian basis
functions:

P(φ) =
K∑

i=1

qiBi (φ) , Bi(φ) = s−1
ϕ

( |φ − μi|
s

)
, [5]

where ϕ is the standard normal PDF and the qi ’s are normalized weights.
The posterior is encoded by the weights q, the posterior probabilities of the
latent states given the agent’s history. The corresponding vector is lower
dimensional and yields to standard RL methods. For simulations in the text,
we used K = 3; equal initial weights; μ1, μ2, μ3 = −σ, 0,σ; and s = 0.5σ.
These values were chosen so that the prior has mean zero and SD ≈ σ. Using
K > 3 led to similar strategies of search, but training was slower. We define
the detection probability given latent state i for an agent at r as

γ̄i(r) =
∫

γ(r, φ)Bi (φ) dφ, [6]

where γ(r,φ) is the detection probability of finding a trail headed
along φ if the searcher is at r. We assume a Gaussian detection kernel
of size a, with distance measured to the closest point on the trail:

γ(r, φ) = e−r2 sin2(θ−φ)/2a2 ≈ e−r2(θ−φ)2/2a2
, where we have used the

small-angle approximation. Conditional on no detection at r, Bayes’ rule
yields q̇i = −ωqi(γ̄i(r) − γ̄(r)), where γ̄ =

∑
i qiγ̄i is the total probability of

detection. From Eq. 6, we have

γ̄i(r) =
√

π

2

σr

σ′
r
ϕ

(
θ − μi

σ′
r

)
, [7]

where σr = a/r and σ′
r =

√
σ2

r + s2.
We use a discount rate λ and provide a reward as discussed below, after

Eq. 8. Training is performed in an episodic fashion with each episode lasting
time T. The kinematic variables are updated with time step dt, and actions
are taken with time step dtact ≥ dt. Movement constraints are imposed by
restricting the set of actions to three values, u/aω ∈ {−α, 0,α}. The state
space has four dimensions: r, θ, − ln q1/q2, and − ln q3/q2. We discretize
our state space using a nonoverlapping tile coding scheme (23). We refer
to SI Appendix for hyperparameter values, details about the state space
architecture, and the case of two sensors.

We use the SARSA (state-action-reward-state-action) Q-learning algo-
rithm (23), which learns the so-called Q function, that is the value function
for each action in a given state:

Qπ(r, q, u) = γ̄(r)dt+ [8]

[1 − (λ + γ̄(r))dt] Vπ (r + vdt, q + q̇dt)

where Vπ(r, q) =
∑

u Qπ(r, q, u)π(u|r, q), and the index π highlights the
dependence on the probabilistic policy π(u|r, q). The above equation differs
from the standard SARSA update by the addition of γ̄dt in the discount
term, which is due to our formulation of the search as a continuing process
conditional on no contact with the trail. Alternatively, one may provide
a unit reward when the trail is found, stop the episode, and start over.

However, the credit assignment problem in goal-oriented tasks makes the
training (Eq. 9 hereafter) problematic, even though the final optimal policy
is equivalent (e.g., ref. 24). Our formulation circumvents both issues by 1)
giving a local reward γ̄dt rather than a final one, which addresses the credit
assignment, and 2) including the detection probability γ̄dt into the discount
rate to account for the condition of no contact.

To learn the Q function as defined in Eq. 8, we use a “softmax” training
policy: that is, ln π(u|r, q) ∝ Q̂(r, q, u)/Texplo, where Q̂ is the current estimate
of the Q function and Texplo is a “temperature” parameter that is annealed
as training progresses to allow for sufficient exploration of actions. Given
an action u at state (r, q) and a subsequent action u′ at state (r′, q′), Q̂ is
updated during training as

Q̂π(r, q, u) → Q̂π(r, q, u)(1 − η)+ [9]

η
(
γ̄(r)dt + (1 − (λ + γ̄(r))dt)Q̂π(r

′, q′, u′
)
)

where η is the learning rate. The function Q̂ obtained at the end of the
training period yields a search strategy as π∗(r, q) = arg maxu Q̂(r, q, u).

We applied the algorithm just described for a range of values of v, α,
and d (half the distance between sensors for the two-sensor case). For each
parameter set, we obtain a search strategy, the corresponding probability
ΓC(T) of missing the trail in time T, and the expected number of samples
to find the trail. Comparing ΓC(T) on a test set for different numbers
of training episodes (SI Appendix, Fig. S1B) shows that nontrivial learning
takes place, typically saturating at ∼104 training episodes.

Casting in a Minimal Model of Sector Search. In order to establish the relation
between casting and marginal value theory, here we propose a minimal
model of sector search. The model lends to an analytical solution, which
allows us to quantify how the frequency of casting and the efficiency of
search depend on the movement and computational constraints imposed
upon the tracker.

We consider the same setting as the above episodic RL framework, where
the tracker is searching for the trail over a sector after losing contact with it.
To focus on casting, we analyze the behavior of the searcher after an initial
forward excursion along the most likely heading. This surge decreases the
probability weight q of the mode at φ = 0 and yields a symmetric bimodal
posterior distribution concentrated at the two modes, ±φ0 (typically
φ0 ∼ σ). The resulting model is equivalent to Eq. 5 with K = 2, μ1 =

−φ0, μ2 = φ0, and s small. The searcher moves radially as r(t) (fixed),
controls its tangential speed u = rθ̇, receives a unit reward when it finds
the trail, and incurs a movement cost per unit time μu2/2, where μ sets the
movement constraint. The reward and cost are discounted at a rate λ. The
two-dimensional state space of the agent consists of θ and the probability q
of finding the target at φ0 (the probability is 1 − q at −φ0). For full details,
we refer to SI Appendix.

The above model is exactly solvable. An optimal searcher exhibits oscil-
lations between −φ0 and φ0 (casting) until it finds the trail (SI Appendix,
Fig. S2A). After an initial transient, the searcher traverses a loop in state
space (θ, q), alternating between sampling at −φ0 or φ0 and casting to the
other side:

(φ0, q∗
s )

cast−−→(−φ0, q∗
s )

sample−−−−→ (−φ0, 1 − q∗
s )

cast−−→ [10]

(φ0, 1 − q∗
s )

sample−−−−→ (φ0, q∗
s ),

where q∗
s is the optimal switching probability at which the searcher stops

sampling at φ0 and traverses to −φ0. The speed of traversal from φ0 to −φ0

is determined by balancing the cost of traversing quickly and the potential
value at −φ0 discounted due to the limited time horizon.

Intuitively, the searcher casts when the marginal value of continuing to
sample at φ0 is just outweighed by the marginal value that the searcher
receives if it stops sampling, traverses from φ0 to −φ0, and samples at
−φ0. Balancing the marginal value of these two possibilities then yields the
optimal switching probability q∗

s . For small q∗
s , we derive (SI Appendix)

q∗
s ≈

λ

1 + λ

ζ2

1 + ζ + (1 + λ)ζ2 − ζ3
, [11]

where ζ ≡ 1 −
√

2φ2
0μλ(1 + λ) > 0. When ζ < 0, the movement cost out-

weighs the value the agent may receive, and the optimal strategy is to
simply not move. q∗

s get smaller, and thus, the searcher casts less frequently
with increasing time horizon (λ � 1) or movement costs (0 < ζ � 1). The
probability of not detecting the trail after time t is given by

ΓC(t) � e
−I

∫ t
t0

ds
r(s) , [12]
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where I is interpreted as the rate of information acquisition. Its dependence
on μ, λ, and φ0 is shown in SI Appendix, Fig. S2B. As expected, increas-
ing movement cost (decreasing ζ) decreases how quickly information is
acquired. Similarly, a large time horizon (λ small) makes the agent sample at
±φ0 longer and cast slower, decreasing the rate of information acquisition.
For a constant radial speed v, the probability ΓC(t) � t−I/v decreases as a
power law, which arises quite generally from the sector search geometry as
discussed in the text.

Trail Statistics. If an agent makes contact with the trail at two points
separated by distance L, statistical and geometric information is encoded
in the propagator P(φL,φ0), where φL, φ0 are the trail headings at the two
points (measured relative to the line joining them). If H points of contact are
remembered, then the propagator can be used to compute the posterior dis-
tribution of the heading: P(φ) =

∫
DφiP(φ|φ1)P(φ1|φ2) . . . P(φH−2,φH−1).

We introduce an ensemble of trails (which we call the GWLC ensemble)
that have persistence in heading and curvature, quantified respectively by
the parameters κ and λ (distinct from the discount rate used for RL) and a
typical radius of curvature, ξ. Typical samples of trails from this ensemble are
presented in SI Appendix, Fig. S3A. The WLC ensemble (16, 17) previously
introduced for polymers is a special case with ξ = ∞.

The propagator P(φL, φ0) takes into account all the trails constrained to
pass through two contact points, weighted by their probability. We affix
a coordinate system, where the line joining the two contact points is along
the x axis. Specifically, the trail’s y coordinate, yx , satisfies the constraint y0 =

yL = 0; the small-angle approximation is used so that ẏx = φx ; and the trail
has end-point headings φ0,φL. We define

P(φL, φ0) = Z−1
∫

DφxDχxe−E({φx ,χx}), [13]

where Z is a normalization constant, and the integral is over all possible
headings and curvatures φx , χx at the various positions x. The action E of a
path is given by

E({φx , χx}) =
1

2κ

∫ L

0
dx(φ̇x − χx)

2 [14]

+
λξ2

4

∫ L

0
dx

(
χ̇x +

χx

λ

)2

+
ξ2χ2

0

2
.

The model Eq. 14 is a Gaussian process. Since symmetry dictates that
〈φL〉 = 〈φ0〉 = 0, it follows that P(φL, φ0) is defined entirely by the variance
σ2(L) ≡ 〈φ2

L〉 = 〈φ2
0〉 and by the correlation ρ(L) ≡ 〈φ0φL〉/σ2

L .
We present the full calculation of σ(L) and ρ(L) in SI Appendix. In

summary, the first integral over χx can be performed using the Gaussian
integral formula and leads to an effective action in φx . The Euler–Lagrange
equation of this effective action then yields extremal paths (“splines”) that
minimize the effective action (SI Appendix has details). The splines have the
form

yx = a0(L − x) + aLx + c0
(L − x)3

6
+ cL

x3

6
[15]

+ λ
2d0e−(L−x)/λ

+ λ
2dLe−x/λ,

where the constants in the above equation are set so that y0 = yL = 0 and
can be expressed in terms of φ0,φL. SI Appendix, Fig. S3B shows the splines
between contact points spaced at increasing intervals. Plugging Eq. 15 in the
effective action, we obtain

σ
2
(L) =

κΩ2λ2

L

b1 + b2

2
, ρ(L) =

b2 − b1

b2 + b1
, [16]

where the two functions b1 and b2 are

b1 =
L2

2
−

λL

2Ω2V2

(
1 − e− L

λ

)
[17]

b2 =
L2

6
−

λ(L + 2λ)

2Ω2V2L

[
(L − 2λ) + e− L

λ (L + 2λ)
]

,

and V =
√

κξ2λ/2, Ω2 = λ−2 + V−2. The variance σ(L) and the correlation
ρ(L) are plotted in SI Appendix, Fig. S3 C and D. Three distinct regimes are
apparent. For L/λ � 1, we can appproximateσ2(L) ≈ κL/3 + L2/4ξ2, which
reflects diffusive ∝ L and curvature-dominated ∝ L2 scalings. When diffu-
sion dominates, ρ(L) = −1/2, whereas ρ(L) ≈ −1 when curvature domi-
nates. The perfect anticorrelation in the curvature-dominated regime is
intuitive as the line joining the two points of contact can be viewed as the

chord of a circle with radius ξ, whereas σ(L) = L/2ξ is the angular deviation
of the trail around this chord. When L/λ � 1, the heading is randomized
over many correlation lengths, and the diffusive scaling σ2(L) ≈ 2λL/3ξ2 is
recovered.

While P(φL|φ0) (the interpolation model) is required to integrate
past information, search strategies also require the forward propagator
P(φL, yL|φ0), which keeps track of trail headings and locations while the
agent searches for the trail. The methods described above can be used
again (SI Appendix has details) to yield extremal paths as Eq. 15 and the
three quantities 〈φ2

L〉fwd, 〈y2
L 〉fwd, 〈φLyL〉fwd. These quantities fully describe

P(φL, yL|φ0). We validated our interpolation model Eq. 16 and the forward
model using numerical simulations (SI Appendix, Fig. S3 E and F).

The Nondetection Probability during Surge and Cast. We introduce a sector
search strategy that allows us to quantify the nondetection probability
taking into account the full dynamics of the trails and yields intuition on
the factors that contribute toward losing the trail entirely. We suppose the
radial speed v is fixed and the tangential speed u � aω. In other words,
the agent casts rapidly within a conical envelope of semiaperture angle
σΘ0, where σ is the prior uncertainty of the trail’s heading and Θ0 � 1
(SI Appendix, Fig. S4A). To simplify the presentation, we assume curvature-
dominated trails [i.e., σ(L) = L/2ξ], although the arguments below are
general.

The rapid casting limit u/aω � 1 allows us to compute the nondetec-
tion probability at distance r from the most recent contact point defined
by Eq. 3:

ΓC(r) = 〈e−ω
v

∫ r
0 dxγ(x,y(x))〉y(x), [18]

where the expectation is over the full ensemble of trails {y(x)} that pass
through past detection points. Here, we provide intuition for the detection
rate ωγ(x, y(x)) and refer to SI Appendix for full details. For small x (i.e., x �
a/2σΘ0), γ(x, y(x)) = 1 for most trails as the sensor size a spans the entire
casting envelope 2σxΘ0. In the casting regime (x � a/2σΘ0), since the time
spent on the trail in a single cast is a/u, the probability of nondetection
per crossing is e−aω/u. After n crossings, the nondetection probability is
then e−naω/u. As the agent moves a distance dx in the radial direction, it
crosses the trail n = udx/2vσxΘ0 times [i.e., γ(x, y(x)) = a/2σxΘ0 ], which
is independent of u. From Eq. 18, these relations yield an exponential ΓC(r)
during the initial surge followed by a power law, r−β with exponent β ≡
aω/2σvΘ0. This heuristic argument aligns well with the results of numerical
simulations in SI Appendix, Fig. S4B.

The spline formulation of the GWLC yields a geometric picture of the
dynamics. Intuitively, the nondetection probability (and thus, the posterior
probability from Eq. 1) is large if the trail has a large probability of escaping
the casting envelope before it is found by the tracker. In order to “escape”
the casting envelope, the trails that are initially well within the casting
envelope have to bend significantly. This bending incurs a cost in the action
Eq. 14, which reduces with increasing r. The nondetection probability condi-
tional on initial trail heading, ΓC(r|φ), flattens out (i.e., the detection rate
vanishes) when a significant fraction of trails escapes the casting envelope,
including trails with initial heading φ = 0 (Fig. 3C).

This geometric picture yields a length scale Lin, which is the distance
at which the trails initially along the most likely heading φ = 0 escape
the casting envelope. For curvature-dominated trails, escaping trails should
deviate by an angle σΘ0 � Lin/2ξ, which gives Lin � 2σξΘ0. The probability
of losing the trail can then be estimated as εin = ΓC(Lin). An additional
contribution to the flattening of ΓC(r) comes from the trails that are headed
outside of the cone |φ| > Θ0 even before reaching Lin. The probability ΓC(r)
would then flatten out at a different length scale Lout, where ΓC(Lout) =

εout. The relative contributions of the two mechanisms are discussed in detail
in SI Appendix, and they are validated by using numerical simulations as
shown in SI Appendix, Figs. S4C and S5B.

Due to the power law tail for ΓC(r) with exponent β, the mean distance
to find the trail, r̄, is determined by the upper or lower cutoff for β < 1
or β > 1, respectively. Since the upper cutoff is much larger than the lower
cutoff, it is more convenient for the tracker to use β > 1. By using the self-
consistency condition σ = r̄/2ξ in the curvature-dominated regime and the

relation r̄ � vω−1
(

1 + e−β/(β − 1)
)

, we obtain for the maximum speed

v∗
= ω

√
aξ/Θ0 max

β

(
β +

βe−β

(β − 1)

)−1

� 0.47ω
√

aξ/Θ0, [19]

where the maximum occurs at β∗ = 1.63 (SI Appendix, Fig. S5C). The mean
number of samples to find the trail at this optimum is ≈ 1.3, indicating that
the optimal strategy is for the agent to move slow enough that it typically
finds the trail within one or two samples.
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Intuition for the above results holds quite generally, including for other
statistical ensembles of trails and for nonconical casting envelopes. The latter
is relevant because we expect that a slowdown in the radial direction and
a widening casting envelope may increase the likelihood of finding the
trail. Relaxing the constraints of fixed radial speed and conical envelopes
constitutes the aim of the next section.

Bellman Optimization of the Casting Strategy. Our final step is to formulate
the problem of optimizing the casting strategy. The geometry of the search
is shown in SI Appendix, Fig. S6A. To simplify, we parametrize the path
by the set of turning points {ri , θi}. We assume a fixed speed v (note
that the average radial speed depends on the strategy), which is set later
based on the probability of losing the trail. As discussed in the text, we
optimize the average tracking speed, 〈L/T〉, after constraining the IDI, 〈L〉,
using a Lagrange multiplier Λ (Eq. 4). This optimization can be recast as a
Bellman-type dynamic programming problem by breaking the problem up
into discrete steps, each corresponding to a cast from {ri , θi} → {ri+1, θi+1}
(denoted {r′, θ′} → {r, θ} below for conciseness):

V(r′, t′, P′
(φ)) = max

r,θ

[(
r

t
− Λr

)
(1 − Γ̄r,θ) + Γ̄r,θ V (r, t, Pr,θ(φ))

]
, [20]

where the required reward function in Eq. 4 is Vv,Λ = V(0, 0, P0(φ)) with
the Gaussian normal prior P0(φ) = N (0, σ2). The first term in the square
bracket returns the reward if the trail is found (weighted by the detection
probability 1 − Γ̄r,θ), while the second term advances to the next cast if
detection failed. The Bellman equation thus relates V before and after a
cast by updating the current state variables, r′, t′, P′(φ). The time elapsed is
updated as t → t′ + (r − r′ + 2r|θ|)/v, where we approximate |θ′ − θ| ∼
2|θ| for simplicity. The prior P′(φ) is updated using Bayes’ rule Pr,θ(φ) =

Γ̄r,θ(φ)P′(φ)/Γ̄r,θ , where Γ̄r,θ(φ) is the nondetection probability given the
initial trail heading φ and Γ̄r,θ = 〈Γ̄r,θ(φ)〉φ is the normalization.

It remains to calculate Γ̄r,θ(φ), which depends on the forward model
of the trail. We consider generally that the trail’s azimuthal position ex-
pands as σfwd(r) [i.e., a trail initially headed along φ is located at the

azimuthal position, φ + Δφ, where Δφ ∼ N (0, σ2
fwd(r)) ]. For the GWLC

model, we show in SI Appendix that σfwd(r) = σ(r), where σ(r) is given
in Eq. 16. Since the time spent on the trail within the casting enve-
lope in a single cast is a/v, we have Γ̄r,θ(φ) = e−aω/v if |φ + Δφ| < θ

and equal to unity otherwise. Since Δφ is normal distributed, we have

〈1(|φ + Δφ| < |θ|)〉Δφ = Φ
(

θ−φ
σfwd(r)

)
− Φ

(
−θ−φ
σfwd(r)

)
, where Φ is the nor-

mal cumulative distribution function. We finally approximate Γ̄r,θ(φ) ≈
e− aω

v 〈1(|φ+Δφ|<|θ|)〉Δφ and compute the expectation over φ in Γ̄r,θ nu-
merically. The previous approximation greatly simplifies the optimization as
P(φ) is then a sufficient statistic for past measurements (thus allowing the
decomposition in Eq. 20) and yet, captures the effect of the trail’s widening
trajectory on the optimized casting strategy.

At each casting step, we optimize (using standard black box optimization
methods using the SciPy library in Python) for Δr = r − r′ > 0 and θ by
expanding Eq. 20 two steps further into the future. The optimization then in-
volves six variables, the immediate pair Δr, θ and the subsequent two pairs.
The optimized immediate pair is then used for updating as detailed above,
and the process is repeated. Optimizing more than two steps did not yield
different results as the Γ̄r,θ factors introduce an effective planning horizon,
effectively suppressing contributions from future rewards beyond two steps.
For less than two steps, optimization is “greedy,” and the corresponding
landscape was found to have a qualitatively different, shallow landscape
around the optimum. After completing the optimization procedure, the
constraint of fixed 〈L〉 is imposed by varying v and the Lagrange multiplier
Λ (SI Appendix, Fig. S6B).

Data Availability. There are no data underlying this work.
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