NDT Plus (2009) 2: 104-110
doi: 10.1093/ndtplus/sftn203
Advance Access publication 15 January 2009

In-Depth Clinical Review

NDT™

Nephrology Dialysis Transplantation

Peritoneal function in clinical practice: the importance of follow-up
and its measurement in patients. Recommendations for patient
information and measurement of peritoneal function

Annemieke M. Coester!, Watske Smit!2, Dirk G. Struijk!?> and Raymond T. Krediet!

!Division of Nephrology, Department of Medicine, Academic Medical Centre University of Amsterdam and 2Dianet Foundation,

Amsterdam, The Netherlands

Abstract

A review is given on peritoneal function, especially ultra-
filtration and ultrafiltration failure followed by recommen-
dations on how to translate pathophysiology into clinical
practice. The subsequent consequences for management of
peritoneal membrane function and for patient information
are also included.
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Introduction

The survival of peritoneal dialysis (PD) patients, especially
non-diabetics, is superior to that of haemodialysis (HD) pa-
tients during the first years of PD [1,2]. This is probably
due to a better preservation of residual renal function [3,4].
The peritoneum is a biological membrane, in which alter-
ations can develop in the long term in some patients. These
may influence the initial survival advantage. The major
morphological alterations include loss of mesothelial cells,
neoangiogenesis and vasculopathy, and also submesothelial
and interstitial fibrosis [5—8]. Ultrafiltration failure is the
most important functional abnormality. This may lead to
hypervolaemia, an important risk factor for cardiovascular
death.

The objectives of the present review are to present a
compact survey of our current knowledge on peritoneal
function, and to give recommendations on how to trans-
late pathophysiology into clinical practice. The following
subjects will be discussed: physiology of peritoneal fluid
transport, mechanisms of ultrafiltration failure, ultrafiltra-
tion failure during peritonitis and in long-term PD, defini-
tion and detection of ultrafiltration failure, the measurement
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of peritoneal transport and reasons for elective discontinu-
ation of PD. Also recommendations for patient information
and management of peritoneal membrane function will be
given.

Physiology of peritoneal fluid transport

Fluid transport during PD is determined by hydrostatic and
osmotic pressure gradients, and also by uptake from the
peritoneal cavity into the lymphatic system. Ultrafiltration
in peritoneal capillaries (transcapillary ultrafiltration rate)
is dependent on the water permeability (hydraulic perme-
ability) of the peritoneum, the surface area for ultrafiltra-
tion and on the hydrostatic, colloid osmotic and crystalloid
osmotic pressure gradients. Blood pressure in peritoneal
capillaries averages 17 mmHg, but may be variable. The
intraperitoneal pressure during CAPD averages 8 mmHg
in the supine position [9], but can increase to 20 mmHg
during walking [10]. The intraperitoneal pressure is also
influenced by the dialysate volume [11]. The colloid os-
motic pressure in peritoneal capillaries averages 21 mmHg
[12]. The protein concentration in the dialysate is so low
that its influence on the pressure gradient can be neglected.

The crystalloid osmotic pressure gradient is especially
determined by the glucose concentration in the dialysis so-
lution. The efficacy of glucose as osmotic agent is depen-
dent on the resistance of the peritoneal membrane to its
transport. This resistance is expressed as the reflection co-
efficient (sigma). Sigma can vary between 1 (no passage,
ideal semipermeable membrane) and O (free passage, so no
osmotic effect of glucose). One mosmol/kg H,O induces
an osmotic pressure of 19.3 mmHg when the reflection co-
efficient equals 1. The peritoneal reflection coefficient of
glucose averages 0.03 [13]. The various pressure gradients
are summarized in Table 1.

The peritoneum is a heterogeneous dialysis membrane
consisting of different structures, that is the mesothelium,
interstitial tissue and the endothelial cells of the microvas-
cular wall. The latter is the main barrier for peritoneal fluid
transport. Small interendothelial pores are most important
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Table 1. Pressure gradients across the peritoneal membrane during dialysis
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Pressure in peritoneal

Pressure in the filled Pressure gradient

capillaries peritoneal cavity
Hydrostatic pressure (mmHg) 17 8 (recumbent) 9
Colloid osmotic pressure (mmHg) 21 0.1 -21
Osmolarity (mosmol/kg H,O) 305 347 (1.36% glucose)

Max. crystalloid osmotic
pressure gradient (mmHg)

Max. net pressure gradient (mmHg)

486 (3.86% glucose)
1.36% glucose (347 — 305) x 0.03 x 19.3 =24
3.86% glucose (486 — 305) x 0.03 x 19.3 =105
122 (1.36% glucose)

932 (3.86% glucose)

The reflection coefficient for glucose is 0.03.

2These pressure gradients decrease during the dwell due to glucose absorption (61% per 4 h on average).

for the transport of fluid and solutes according to the gen-
erally accepted three-pore theory. The number of large in-
terendothelial pores is so small that their contribution to
fluid transport can be neglected. Free water transport, that is
water transport without solute transport, occurs through en-
dothelial water channels, of which aquaporin-1 is the most
important [15]. Free water transport explains the so-called
sodium sieving, that is the decrease of the dialysate sodium
concentration in the initial phase of dialysis with a strong
hypertonic dialysis solution [16,17]. This phenomenon is
absent in aquaporin-1 knock-out mice [18].

The peritoneal reflection coefficient of 0.03 consists of
two components: one for the small pores (low value) and
one for the water channels (1.0). This explains the capabil-
ity of glucose as osmotic agent despite its small size. The
overall efficacy of glucose for osmotic fluid transport can
be expressed as the osmotic conductance. This is the prod-
uct of the peritoneal ultrafiltration coefficient (hydraulic
permeability x surface area) and the reflection coefficient
sigma. The contribution of free water transport to total
ultrafiltration during the first hour of a 3.86% glucose ex-
change averages 35-40%, but can vary between 15% and
80% [19,20]. Free water transport decreases to 20% after
4 h due to absorption of glucose [2]. The addition of a
macromolecular marker to the dialysis solution makes it
possible to estimate lymphatic absorption from the peri-
toneal cavity and peritoneal tissues by its disappearance
rate. The clearance of the marker is indicated as the ef-
fective lymphatic absorption rate (ELAR). Although not
universally accepted [21], the concept of the ELAR is use-
ful for assessment of causes of ultrafiltration failure. The
mean value is 1.5 mL/min [22] and is not dependent on
the duration of the dialysis [23]. The ELAR is influenced
by the intraperitoneal pressure [9]. A review of the use of
the ELAR is given in [24]. The various pathways for fluid
transport are illustrated in Figure 1 [25].

Mechanisms of ultrafiltration failure

Ultrafiltration failure may be present at the start of PD. In
that situation, it is always associated with fast transport of
low molecular weight solutes or with a high ELAR. The
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Fig. 1. Transcapillary ultrafiltration (TCUF) is induced by the crystal-
loid osmotic pressure gradient across the peritoneal membrane. It com-
prises water transport through small interendothelial pores (SPT) and ul-
trasmall transendothelial pores, the so-called free water transport (FWT).
The amount of transported water across the large pores (LPT) is consid-
ered negligible. Changes in intraperitoneal volume (AIPV) result from
TCUF and fluid reabsorption. Fluid reabsorption includes lymphatic ab-
sorption, disappearance to the interstitial tissues (together effective lym-
phatic absorption, ELA) and backfiltration into the capillaries. Adopted
from reference [25] with permission from Oxford University Press.

fast transport of small solutes leads to a higher glucose
absorption and thereby to a rapid disappearance of the os-
motic gradient. This indicates an enlargement of the effec-
tive vascular peritoneal surface area, for instance because
more vessels are perfused. A fast transport status is present
in ~15% of new patients [26—28], and is probably caused
by local release of vasoactive substances by macrophages or
mesothelial cells. Cultured mesothelial cells synthesize var-
ious chemokines, prostaglandins and growth factors [29].
Some are produced constitutively, like vascular endothe-
lial growth factor (VEGF) [30] and cancer antigen 125
(CA 125) [31]. Others, like interleukin-6 (IL-6) and IL-8,
are produced after stimulation with chemokines [32,34].
All these substances can be detected in peritoneal effluent
of PD patients. Effluent CA 125 can be considered as a
marker for mesothelial cell mass [35]. It follows from these
data that the number of mesothelial cells may be involved
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indirectly in the regulation of the effective peritoneal vas-
cular surface area.

Clinical judgement and the determination of the above-
mentioned mediators make it likely that two types of in-
herent fast transporters can be distinguished. Both types
cause decreased ultrafiltration. One is associated with
comorbidity [27,36] and is characterized by high plasma
and dialysate concentrations of the inflammatory cytokine
IL-6 and of VEGF [37,38]. The other type can be present in
patients without marked comorbidity. This type is associ-
ated with a high effluent CA 125 concentration suggesting
a link with mesothelial cell mass [39-41]. Only effluent
VEGF was increased in patients with this type, and it ap-
peared that the relationship between solute transport and
CA 125 was probably mediated by VEGF [41]. This type
disappears spontaneously [42], because the mesothelial cell
mass decreases with the duration of PD, as judged from CA
125 values [43].

Ultrafiltration failure due to an inherent fast transport
status or a high ELAR is usually not a clinical problem,
because these patients will generally still produce urine.
This urine production can be stimulated with high-dose
loop diuretics [44,45]. Also the use of icodextrin for the
long dwell is especially effective in fast transporters [12].

Ultrafiltration failure during peritonitis

Acute peritonitis causes ultrafiltration failure, which is usu-
ally reversible, due to an inflammation-induced enlarge-
ment of the effective peritoneal vascular surface area and
increased peritoneal blood flow [46,47]. The latter leads to a
fast transport status [46,47] causing a rapid disappearance
of the osmotic gradient, and consequently ultrafiltration
failure. Free water transport is not impaired [48]. The de-
velopment of the fast transport status is probably mediated
by IL-6 and tumour necrosis factor alpha (TNF-a) [49].
The alterations in a transport status are temporary and usu-
ally reversible within 1 or 2 weeks after the institution of
antibiotic treatment. Similar to other situations with a fast
transport status, the use of icodextrin is very effective in
increasing ultrafiltration [50,51].

Ultrafiltration failure in long-term PD

Ultrafiltration failure, as defined by the guidelines of the
International Society for Peritoneal Dialysis (ISPD), is
present in 36% of patients treated with PD for more than
4 years [52]. Age, gender, duration of PD and peritoni-
tis incidence were not different from patients without this
complication. The associated fast transport status in this
patient group with ultrafiltration failure is reflected in high
values of the dialysate/plasma (D/P) ratio of creatinine, the
mass transfer area coefficient (MTAC) of creatinine and a
high glucose absorption. In addition, free water transport is
often impaired (see below).

Table 2 shows a comparison between the causes of ultra-
filtration failure in patients treated shorter than 2 years and
longer than 4 years [53]. A combination of factors is often
present, but impaired free water transport was especially
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Table 2. Causes of early and late ultrafiltration failure, expressed as % of
the patients in whom one or more causes could be identified [53]

Early UF failure Late UF failure

(<2 years) (>4 years)
High MTAC 44 61
creatinine
High ELAR 68 30*
Low A D/P Na™ 8 43*

MTAC: mass transfer area coefficient; ELAR: effective lymphatic absorp-
tion rate.

*P < 0.01.

The total of the percentages is more than 100% because more than one
cause was present in a number of patients.

found in long-term PD. Selective drop out of patients with
ahigh ELAR could explain the lower value in the long-term
group. These findings are in line with those of Davies, who
reported a qualitative difference in the decrease of ultrafil-
tration compared to expected values based on D/P creatinine
[54]. This underlines that long-term ultrafiltration failure is
not only caused by fast solute transport rates. A study in 50
patients with ultrafiltration failure, in whom the effect of
the duration of PD on transport could be analysed, showed
an increase of the MTAC creatinine, but also a decrease
of small-pore fluid transport and of free water transport.
Also, the contribution of free water transport decreased, es-
pecially after 5 years, as well as the osmotic conductance
to glucose [55]. In all time periods, a relationship between
free water transport and the osmotic conductance to glu-
cose was present. The development of ultrafiltration failure
is associated with vascular abnormalities in the peritoneum.
These are often accompanied by increased fibrosis [7]. Up
to now, no substance is known that can be determined in
peritoneal effluent and that could represent the amount of
fibrosis. Loss of mesothelial cells may also occur [7], and
is probably reflected in a decrease of effluent CA 125 [56].

In summary, ultrafiltration failure in long-term PD is
most often due to a combination of a rapid disappearance of
the osmotic gradient, together with a decrease in the osmotic
conductance to glucose. The latter leads to a decrease of
free water transport. It has not been elucidated whether
the decreased osmotic conductance is the consequence of
a decrease in aquaporin-1 function, or is due to a lower
peritoneal ultrafiltration coefficient.

Ultrafiltration failure in long-term PD patients is a se-
rious problem. It can easily cause overhydration, because
those patients will often be anuric. Overhydration can lead
to an increased risk for cardiovascular death. A relationship
has been found between peritoneal ultrafiltration and death
in two studies in anuric patients [57,58].

Figure 2 shows a scheme of the various types of fast
transport that can cause ultrafiltration failure.

Definition and detection of ultrafiltration failure

Hypervolaemia or overhydration is a clinical diagnosis that
can have a number of causes, like a decreased urine pro-
duction combined with the usual oral fluid intake. The
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Fig. 2. A schematic representation of the potential pathogenic pathways
for different types of fast transport as causes of ultrafiltration failure.
Also, the prognosis and the presumed contribution of peritoneal cytokines/
growth factors are indicated.

ultrafiltration volume is dependent on the status of the peri-
toneum. Its function should therefore be investigated during
a standardized condition. The world-wide-used peritoneal
equilibration test (PET) is useful for this, but only with
some modifications [59]. The most important one is the
use of a 3.86% glucose solution, instead of the original
2.27%. This allows better assessment of the drained vol-
ume. Also, free water transport can be estimated. The use
of different glucose concentrations has no effect on D/P cre-
atinine, but influences the D4/Dj ratio for dialysate glucose
[60]. The higher the glucose concentration, the lower the
D4/Dy ratio. The transition ofa 2.27% PET to a 3.86% PET
does not influence longitudinal follow-up of D/P creatinine
in individual patients. It also does not matter whether the
investigation is done with a conventional or more biocom-
patible dialysis solution [61].

The definition of ultrafiltration failure by the ISPD can
be summarized as the 3 x 4 rule: (1) less net ultrafiltra-
tion than 400 mL, (2) after a dwell of 4 h, (3) of a 4%
(3.86%/4.25%) glucose based dialysis solution [62]. The
400 mL limit is based on sparse data from literature [63,64]
and clinical data of patients who fulfil this criterion. A cause
for ultrafiltration failure could be identified in >95% of
these patients [52]. The prevalence of ultrafiltration failure
is higher with a limit of 500 mL, but a cause can be defined
less often.

The 3.86% glucose PET (modified PET) provides infor-
mation on net ultrafiltration after 4 h, D/P creatinine (or
MTAC creatinine), D4/Dy glucose (or glucose absorption,
expressed as percentage of the instilled quantity) just like
the 2.27% PET, but also information on free water trans-
port. The latter is calculated from the transport of sodium to
the peritoneal cavity. Convection is the main mechanism of
sodium transport [65] because the concentrations in plasma
and dialysate are only slightly different. The importance of
diffusion increases, however, in the presence of a relatively
large gradient, like in hypernatraemia, or in the presence of
a large diffusion area, as present in for instance fast trans-
porters. Free water transport can be underestimated under
these conditions when no diffusion correction for sodium
is applied (see below).
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Determination of D/P Na* after 1 h is the simplest way
to obtain information on free water transport. D/P Nat after
4 h can also be used when a diffusion correction is applied
[66]. A precise calculation of free water transport during the
first hour of a PET is possible, assuming that the small pores
offer no hindrance to sodium transport [67]. This requires
the determination of the intraperitoneal volume after 1 h to
allow the calculation of the quantity of sodium transported
in this period. This amount, divided by the sodium concen-
tration in the small pores (mean of plasma and dialysate
sodium), yields the amount of fluid transported through the
small pores. Free water transport is the difference between
total net fluid transport and the volume transported through
the small pores. The percentage-free water transport is the
volume of free water transport divided by the total amount
of fluid transported [19].

The 3.86% glucose mini-PET, in which the peritoneal
cavity is drained after 1 h to determine the volume and
dialysate Na*, is an elegant method for assessment of free
water transport [67]. However, the interpretation of D/P ra-
tios is difficult because MTACs are higher during the first
hour of a 4-h dwell than in the period thereafter [13]. It
is not possible to use a correction factor to translate to a
4-h dwell [68]. This limits its application for overall assess-
ment of peritoneal function. Determination of the osmotic
conductance to glucose is usually done by an estimation of
sigma using kinetic modelling and calculation of LpA with
a volume marker [54]. A simple alternative has recently
been described by La Milia et al. using two mini-PETS:
one with 1.36% glucose and one with 3.86% (double mini-
PET) [69].

The modified PET and the mini-PET can be combined
when the peritoneal cavity is drained after 1 h to determine
the volume at that time by weighing. After taking a dialysate
sample, the drained volume is reinfused and left for another
3 h. With this method, no differences were found for net
ultrafiltration and small solute transport compared to those
in a modified PET [70].

The personal dialysis capacity test (PDC) is performed
by the patients themselves with five exchanges per 24 h
[71]. These are different in dwell time and glucose concen-
tration. Kinetic modelling is applied to estimate parameters
like surface area available for diffusion, fluid absorption
and large-pore flow. Superiority of the PDC over the PET
has been claimed [72]. However, the PDC has a number
of disadvantages like the risk of inaccuracies, a large num-
ber of laboratory investigations, the assumptions used for
kinetic modelling and most importantly, the exclusion of
sodium kinetics. This makes the PDC less suitable for the
analysis of ultrafiltration failure, than the modified PET. A
summary of the advantages and limitations of the various
peritoneal function tests without the use of a volume marker
is given in Table 3.

Assessment of the peritoneum should also include an
effluent marker. Most experience has been obtained with
CA 125. A single low value is difficult to interpret [73],
but a downward trend with time suggests a decrease of
mesothelial cell mass. The CA 125 concentration in efflu-
ent is dependent on the dwell time. It increases linearly
during a dwell of 4 h and is not influenced by the dialysis
solution used [55]. A linear increase is also present during
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Table 3. Advantages and limitations of the various peritoneal function

test without a volume marker

Test? Advantages Limitations
Original PET Widely used Limited information
on ultrafiltration
Gold standard for No Na¥ sieving
small solute
transport
No FWT
No OC
Modified PET Definition for UFF No FWT
Na™ sieving No OC

Peritoneal dialysis
capacity test

D/P creatinine similar
to original PET

Large-pore flow using
albumin

No Na¥ sieving

Every 6 — 12 months

A. M. Coester et al.

[ Residual renal function ]

Peritoneal function

Dialysis dose

'

creatinine and urea

Mean of 24 hrs
clearance

[ Peritoneal Kt/V urea ]

peritoneal creatinine
clearance

Net UF > 400 mL after
4 hours

No additional test
required

Net UF <400 mL after
4 hours

Mini PET, modified
PET + temporary

Peritoneal absorption No FWT
Area parameter No OC
Mini-PET FWT D/P creatinine
difficult to
compare with
PET values
No OC
Double mini-PET FWT D/P creatinine
difficult to
compare with
PET values
oC Two tests
Modified PET with Definition of UFF No OC

temporary drainage
Na™ sieving
FWT
D/P creatinine similar
to original PET

2The value of the test is increased when an effluent CA125 determination
is added.
FWT: free water transport; OC: osmotic conductance.

longer dwells [74]. Therefore, it is recommended to express
effluent CA 125 as its dialysate appearance rate, that is the
product of the concentration and the drained volume, di-
vided by the dwell time. An algorithm for the follow-up of
patients is given in Figure 3.

Reasons for elective discontinuation of PD

Both clinical indications and those that are related to the
transport function of the peritoneum can be reasons to
switch from PD to HD. A Kt/Vea <1.7/week without clin-
ical manifestations of underdialysis is not a reason for dis-
continuation of PD [75]. It is evident that untreatable over-
hydration caused by ultrafiltration failure is an indication
to switch to HD. Yet, studies in patients with residual renal
function have—with one exception [76]—not been able to
show an effect of ultrafiltration on patient survival [77,78].
An effect of peritoneal ultrafiltration on survival is, how-
ever, present in patients without urine production [57,58].
Until now, it has been impossible to define a minimum
ultrafiltration volume [79], because the occurrence of over-
hydration is dependent on oral fluid intake and peritoneal
ultrafiltration.

At present, it is not possible to give fixed limits of any
peritoneal transport parameter below or above which PD

drainage, double mini
PET. Also effluent
CAI125

Consider dis-
continuation PD when
progressively impaired

I ——

Fig. 3. A suggested algorithm for follow-up of patients on peritoneal
dialysis.

should be discontinued, because longitudinal investigations
on the time course of peritoneal function are only limited.
Signs that indicate membrane damage are the development
of a fast transport status with ultrafiltration failure, the
development of a reduction in free water transport and a
decrease of effluent CA 125 during the time course of PD.

Recommendations for patient information and
measurement of peritoneal membrane function in
PD patients

1. The following items should be discussed during the
information to predialysis patients:

a. The survival of PD patients is better than that of
HD patients during the first years of dialysis, prob-
ably because of better preservation of residual re-
nal function.

b. Functional and morphological peritoneal abnor-
malities may occur in about one-third of patients
treated for more than 4 years.

c. An elective switch to HD should be considered
when the above-mentioned abnormalities develop
to minimize the risk of encapsulating peritoneal
sclerosis.

2. Measurement of peritoneal membrane function should
be incorporated in the follow-up of PD patients. The
frequency is at least once a year.

3. The measurement should be done with the most hy-
pertonic solution, glucose concentration around 4%,
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during a standardized dwell of 4 h. Ultrafiltration fail-
ure is defined as net ultrafiltration <400 mL.

Information should be obtained on the transport of cre-
atinine, glucose and sodium. Net ultrafiltration should
be measured and insight into free water transport
should be obtained. Determination of effluent CA 125
gives an added value.

Conflict of interest statement. Watske Smit is a part time employee of
Baxter, The Netherlands.
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