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Abstract: Combinatorial approach has been widely recognized as a powerful strategy to develop
new-higher performance materials and shed the light on the stoichiometry-dependent properties
of known systems. Herein, we take advantage of the unique features of chemical beam vapor
deposition to fabricate compositionally graded Na1+xTaO3±δ thin films with −0.6 < x < 0.5. Such a
varied composition was enabled by the ability of the employed technique to deliver and combine an
extensive range of precursors flows over the same deposition area. The film growth occurred in a
complex process, where precursor absolute flows, flow ratios, and substrate temperature played a role.
The deviation of the measured Na/Ta ratios from those predicted by flow simulations suggests that a
chemical-reaction limited regime underlies the growth mechanism and highlights the importance of
the Ta precursor in assisting the decomposition of the Na one. The crystallinity was observed to be
strongly dependent on its stoichiometry. High under-stoichiometries (e.g., Na0.5TaO3−δ) compared to
NaTaO3 were detrimental for the formation of a perovskite framework, owing to the excessive amount
of sodium vacancies and oxygen vacancies. Conversely, a well-crystallized orthorhombic perovskite
structure peculiar of NaTaO3 was observed from mildly under-stoichiometric (e.g., Na0.9TaO3−δ) to
highly over-stoichiometric (e.g., Na1.5TaO3+δ) compositions.

Keywords: chemical beam vapor deposition; compositionally graded Na1+xTaO3±δ; crystallinity
spread; chemical reaction limited regime; sodium tantalate; perovskite

1. Introduction

ABO3-type oxides with a perovskite structure have long served as a rich material
playground for a plethora of applications due to their unique and multiple physicochemical
properties such as superconductivity, ferroelectricity, ferromagnetism, catalytic activity,
and ion conductivity [1–4]. Among ABO3 perovskite oxides, NaTaO3 has received much
attention as an effective photocatalyst for water splitting and degradation of organic
pollutants under ultraviolet radiation [5,6]. The piezoelectric properties of this material
have also been investigated, showing a very promising potential for application in energy
storage devices [7]. NaTaO3 consists of Na cations located at the corners of a pseudo-
cubic unit cell and smaller Ta cations at the center of the cell and six-fold coordinated by
oxygen, giving rise to corner-linked TaO6 octahedra [8]. NaTaO3 typically crystallizes in an
orthorhombic unit cell while further crystal systems, such as tetragonal and cubic, closer to
an ideal perovskite, can be observed at high temperatures (i.e., above 600 ◦C) [9,10].
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A great research effort has been devoted to boosting the visible-light absorption of
NaTaO3, achieved by the narrowing of its wide band gap (Eg of ca. 4 eV) through the
incorporation of dopants such as Bi, La, Fe, S, N, and C into the lattice [11–14]. In parallel to
that, significant attention has been paid to further factors such as crystallinity, particle size,
morphology, and presence of structural defects (e.g., oxygen vacancies), equally crucial for
developing efficient photocatalysts. Such properties are synthesis route-dependent and
have been effectively tuned by a wide range of wet chemical synthesis methods including
hydrothermal [15,16], sol-gel [17], and coating Ta substrate with molten NaNO3, followed
by annealing treatment [18,19]. However, few works report the fabrication of NaTaO3 thin
films from vapor phase [20,21]. The only study dealing with Chemical Vapor Deposition
(CVD) of NaTaO3 focuses on the effect of the process temperature (823–913 K) on the
orientation and morphology of orthorhombic NaTaO3 [22]. In that work, the employed
technique, laser beam CVD, made use of a high-power laser to promote the activation and
reaction of the precursors on AlN substrates in Ar-O2 atmosphere.

Physicochemical properties of materials are primarily dependent on their composition.
Indeed, a slight off-stoichiometry may, in principle, bring about different crystal phases and
material properties, which, in turn, can dramatically impact on the functional performance.
In this context, the development of non-stoichiometric perovskite oxides with associated
point defects within the crystal lattice is increasingly becoming a hot topic in research. For
example, an excess of bismuth can boost the piezoelectric properties of strontium bismuth
tantalate [23]; in lithium tantalates, Li/Ta ratios diverging from the stoichiometric value,
i.e., Li/Ta = 1, have been found to promote the ionic conductivity [24].

Chemical Beam Epitaxy (CBE) is a technique developed in the 90’s- to grow III-
V semiconductors thin films, arising from the merging of CVD and MBE (Molecular
Beam Epitaxy) [25]. Chemical Beam Vapor Deposition (CBVD), a variant of CBE with
no epitaxy, relies on different molecular beams of chemical precursors effusing from an
array of Knudsen-like sources into the deposition chamber under high vacuum conditions
(10−6–10−5 mbar). As gas phase collisions are negligible, the precursor molecules reach
the heated substrate with a line-of-sight pattern and thermally decompose. A multitude
of combinatorial configurations are achievable with the possibility to obtain a wide range
of flow compositions from the different precursors across the deposition area. In Sybilla
equipment [26], the amount of each precursor reaching a given position of the substrate can,
thus, be finely controlled and predicted by accurate calculations, enabling stoichiometry
tuning. In addition to negligible gas phase collisions, CBVD has some further peculiarities
compared to traditional CVD at higher pressure. CBVD does not require any carrier gas to
deliver the precursor inside the deposition chamber. Given the nature of the precursor, that
usually already contains oxygen, no reactive gases are normally required. Furthermore,
decomposition is a pure surface mechanism with no pre-activation in the gas phase that
can lead to powders and trapping of by-products in the boundary layer, with both having
fewer chances to be incorporated into the thin film. The used precursor must, however,
have a high sticking coefficient and enhanced decomposition probability on the surface to
avoid molecules bouncing off the substrate without reacting [26].

The use of combinatorial approach with Sybilla equipment may open new horizons in
fine-tuning properties of perovskites due to the possibility to access stoichiometries and
phases not achievable by conventional solid-state methods while producing films with
high growth rate, purity, and density.

In this work, we report, for the first time, the synthesis of compositionally graded
Na1+xTaO3±δ thin films obtained by CBVD in a Sybilla equipment, using different deposi-
tion temperatures and precursor flow rates, in two different source configurations. X-ray
photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry
(ToF-SIMS) were used to characterize the chemical composition, providing fundamental
insight on the growth and marked off-stoichiometry of Na1+xTaO3±δ. The crystallinity
and morphology were investigated, respectively, by X-ray diffraction (XRD) and Scan-
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ning Electron Microscopy (SEM)/Atomic Force Microscopy (AFM), and correlated to the
composition of the deposited thin films.

2. Materials and Methods
2.1. Sybilla Equipment and Combinatorial Configurations

Sodium tert-butoxide (CAS 865-48-5, purity 98% min, Strem Chemicals, Newburyport,
MA, USA,) and tantalum tetraethoxy dimethylaminoethoxide (CAS 172901-22-3, purity
98% min, EpiValence, Wilton, UK) were used as precursors for sodium and tantalum,
respectively.

The depositions were carried out in a CBVD system able to accommodate a 450 mm
diameter substrate (Sybilla-450, ABCD Technology, Ferney-Voltaire, France). A similar
equipment (Sybilla 150) and the operating mode of this technique are described else-
where [26]. Substrate heating is achieved by a graphite heating system radiatively heating
the substrate up to 800 ◦C. Silicon <100> and quartz wafers (Siegert Wafer, Aachen, Ger-
many) were used as substrates. By using a sample holder able to accommodate substrates
of various sizes (Figure 1), thin films were deposited on 2” (silicon, quartz), 4” (silicon),
and 6” (silicon) wafers. Two deposition configurations were used: (i) one active source for
both Ta and Na (1-1 configuration, Figure 1a); (ii) one active source for Ta and six for Na
(1-6 configuration, Figure 1b).
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Figure 1. Schematics of the used deposition configurations: (a) 1-1 and (b) 1-6, where the red and
green arrows show the angular positions of the active sources of tantalum and sodium, respectively.
The sample holder (big circle, 450 mm) is able to accommodate 2” substrates (positions 2A, 2B, 2C, 2D,
2E, and 2F), 4” substrates (positions 4A, 4C, 4D, and 4B) and 6” substrates (positions 6C, 6B, and 6A).

In addition to results obtained on the samples located in 6C, 4D, and 4B, the data of
2A, 4C, 2B, 6A, and 2D will be reported for the 1-6 configuration. The latter samples are
also representative of the samples 2F, 4A, 2E, 6B, and 2C due to the symmetric arrangement
of the active sources. Similarly, the samples located in the same positions will be discussed
for the 1-1 configuration despite the lack of symmetry, which may lead to slightly different
compositions in 2F, 4A, 2E, 6B, and 2C compared to 2A, 4C, 2B, 6A, and 2D. The choice of
the peculiar source configuration used in 1-1 deposition can be explained by the possibility
of achieving a much higher range of compositions compared to 1-6 configuration. The
two extreme stoichiometries are attained in positions 6C (closest to active Na source)
and 2D (closest to active Ta source) and all the other samples are expected to exhibit an
intermediate composition.

Precursors were evaporated at constant vapor pressure from thermostatically con-
trolled reservoirs to the respective prechambers and then emitted through effusive sources.
The lines connecting the precursors reservoirs to the prechambers were kept at a constant
temperature throughout the process, i.e., 165 ◦C for Na precursor and 124 ◦C for Ta pre-
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cursor. The effusive sources consisted of nine holes arranged in a 3 × 3 square pattern
where the diameter of each hole was 1.5 mm. The vapor pressure was correlated to the
reservoir temperatures by Arrhenius’ law. Different deposition sessions were carried out
by changing the Na and Ta vapor pressures (VP) and deposition temperature (Td), as
summarized in Table 1.

Flow rate calculations were performed similarly to a previous work [26]. The expected
Ta and Na flows and the resulting flow ratios are estimated from precursor reservoir tem-
peratures and target VP (Table 1), assuming that both precursors evaporate as monomers.

Table 1. List of the deposition sessions.

Deposition
Batch Configuration Target VPTa

1

(mbar)
Target VPNa

1

(mbar)
Td (◦C)

1-1 1-1 0.02 0.02 550
A_1-6 1-6 0.1 0.02 480
B_1-6 1-6 0.1 0.02 550
C_1-6 1-6 0.1 0.01 550
D_1-6 1-6 0.1 0.01 620

1 The measured values showed fluctuations leading in some cases to slight deviations, i.e., up to ±20%, from the
target values.

2.2. Characterization Techniques

The thickness of the samples was measured in a J.A. WOOLLAM M-2000 ellipsometer
(J.A. Woollam Co., Lincoln, NE, USA) using a B-spline interpolation.

XPS was used to determine the film elemental composition using a Kratos Axis
Ultra DLD spectrometer (Kratos Analytical Ltd, Manchester, UK) with a monochromatic
Al Kα source operating at 105 W and an analysis area of 700 µm × 300 µm. Spectra
were acquired with a pass energy of 80 eV to significantly increase the sensitivity of the
detector and the scanning speed, thus allowing the characterization of numerous samples
while quantifying accurately the elements in low concentration. The peak fit models for
carbonates quantification and tantalum chemical states identification were determined on
spectra acquired with a pass energy of 20 eV and then applied to 80 eV pass energy spectra
(peaks positions were fixed, slightly broader full-width-at-half-maxima were allowed). XPS
spectra were acquired before and after a mild etching (500 V-Ar+-t = 60 s) of the surface
to remove most of the possible surface contaminants deriving from reaction with the air
of the topmost material layers. The reported elemental compositions are those calculated
from the narrow scans obtained after the mild etching.

ToF-SIMS using an IonTOF TOFSIMS 5 apparatus (IONTOF, Münster, Germany) was
carried out to further characterize the surface composition. A pulsed beam of bismuth
primary ions (Bi3+) with a dose of 1e+11 ions/cm2 (pulsed current 0.31 pA) was employed
to sputter the samples.

XRD measurements were performed with a BRUKER D8 Discover Series 2 diffrac-
tometer (Billerica, MA, USA) using CuKα as a radiation source. Diffraction patterns were
recorded in the range of diffraction angles 2θ from 20◦ to 70◦ with a grazing angle of 0.5◦,
step size of 0.02◦ and scan speed of 2◦/s. The diffractometer operated in parallel beam
configuration with 1.2 mm solar slit and 1.2 mm collimator; the distance of the sample
from the collimator was 40 cm. The degree of crystallinity (DOC) method was used to
estimate the percentage of crystalline material. According to this method, the DOC is
calculated by dividing the total area of crystalline peaks by the total area under crystalline
and amorphous components [27,28].

The morphology of the deposited films was studied by SEM with a FEI HELIOS
NanoLab microscope (FEI, Hillsboro, OR, USA). To estimate the surface roughness (root
mean square roughness, Rq), further morphological investigation of the samples surface was
performed by AFM with an OXFORD MFP-3D Infinity microscope (Oxford Instruments,
Abingdon-on-Thames, UK).
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Optical properties of the samples deposited on quartz were studied in the range
250–2500 nm by UV/Vis/NIR spectroscopy on a PerkinElmer LAMBDA 1050 spectrometer
(Waltham, MA, USA). The optical band gap was obtained by the Tauc’s relation for direct
allowed transitions:

αhν = A
(
hν − Eg

)1/2 (1)

where A is a constant, ν is the frequency of the incident radiation, h is the Planck constant,
and Eg is the optical band gap.

3. Results and Discussion
3.1. Growth Process

Chemical reaction limited regime (CRLR) and mass transport limited regimes (MTLR)
are the two main growth regimes in a CBVD process and the occurrence of one or the
other depends mainly on substrate temperature and precursor flow [29]. The study of
the film compositions and the growth rates enables to determine the working regime.
Table S1 reports the average thickness along with the corresponding standard deviation.
The measured average growth rate in 1-6 batches as a function of the calculated Ta flow for
various sample positions is reported in Figure 2. The same plot for 1-1 deposition is shown
in Figure S1. The deposition run performed in the latter configuration exhibited growth
rates up to eighteen times lower compared to those obtained in 1-6 configuration due to
the lower precursors flows. The growth rates were similar in C_1-6 and D_1-6 performed
at different temperature with the same precursor flows. The higher Na precursor flow in
B_1-6 resulted only in a minor increase in the growth rate, suggesting a CRLR with Ta
being the limiting element in the mechanism. Lower growth rates were found in A_1-6
in the presence of high Ta flow due to the lower deposition temperature (480 ◦C) and
thus to a more pronounced CRLR. However, the trend was reversed at lower Ta flow. In
CRLR, the reaction kinetics determines the film growth, which is affected simultaneously
by multiple factors including reaction mechanism, substrate temperature, and absolute
flow values, as well as precursor flow ratios. In this regime, not all the precursor molecules
are incorporated into the film due to the low decomposition kinetics.
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Ta flows calculated at ±5 mm away from the point where thickness measurements were performed,
thus considering possible measurement errors related to the positioning of the sample.
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The results rule out a possible transition from CRLR to a MTRL, usually occurring
with increasing temperature. Unlike CRLR, in MTLR, the deposited thickness is directly
proportional to the precursor flow since all precursor molecules reaching the substrate
decompose and are ideally incorporated in the film. The results of the flow simulations ob-
tained under this regime are show in Figure 3a,b for 1-1 and 1-6 configurations, respectively.
Predictably, the 1-1 configuration led to a wider range of flow ratios due to the peculiar
arrangement of the active sources (Figure 1a). The Na/Ta ratios measured in the deposited
thin films by XPS were significantly lower than those predicted by flow simulations, as
depicted in Figure 3c for depositions C_1-6 and D_1-6. This confirms that not all Na atoms
in the precursors flow are incorporated in the material and thus that the process occurs in
CRLR. Moreover, the same regime is also present at higher temperatures (620 ◦C in D_1-6),
indicating that the increase in temperature does not allow to achieve MTLR. Finally, at low
Ta flows, the amount of Na not contributing to the film growth increases. This is confirmed
by the greater divergence between measured and calculated Na/Ta with decreasing Ta flow.
A sufficiently high Ta flow (e.g., > ~25 × 10−13 mol m−2 s−1 in C_1-6 and D_1-6) is thus
needed to ensure the decomposition of Na precursor and fully incorporate the impinging
Na molecules in the growing film.
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Figure 3. Flow simulations for (a) 1-1 and (b) 1-6 batches. In the latter case, scale values for Na/Ta
flow ratios are for depositions C and D (target VPNa= 0.01 mbar), while values in brackets are for
depositions A and B (target VPNa= 0.02 mbar). (c) Comparison between the measured Na/Ta by
XPS and Na/Ta calculated from flow simulations in batches C_1-6 and D_1-6. For the position of the
samples and active sources, refer to Figure 2. Error bars refer to the Ta flows calculated at ±5 mm
away from the point where thickness measurements were performed, thus considering possible
measurement errors related to the positioning of the sample.
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3.2. Chemical Composition

The stoichiometry of the films determined by XPS is reported in Table S2. The
wide range of compositions of Na1+xTaO3±δ spanned from under-stoichiometric to over-
stoichiometric NaTaO3 with −0.6 < x < 0.5. The Ta 4f spectrum was best fitted with a
doublet at binding energies (BE) ~27.5 eV (Ta 4f5/2) and ~25.7 eV (Ta 4f7/2), while the Na 1s
and O 1s peaks (data not shown) were located at ~1071.2 and 529.9 eV, respectively. These
values are consistent with the position of NaTaO3 reported in literature [30,31]. The analysis
of the C 1s core level spectrum revealed an increase in the CO3

2− content with increasing
Na/Ta ratio. In this respect, Figure S2 displays the trend in the amount of carbonate species
as a function of the sample position and the corresponding Na/Ta ratio for the batch 1_1.
The formation of surface CO3

2− is in line with other studies reporting the same findings on
similar perovskite-like materials, such as LiNbO3 and LaFeO3 [32,33]. Such species mainly
originate following air exposure of the sample surface.

ToF-SIMS was performed to elucidate the contribution of the surface species to the
chemical composition. Figure 4 shows the positive ion ToF-SIMS spectra of Na1.3TaO3+δ
and Na0.6TaO3−δ deposited in batch 1-1. Both samples generate TaO4HNa3

+, TaO4Na4
+,

Ta2O6Na3
+, TaO7HNa4

+, and TaO7Na5
+, which confirm the presence of Na1+xTaO3±δ. On

the other hand, (Na2CO3)yNa+ (with y = 1–3) ions, characteristic of Na2CO3, are emitted
only from Na1.3TaO3+δ. No secondary ions distinctive of Ta2(CO3)5 were detected, implying
that only surface Na2CO3 was formed. Albeit in a lower amount with respect to the thin
film surface, CO3

2− was also spotted in the bulk as revealed by XPS depth profile analysis
(not shown here). This suggests that, under Na-excess conditions, carbonates species
originate from both the growth process and, to a larger extent, following a reaction, upon
air exposure, between CO2 and residual unreacted Na precursor adsorbed on the surface at
the end of the process.
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Figure 4. Positive ion ToF-SIMS spectra of Na0.6TaO3-δ and Na1.3TaO3+δ in the m/z range (a) 100–200
and (b) 200–600. Both samples were obtained from batch 1_1 (positions 4B and 6C(1), respectively).
Only signals ascribed to Na1+xTaO3±δ and Na2CO3 are reported. The secondary ions characteristic
of Na1+xTaO3±δ are labelled in red.
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The minimum and maximum values of x and δ achieved in each deposition batch
(see Table 1 for deposition parameters) are displayed in Figure 5. The batch 1-1 showed
the widest composition range with −0.4 ≤ x ≤ 0.3 around the stoichiometric composition
attained in 6A position. The higher compositional spread compared to 1-6 configuration
was enabled by the larger range of precursor flow ratios across the deposition area as
discussed in Section 3.1. Stoichiometric NaTaO3 was also deposited in batch C_1-6, mostly
characterized by under-stochiometric oxides (−0.5 ≤ x ≤ 0.0) with Na and O depletion.
Slightly lower x values were found in batch D_1-6 (−0.6 ≤ x ≤ −0.2) deposited at the
highest deposition temperature with same precursors flows as those in C_1-6. The lower x
in D_1-6 may be ascribed to a preferential volatilization of Na in the growing perovskite
structure at higher temperature, resulting in more Na vacancies [34].
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A wide composition range was also obtained in the batch A_1_6 (−0.4 ≤ x ≤ 0.3),
deposited at the lowest temperature and highest Na flow. Here, all the samples were
characterized by oxygen deficiency (see Table S2) even in presence of sodium excess
(i.e., x > 0). This charge unbalance can be due to the lack of a perovskite-structured material
with possible deviations from the proposed A1+xBO3±δ stoichiometry, as discussed in
Section 3.3. Finally, batch B_1-6 presented over-stoichiometric oxide (0.2 ≤ x ≤ 0.5) across
the whole deposition area.

Under sodium-rich conditions, replacement of Ta5+ by Na+ ions is highly unlikely
due to: (i) the large difference between the charge state and the ionic radius, being 1.39 Å
for Na+ and 0.64 Å for Ta5+ [35], (ii) much lower electronegativity of Na+, i.e., 0.956,
compared to that of Ta5+, i.e., 1.881 [36,37]. It can, therefore, be inferred that the excess of
Na in Na1+xTaO3+δ (x ≥ 1) is incorporated interstitially. Similarly, the corresponding extra
oxygen is reported to occupy interstitial positions [38]. The above-mentioned proliferation
of carbonate species at increasing high Na/Ta flow ratios is emblematic of the reduced
proneness to host Na+ within the lattice of over-stoichiometric oxides. Indeed, the too close-
packed perovskite structure hinders more and more the incorporation of Na-excess which is
increasingly consumed as sodium carbonate. The sample Na1.5TaO3+δ obtained in the batch
B_1-6 was the one with the largest over-stoichiometry, suggesting that Na1+xTaO3+δ cannot
accommodate additional Na+ above Na/Ta > 1.5, i.e., x > 0.5, and a further increase in the
Na flow would only result in the formation of Na2CO3 and larger amount of unreacted Na
precursor. These observations are consistent with the flow simulation results which revealed
the occurrence of a CRLR and a precursors flow with an excess of Na not incorporated in
the material (Section 3.1).

3.3. Cristallinity

Figure 6a displays the XRD patterns of two samples deposited in 1-6 configuration at
different temperatures with the same precursor flows. An amorphous phase was obtained
at Ts = 480 ◦C, while increasing Ts to 550 ◦C promoted the growth of orthorhombic structure
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(ICDD PDF Card No: 04-014-2389, orthorhombic NaTaO3) as shown for the samples in
position 6C. No impurities of other phases were detected. Notably, the whole batch B_1-6
was highly crystalline, while batch A_1-6 was fully amorphous.
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Figure 6. (a) XRD patterns of the sample located in 6C position in batches A_1-6 and B_1-6. (b) Pho-
tographic picture of the batch C_1-6 with the XRD patterns of the samples 6C, 4D, and 4B.

Single phase orthorhombic structure was also deposited at Td ≥ 550 ◦C when de-
creasing the flow of Na as done in C_1-6 and D_1-6. However, in these two batches, the
crystallinity was strongly dependent on the precursors flow ratio as confirmed by the
gradual appearance of orthorhombic lattice with increasing Na/Ta. Figure 6b shows a
photographic picture of the batch C_1-6 with the XRD patterns of the samples deposited
along the Ta gradient direction (6C, 4D and 4B). Moving away from the Ta source, the
increase in Na/Ta ratio is accompanied by a rise in the crystallinity: Na1+xTaO3±δ switches
from a barely crystalline structure at Na/Ta = 0.6 (i.e., Na0.6TaO3-δ), to a well-crystallized
orthorhombic phase at Na/Ta = 1.0 (i.e., Na1.0TaO3.0), passing through an intermediate
crystallinity at Na/Ta = 0.7 (i.e., Na0.7TaO3-δ). In other words, the increasing precursor flow
ratio along the Ta gradient involved a transition from under-stoichiometric to stoichiometric
composition with an improvement in the crystalline order.
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The tight correlation between stoichiometry and crystallinity, with the latter expressed
in terms of the DOC, is highlighted in Figure 7, where a total of forty points across the
deposition area, from all the deposition sessions of the present study, have been analyzed.
Amorphous structure was observed at Ts = 480 ◦C at any stoichiometry. On the other hand,
at temperatures of 520–620 ◦C, high enough to trigger the growth of perovskite-structured
Na1+xTaO3±δ, the crystalline order depended solely on the composition. Indeed, three
main regions stand out:

(1) at x < −0.4 (i.e., Na/Ta < 0.6), Na1+xTaO3-δ is mostly amorphous/nanocrystalline
with DOC in the range 0–30%;

(2) at x > −0.2 (i.e., Na/Ta > 0.8), the material is characterized by a well-crystallized
orthorhombic structure (DOC above 65%);

(3) at −0.4 ≤ x ≤ −0.2 (i.e., 0.6 ≤ Na/Ta ≤ 0.8), the wide crystallinity spread (DOC in
the range 0–82%) suggests the occurrence of a threshold region.
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Such a trend indicates a breakdown in the perovskite framework at extreme under-
stoichiometries owing to the excessive Na and O deficiency. High crystallinity is instead
observed from mild under-stoichiometries to marked over-stoichiometries. It can, thus, be
concluded that the excess of Na and O located at interstitial sites, do not disrupt the crystal
quality as much as their high deficiency in the cationic and anionic sites, respectively, of
Na1+xTaO3±δ lattice. Interestingly, the crystal growth at 620 ◦C is promoted at a slightly
lower under-stoichiometry as confirmed by the sample Na0.5TaO3−δ (batch D_1-6, position
2B) with DOC = 30%. The higher deposition temperature is, therefore, able to partly
compensate for the structural disorder caused by anionic and cationic vacancies in under-
stoichiometric Na1+xTaO3−δ.

3.4. Morphological and Optical Properties

Figure 8 shows SEM and AFM pictures of Na0.5TaO3-δ and Na1.5TaO3+δ deposited in
position 6C from D_1-6 and B_1-6 batches, respectively. The different structural properties
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between the two oxides translated into a dissimilar morphology. The under-stoichiometric
oxides did not present any significant surface texture, showing a relatively smooth surface
as confirmed by the low roughness (Rq = 3.5 nm in Na0.5TaO3−δ). The film structure
evolved to a morphology typical of polycrystalline materials as Na/Ta increased. Indeed,
the morphologies of stoichiometric and over-stoichiometric samples showed well-defined
crystalline grains with an enhanced roughness (Rq = 7.2 nm in Na1.5TaO3+δ). It is worth
highlighting that the samples have a similar thickness, hence the presence of any growth
dynamics causing thickness-related surface morphology can be definitely ruled out.
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Figure 8. SEM (left) and AFM (right) images of Na0.5TaO3−δ and Na1.5TaO3+δ. The morphology con-
firms high crystallinity and the amorphous character of Na1.5TaO3+δ and Na0.5TaO3−δ, respectively.

Optical characterization revealed a band gap of ca. 4.8 eV at any stoichiometry,
larger than that reported for bulk NaTaO3 [11]. Figure S3 displays the Tauc plots of
Na0.4TaO3−δ and Na1.2TaO3+δ deposited on quartz in position 2A from D_1-6 and B_1-6
batches, respectively. Band gap-tuning can effectively occur when dealing with atoms with
comparable size, an important prerequisite for substitutional replacement to take place. In
our case, the absence of substantial change in Eg with increasing Na/Ta ratio arises from
the large difference in charge and ionic size between the involved cation species, which
precludes the substitution of Ta5+ by Na+ within the lattice of Na1+xTaO3±δ. A similar
result has been reported for halide perovskites [39].

4. Conclusions

Na1+xTaO3±δ thin films with a wide range of compositions, spanning from Na0.4TaO3-δ
to Na1.5TaO3+δ, were fabricated for the first time by CBVD. The difference between the
calculated and measured Na/Ta, especially at low Ta flow, was indicative of a growth
process taking place in CRLR and suggested that a large excess of Na is not incorporated
in Na1+xTaO3±δ. Interestingly, the decomposition of Na precursor and its inclusion in the
final material were triggered by the Ta precursor since the excess of unreacted Na was
significantly reduced at high Ta flow.

The occurrence of a perovskite-type compound was linked to the deposition temper-
ature and composition of the deposited materials. Low deposition temperature (480 ◦C),
as well as high under-stoichiometry (Na/Ta < 0.6), led to the growth of amorphous
phase, while a highly crystalline orthorhombic structure was observed at 550 ◦C and
620 ◦C from moderate under-stoichiometries (Na/Ta > 0.8) to high-over stoichiometries
(Na/Ta = 1.5). A transition region with large crystallinity spreads occurred at intermediate
Na/Ta (0.6–0.8). The reason behind the gradual deterioration of the crystal quality in
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highly under-stoichiometric oxides was the excessive deficiency of A-sites and O-sites
which prevented the growth of the perovskite network. On the other hand, the extra Na
incorporated interstitially into the Na1+xTaO3±δ lattice at high Na flow did not undermine
the crystal growth despite the enhanced formation of carbonates caused by a large amount
of unreacted Na precursor.

The combinatorial investigation of Na1+xTaO3±δ presented in this work can have a
significant impact on design strategies and future application of sodium tantalate-based
thin films, such as in photocatalysis and piezoelectric materials, with the possibility of de-
veloping increasingly efficient materials having widely tuneable stoichiometry and crystal
structure. The employed deposition technique can play a primary role in this scenario due
to its unique power of unravelling previously unexplored composition and phases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12061012/s1. Figure S1: Measured average growth rate
as function of the Ta flow calculated for each position of the samples for the 1-1 deposition batch;
Figure S2: Carbonate amount versus sample position for the batch 1-1; Figure S3: Tauc plots of
the samples Na0.4TaO3−δ and Na1.2TaO3+δ; Table S1: Average thickness with the corresponding
standard deviation; and Table S2: Stoichiometry, Na/Ta and x of samples deposited in the five
deposition batches.
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