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A photoconversion model for full spectral
programming and multiplexing of
optogenetic systems
Evan J Olson1 , Constantine N Tzouanas2 & Jeffrey J Tabor2,3,*

Abstract

Optogenetics combines externally applied light signals and geneti-
cally engineered photoreceptors to control cellular processes with
unmatched precision. Here, we develop a mathematical model of
wavelength- and intensity-dependent photoconversion, signaling,
and output gene expression for our two previously engineered
light-sensing Escherichia coli two-component systems. To parame-
terize the model, we develop a simple set of spectral and dynami-
cal calibration experiments using our recent open-source “Light
Plate Apparatus” device. In principle, the parameterized model
should predict the gene expression response to any time-varying
signal from any mixture of light sources with known spectra. We
validate this capability experimentally using a suite of challenging
light sources and signals very different from those used during the
parameterization process. Furthermore, we use the model to
compensate for significant spectral cross-reactivity inherent to the
two sensors in order to develop a new method for programming
two simultaneous and independent gene expression signals within
the same cell. Our optogenetic multiplexing method will enable
powerful new interrogations of how metabolic, signaling, and deci-
sion-making pathways integrate multiple input signals.
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Introduction

Most optogenetic tools are based on a photoreceptor protein with a

light-sensing domain that regulates an effector domain, which in

turn generates a biological signal such as gene expression. One can

consider a simplified model wherein a photoreceptor is produced in

a “ground” state and switched to an “active” state by activating

wavelengths (i.e., forward photoconversion) (Butler et al, 1964).

Active-state photoreceptors thermally revert to the ground state with

a characteristic timescale that ranges from milliseconds (Jaubert

et al, 2007) to more than a month (Rockwell et al, 2012). Certain

photoreceptors, exemplified by the linear tetrapyrrole (bilin)-

binding phytochrome (Phy) and cyanobacteriochrome (CBCR) fami-

lies, are also photoreversible where reversion from the active to

ground state is driven by deactivating wavelengths (Rockwell et al,

2006; Möglich et al, 2010; Rockwell & Lagarias, 2010).

Two-component systems (TCSs) are signal transduction path-

ways that control gene expression and other processes in response

to chemical or physical stimuli (inputs). Canonical TCSs comprise

two proteins: a sensor histidine kinase (SK) and a response regula-

tor (RR). The SK is produced in a ground state, which often (but not

always) has low kinase activity toward the RR. When it detects an

input via a N-terminal sensing domain, the SK uses ATP to

autophosphorylate on a histidine residue within a C-terminal kinase

domain. This phosphoryl group is then transferred to an aspartate

on the RR. In most cases, the phosphorylated RR (RR~P) binds to a

target promoter, activating transcription. Many SKs are bifunctional

and the kinase domain dephosphorylates the RR~P in the absence of

the input or presence of a different, deactivating input.

We have previously engineered two spectrally distinct photore-

versible Escherichia coli TCSs, CcaSR and Cph8-OmpR (Fig EV1 and

Dataset EV1) (Levskaya et al, 2005; Tabor et al, 2011; Schmidl et al,

2014). CcaS is a SK with a CBCR sensing domain that absorbs light

via a covalently ligated phycocyanobilin (PCB) chromophore

produced by an engineered metabolic pathway. Holo-CcaS is

produced in an inactive, green-light-sensitive ground state, termed

Pg, with low kinase activity. Upon green light exposure, CcaS Pg

switches to a red-light-sensitive active state (Pr) with high kinase

activity toward the RR CcaR. CcaR~P binds to the promoter

PcpcG2-172, activating transcription. Red light drives CcaS Pr to revert

to Pg. Cph8 is a chimeric SK containing the PCB-binding Phy light-

sensing domain of Synechocystis PCC6803 Cph1 and the signaling

domain of E. coli EnvZ. In contrast to CcaS, Cph8 has high kinase

activity toward the E. coli RR OmpR in the ground state (Pr) and
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low kinase (high phosphatase) activity in a far-red absorbing acti-

vated state (Pfr). OmpR~P binds and activates transcription from

the PompF146 promoter. Data from our group and others suggest that

CcaS Pr is stable for hours or more (Hirose et al, 2008; Olson et al,

2014), while Cph8 Pfr is far less stable (Olson et al, 2014).

Recently, we developed a predictive phenomenological model to

describe the responses of CcaSR and Cph8-OmpR to green and red

light intensity signals, respectively (Olson et al, 2014). This model

depicts a three-step response comprising a pure delay, an intensity-

dependent first-order transition in output gene expression rate, and

a first-order transition in the concentration of the output gene set by

cell growth rate. By measuring the expression of a reporter gene

over time in response to a series of light step changes of different

initial and final intensities, we parameterized these three timescales

for both light sensors.

Despite its predictive power, our previous model has several key

limitations. First, it can only predict the responses of the optoge-

netic tools to the specific light sources used during parameteriza-

tion. Second, it cannot account for perturbations introduced by

secondary light sources such as those that might be used for simul-

taneous measurement of fluorescent reporter proteins or multi-

plexed control of both tools in the same cell. Third, the model

yields few insights into the mechanistic origin of the observed

response dynamics. For example, it captured, but could not eluci-

date the origin of, our observation that the rate of the gene expres-

sion transition depends upon the direction and final intensity of the

light step change.

An in vitro model (i.e., of purified proteins) (Butler et al, 1964;

Sager et al, 1988; Giraud et al, 2010) describing the intensity and

wavelength dependence of switching between ground and active

states has previously been used to describe photoswitching of Phys

(Butler et al, 1964), CBCRs (Rockwell et al, 2012), bacteriophy-

tochromes (Giraud et al, 2010), LOV domains (Swartz et al, 2001),

and cryptochromes (Liu et al, 2008) among others. In this model,

the sensors are characterized by their ground- and active-state

photoconversion cross sections (PCSs), rg(k) and ra(k), which

enable direct calculation of the forward and reverse photoconver-

sion rates, k1 and k2, in response to photons of wavelength k. Given
knowledge of both PCSs (ri(k)), one can compute both photocon-

version rates (ki) for a light source with a known spectral flux

density nlight(k) (lmol m�2 s�1 nm�1) by calculating the spectral

overlap integral ki ¼
R
ri � nlight dk. The photoconversion rates can

then be used, along with the light-independent photoreceptor “dark

reversion” rate (kdr) to calculate the populations of ground- and

active-state photoreceptor.

Despite its potential for predicting photoreceptor responses to

virtually any light condition, the above two-state model has not

been explored for optogenetics. In particular, the complete ri(k) has
not been determined for any optogenetic photoreceptor. While the

absorbance spectrum is often well established for these sensors via

in vitro measurement, the spectral dependence of the quantum yield

(i.e., the probability of photoconversion given that a photon has

been absorbed) is not. However, even if ri(k) were to be deter-

mined, in order to calculate ground- and active-state photoreceptor

populations, the model would need to be extended to capture

photoreceptor production and decay dynamics in living cells.

Finally, an additional model would be needed to capture the biologi-

cal events that occur downstream of the photoreceptor.

Here, we develop, experimentally parameterize, and demonstrate

the predictive capabilities of an in vivo optogenetic TCS model. Specif-

ically, we first extend the two-state model for the in vivo environment,

and integrate simplified descriptions of TCS signaling and output gene

expression in order to capture the complete light-to-gene-product

signal transduction. Next, we develop a standard set of spectral and

dynamic characterization experiments using our open-source Light

Plate Apparatus (LPA) instrument (Gerhardt et al, 2016) enabling

parameterization of the model for both CcaSR and Cph8-OmpR and

estimation of ri(k) in vivo. We validate our approach by using the

model to accurately predict the gene expression response of both

systems to a series of spectrally and dynamically diverse light

programs very different from those used for parameterization. Finally,

we express CcaSR and Cph8-OmpR in the same cell and combine the

models with our biological function generator approach to overcome

their inherent spectral cross-reactivity and demonstrate multiplexed

programming of gene expression dynamics.

Results

Optogenetic TCS model

We constructed an in vivo optogenetic TCS model comprised of a

“sensing model”, which converts light inputs into a ratio of the

photoreceptor populations, and an “output model” which converts

the photoreceptor populations into a gene expression signal. The

sensing model (Materials and Methods) extends the in vitro two-

state photoconversion model to include terms for production of new

ground-state photoreceptors (Sg) at rate kS and dilution of both Sg
and active-state photoreceptors (Sa) at rate kdil to the two-state

model (Fig 1A). The sensing model accepts any nlight(k) input and

produces Sg and Sa populations as an output (Fig 1B and C). The

ratio Sa/Sg feeds into an “output model” comprising a phenomeno-

logical description of TCS signaling and a standard model of output

gene expression (Fig 1C). The TCS signaling model (Materials and

Methods) describes a pure time delay (s) and Hill function mapping

kGðxÞ ¼ b̂þ â � xn=ðKn þ xnÞ between x = Sa/Sg and output gene

production rate (kG). In our initial experiments, we utilize super-

folder GFP (G) as the output and quantify its expression level in

Molecules of Equivalent Fluorescein (MEFL) (Castillo-Hair et al,

2016). â is the range of possible kG values, b̂ is the minimum value

of kG, n is the Hill coefficient, and K is the Sa/Sg ratio resulting in

50% maximal system response. Together, these terms capture SK

autophosphorylation, phosphotransfer, RR dimerization, DNA

binding, promoter activation, and GFP production. GFP is degraded

in a first-order process with rate kdil (Materials and Methods) and

has a minimum concentration b ¼ b̂=kdil and concentration range

a ¼ â=kdil given a constant cell growth rate.

Light source model

Most light sources have a fixed spectral flux density (i.e., output

spectrum) that scales with light intensity (I, lmol m�2 s�1). For such

light sources, we can write nlight ¼ n̂light � I where n̂light is the output

spectrum at 1 lmol m�2 s�1. To quantify the overlap between nlight
and ri for a given photoreceptor, we introduce k̂i as the photoconver-

sion rate per unit light intensity (min�1 [lmol m�2 s�1]�1). Then,
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for a given light source, ki ¼ I � R ri � n̂light dk ¼ I � k̂i. That is, k1 and
k2 take on values proportional to light intensity.

Dynamical and spectral characterization of CcaSR

We designed a set of four simple gene expression characterization

experiments to train the optogenetic TCS model for CcaSR (Fig 2A–

E, Dataset EV2, and Appendix Methods S1 and S2). First, we

quantify activation dynamics by preconditioning E. coli expressing

CcaSR in the dark, introducing step increases in green light (centroid

wavelength kc = 526 nm, (Tables EV1–EV3, Dataset EV3, and

Appendix Method S3) to different intensities, and measuring sfGFP

levels over time by flow cytometry (Materials and Methods, Fig 2B,

and Appendix Fig S1). Second, we measure deactivation dynamics

by preconditioning the cells in different intensities of green light and

measuring the response to step decreases to dark (Fig 2C and

Appendix Fig S1). Third, we measure the ground-state spectral

response by exposing the bacteria to 23 LEDs with kc spanning 369–

958 nm with illumination intensities varying over three orders of

magnitude (Materials and Methods, Fig 2D, Appendix Fig S2, Tables

EV1–EV3, and Appendix Method S3) and measuring sfGFP at steady

state. Finally, we measure the activated state spectral response by

repeating the previous experiment in the presence of a constant

intensity of activating light (Fig 2E and Appendix Fig S2).

CcaSR model parameterization

Next, we used nonlinear regression to fit the model to the dynamical

and spectral characterization data (Materials and Methods,

Table EV4, and Dataset EV2). Specifically, we determined k̂1 and

k̂2values for each LED, and (LED-independent) values of the Hill

function parameters, kdil, kdr, and s for the system (Fig 2F and G).

While simulations using the resulting best-fit parameters (Fig 2B–E,

Dataset EV4, and Table EV4) recapitulate the known properties of

the system (Appendix Fig S3), the value of the Hill parameter K is

weakly determined. In particular, alterations in K from the best-fit

value can be compensated for by changes in k̂1 and k̂2
(Appendix Fig S4). Thus, we cannot confidently determine the

absolute rates of forward and reverse photoconversion. Nonethe-

less, fixing K at its best-fit value results in model predictions that

quantitatively agree with the experimental measurements (Fig 2B–E

and Appendix Fig S3).

Spectral validation of the CcaSR photoconversion model

Our parameterization experiments yield k̂1 and k̂2 values for each

calibration LED (Fig 2G). However, to predict the response of an

optogenetic tool to a new light source without additional calibration

experiments, knowledge of ri is required. To estimate ri for CcaSR,
we developed a procedure to fit a cubic spline to the previously

determined k̂1 and k̂2 values for each of the 23 LEDs (Materials and

Methods, Fig 3A, Appendix Figs S5 and S6, and Datasets EV2 and

EV5). Importantly, our regression procedure considers the response

of CcaSR to the full spectral output of each LED, not just its centroid

wavelength. To validate the resulting ri estimate, we measured

n̂lightðkÞ for a previously untested set of eight color-filtered white-

light LEDs designed to have complex spectral characteristics (Tables

EV1–EV3, Dataset EV3, and Appendix Method S3) and calculated an

expected k̂i for each (Fig 3B). In combination with the remaining

model parameters (Fig 2F), we used these k̂i to predict the steady-

state intensity dose-response to these eight LEDs in the presence

and absence of activating light (kc = 526 nm). These predictions are

A B

C

Figure 1. Optogenetic TCS model.

A The two-state photoreceptor model, which includes ground- and active-state (Sg and Sa) photoreceptors (aka sensors), photoconversion rates k1 and k2, and dark
reversion rate kdr, is converted to a “sensing model” for in vivo environments by adding a Sg production rate kS that captures both gene expression and holo-protein
formation, and a dilution rate kdil for both Sa and Sg due to cell growth and sensor degradation (Materials and Methods). The hollow blue pentagon represents a
chromophore in the ground state, while the filled blue pentagon represents that in the activated state.

B Photoconversion rates are determined by the overlap integral of the spectral flux density of the light source (nlight) and the Sg and Sa photoconversion cross sections
rg and ra (Materials and Methods).

C The sensing model converts nlight into the active ratio of light sensors Sa/Sg which feeds into an “output model” with a simplified model of TCS signaling that
regulates the production rate kG of the target protein G, which is diluted due to cell growth and proteolysis at rate kdil (Materials and Methods).
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A

B C

D E

F G

Figure 2. Characterization and model parameterization for CcaSR.

A Schematic of CcaSR TCS with sfGFP output. Wavelength values represent in vitro measured absorbance maxima.
B–E Training data for the full CcaSR system model (Fig 1C). Experimental observations (“Expt.”) and simulations of the best-fit model (“Model”) are shown for each set.

In particular, the response dynamics to step (B) increases from dark to eight different intensities and (C) decreases from eight different intensities to dark were
evaluated using the kc = 526 nm LED. Time points are distributed unevenly to increase resolution of the initial response. (D, E) Steady-state intensity dose-response
to a set of 23 “spectral LEDs” with kc spanning 369 nm to 958 nm. (D) Forward photoconversion is primarily determined by the response to the spectral LEDs. (E)
Reverse photoconversion is analyzed by including light from a second, activating LED (kc = 526 nm at 1.25 lmol m�2 s�1). The kc = 369 nm LED is not capable of
reaching the brightest intensities, and thus, those data points are not included. Light intensities are shown in units of 0.1 × log2 lmol m�2 s�1 scale (e.g., a value
of 1 corresponds to 10 × 21 = 20 lmol m�2 s�1). sfGFP fluorescence is calibrated to MEFL units (Materials and Methods). Each row of measurements in panels (B–
E) was collected in a single 24-well plate. The 40 plates required to produce the training dataset were randomly distributed across eight LPAs over five separate
trials (Materials and Methods and Dataset EV2). Each color patch represents the arithmetic mean of a single population of cells.

F, G Best-fit model parameters produced via nonlinear regression of the model to training data (Materials and Methods and Table EV4). k̂i are unit photoconversion
rates (10�3 × min�1/(lmol m�2 s�1), that is, ki ¼ I � k̂i , where I is the LED intensity in lmol m�2 s�1). Uncertainty in the least-significant digits are indicated in
parenthesis.
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remarkably accurate for LEDs 1–5 (root-mean-square errors

(RMSEs) from 0.13 to 0.22, Materials and Methods), which drive

sfGFP to high levels, and 7 and 8, which drive low expression

(RMSE = 0.17 and 0.14, respectively), but slightly less so for LED 6

(RMSE = 0.28), which drives sfGFP to an intermediate expression

level (Fig 3C). These results demonstrate that we can predict the

response of CcaSR to a wide range of previously untested light

sources using only spectroradiometric measurements of their

n̂lightðkÞ and not biological calibration experiments.

Dynamic validation of the CcaSR photoconversion model

We previously developed a “biological function generator” method

in which we use a predictive model to computationally optimize

light input programs to drive tailor-made gene expression signals

such as linear ramps and sine waves (Olson et al, 2014). This

method constitutes a rigorous validation of the predictive power of

a model because the light inputs and gene expression outputs are

temporally complex and cover a wide range of levels. To validate

our CcaSR photoconversion model, we first designed a challenging

reference gene expression signal (Fig 4 and Dataset EV6). The signal

starts at b and then increases linearly (on a logarithmic scale) over

90% of the total CcaSR response range over 210 min. After a 60-min

hold, the signal decreases linearly to an intermediate expression

level over another 210 min. We then used the model to computa-

tionally design four light time courses each with different LEDs or

LED mixtures to program the bacteria to follow this reference signal

(Materials and Methods and Dataset EV6). “UV mono” utilizes a

single UV LED (kc = 389 nm) (Fig 4A) to demonstrate control of

CcaSR with an atypical light source. “Green mono” uses the

kc = 526 nm LED (Fig 4B) to demonstrate predictive control with a

typical light source. “Red perturbation” combines “Green mono”

with a strong red (kc = 657 nm) sinusoidal signal (Fig 4C and

Dataset EV6) designed to demonstrate the perturbative effects of

additional sources of light during experiments. Finally, in “Red

compensation”, the “Green mono” time course is re-optimized to

compensate for the impact of “Red perturbation” (Fig 4D and

Materials and Methods).

A

B

C

Figure 3. Estimation of the CcaS photoconversion cross section and spectral validation of the CcaSR model.

A We estimate the continuous ground- and active-state PCSs of CcaS (rest:i , lines) by regressing cubic splines to minimize the difference between experimentally
determined photoconversion rates (points) and those predicted via k̂

pred:

i ¼ R
rest:i � n̂light dk (Materials and Methods, Appendix Figs S5 and S6, and Dataset EV5). Error

bars indicate the standard error of the best-fit values of the photoconversion rates that were determined during model parameterization of CcaSR (Fig 2). The
normalized spectral flux densities of the spectral LEDs are shown at bottom.

B Using rest:i to predict photoconversion rates for light sources not in the spectral LED training set. Predicted photoconversion rates are integrated into the CcaSR model
by keeping all other parameters (Fig 2F) fixed, enabling prediction of the intensity dose-response of CcaSR to the new light source (i.e., G(I)pred.).

C Spectral validation of the CcaSR model and rest:i consists of prediction of the intensity dose-response for eight challenging, broad-spectrum light sources constructed by
applying colored filters over white-light LEDs (Materials and Methods, Tables EV1–EV3, and Dataset EV3). Measured nlight, predicted k̂i (10

�3 × min�1/(lmol m�2 s�1)),
measured and predicted intensity dose-response curves, and RMSE between model and prediction are shown for each LED (Materials and Methods). The forward and
reverse intensity responses are determined using the filtered LED alone (circles) and in the presence of a second activating LED (kc = 526 nm at 1.25 lmol m�2 s�1,
triangles). The simulated responses are determined using the calculated photoconversion rates (Materials and Methods). RMSE relative errors are expressed in log10
decades (Materials and Methods). Data were collected across four LPAs, and the forward (circles) and reverse (triangles) intensity responses were collected over two
separate experimental trials (Materials and Methods and Dataset EV2). Each data point represents the arithmetic mean of a single population of cells.
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The model predicts the response of CcaSR to all four light signals

with high quantitative accuracy (Fig 4 and Dataset EV2). “Mono

UV” presents the greatest challenge, resulting in an RMSE of 0.15

(Fig 4A). We suspect that prediction errors in this program are due

to PCB photodegradation, as we observed no significant toxicity via

bacterial growth rate during this experiment (Appendix Figs S7 and

S8), and the prediction remains accurate until UV reaches maximum

intensity (20 lmol m�2 s�1). “Green mono” (Fig 4B) results in the

lowest error (RMSE = 0.038), which is expected because this LED

was used to perform the dynamic calibrations (Fig 2B and C). As

intended, “Red perturbation” results in an enormous deviation from

the reference signal (Fig 4C), and the model accurately predicts this

effect (RMSE = 0.081). Finally, “Red compensation” demonstrates

that the effect of the perturbation can be eliminated using our model

(Fig 4D, RMSE = 0.078).

Cph8-OmpR photoconversion model

To evaluate the generality of our approach, we repeated the entire

workflow for Cph8-OmpR (Figs EV2–EV4, Appendix Figs S9–S11,

Table EV5, and Dataset EV7). Though CcaSR and Cph8-OmpR are

both photoreversible TCSs, they have different photosensory

domains, ground-state activities, and dynamics. To account for the

fact that Cph8-OmpR is produced in an active ground state, we used

a repressing Hill function in the TCS signaling portion of the output

model (Materials and Methods). The model again fits exceptionally

well to the experimental data (Fig EV2 and Appendix Figs S9–S11).

Unlike CcaSR, which exhibited no detectable dark reversion

(Fig 2F), Cph8-OmpR appears to revert in s1=2 ¼ ln 2=kdr ¼ 5:5min

(Fig EV2F). As before, K is underdetermined (Appendix Fig S4), and

we chose the best-fit value (Table EV5). The Cph8-OmpR model

performs similarly to its CcaSR counterpart in the spectral validation

experiments (Fig EV3) and demonstrates greater predictive control

in the dynamic validation experiments (Fig EV4).

Development of a CcaSR, Cph8-OmpR dual-system model

We engineered a three-plasmid system (Fig EV1 and Dataset EV1)

to express CcaSR and Cph8-OmpR in the same cell with sfGFP and

mCherry outputs, respectively (Fig 5A). To recalibrate for mCherry

[quantified in Molecules of Equivalent Cy5 (MECY)] and any

changes due to the new cellular context, we measured the steady-

state levels of sfGFP and mCherry at different combinations of green

(kc = 526) and red (kc = 657) light (Fig 5B, Appendix Fig S12, and

Dataset EV8) and refit the Hill function parameters of the TCS

signaling portion of the output model (Table EV6). Because the

photoconversion parameters are properties of the photoreceptors

themselves, we left them unchanged. The dual-system model

A B C D

Figure 4. Dynamical validation of the CcaSR model.
We compare model predictions of dynamical CcaSR sfGFP output to experimental measurements for time-varying light inputs from UV (purple line; kc = 389 nm), green
(kc = 526 nm), or green plus red (kc = 657 nm) light. In all cases, the light programs (top) are produced using the light program generator algorithm (LPG, Materials and
Methods). The LPG uses the model of the system to produce a light program that drives a gene expression simulation (bottom, green line) which closely matches the reference
signal (bottom, black line). The simulation (i.e., model prediction), is then compared to the experimentally measured response (bottom, data points). The reference signal
consists of a ramp up, hold, and ramp down on a logarithmic scale (Dataset EV6).

A “UV mono”. The LPG-generated UV light signal drives the CcaSR system along a trajectory predicted to follow the reference signal.
B “Green mono”. The green LED alone provides an optimized input signal.
C “Red perturbation”. The green LED provides the “Green mono” signal, while the red LED generates a sinusoidal perturbative signal (center) with a 240-min period and

20 lmol m�2 s�1 peak-to-peak amplitude.
D “Red compensation”. The red perturbative signal is again present. However, the LPG redesigns the green light signal to account for its presence.

Data information: Light signals are shown in units of log10 lmol m�2 s�1, and RMSE relative errors are expressed in log10 decades (Materials and Methods). Error bars
correspond to the standard deviation in fluorescence measurements over three independent experimental trials (Table EV4 and Dataset EV2).
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accurately captures the experimental observations from the charac-

terization dataset (Fig 5B).

To validate the dual-system model, we again used the biological

function generator approach (Fig 6 and Dataset EV8). We designed

a series of four dual sfGFP/mCherry expression programs to increas-

ingly challenge the model: “Green mono” using only green light and

intended only to control CcaSR (Fig 6A), “Red mono” using only

red light and intended to control only Cph8-OmpR (Fig 6B), “Sum”,

a simple combination of the first two programs (Fig 6C), and

“Compensated sum” where the green light time course is re-opti-

mized to account for the presence of the red signal (Fig 6D) as

before (Materials and Methods). Due to the minimal response of

dual-system Cph8-OmpR to green light (Fig 5B), there was no need

to adjust the red program to compensate for the presence of green

light. The validation experimental results (Fig 6) show that our

dual-system model accurately captures both sfGFP and mCherry

expression dynamics. The CcaSR predictions are nearly as accurate

as the single-system experiments (Fig 4), and the Cph8-OmpR

A

B

Figure 5. Characterization and modeling of a multiplexed CcaSR/Cph8-OmpR system.

A CcaSR and Cph8-OmpR are co-expressed in a single strain. CcaSR regulates the expression of sfGFP, while Cph8-OmpR regulates the expression of mCherry.
Wavelength values are as in Fig 2A.

B Training data for the multiplexed model (“Experiment”, Dataset EV8) consists of a two-dimensional steady-state intensity dose-response to green (kc = 526 nm) and
red (kc = 657 nm) light. The light intensities are logarithmically distributed, with the green light varying on a 0.05 × log2 lmol m�2 s�1 scale (e.g., a value of �1
corresponds to 20 × 2�1 = 10 lmol m�2 s�1) and the red light varying over a 0.05 × log3 lmol m�2 s�1 scale (e.g., a value of �1 corresponds to
20 × 3�1 = 6.67 lmol m�2 s�1). The different intensity ranges are used to maintain a high-resolution measurement despite the differences in the intensity dose-
responses of the two systems. The four missing intensity values (white boxes) were not collected. The training data were used to re-fit the a, b, n, and K Hill function
parameters for the CcaSR and Cph8-OmpR models (Table EV6). Simulated steady-state responses to the same light environments for the best-fit dual-system models
(Table EV6) are shown (“Model”). mCherry fluorescence is calibrated to MECY units (Molecules of Equivalent Cy5, Materials and Methods). RMSE relative errors are
expressed in log10 decades (Materials and Methods). Data were collected in one experimental trial, and the 192 samples were randomly distributed across eight LPAs
(Materials and Methods, Table EV6, and Dataset EV8). Each color patch represents the arithmetic mean of a single population of cells.
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results match single-system accuracy (Fig EV4), demonstrating the

extensibility of our approach to multiple optogenetic tools.

Multiplexed biological function generation

Finally, we designed and experimentally implemented four multi-

plexed sfGFP/mCherry expression functions representing classes of

signals useful for gene circuit characterization (Datasets EV6 and

EV8). “Dual-sines” illustrates that two gene expression sinusoids with

different offsets, amplitudes, and periods can be composed without

interference (Fig 7A). Variations of this combination of signals could

be used to perform frequency analysis of multiple nodes in a gene

network. “Sine and stairs” demonstrates that our approach can gener-

ate two completely different gene expression signals at the same time

(Fig 7B). “Dual-stairs” demonstrates that the ratio of two proteins

can be varied over a remarkably wide range (Fig 7C). Finally, “Time-

shifted waveform” (Fig 7D) demonstrates that our approach can be

used to characterize genetic circuits where time-delays are critical,

such as those involved in cellular decision-making.

Discussion

Our optogenetic TCS model is superior to current alternatives by

several key criteria. First, like our previous version (Olson et al,

2014), it is quantitatively predictive and requires no parameter

recalibrations from day-to-day. However, while the previous model

requires experimental calibration against each light source used, the

current one requires only a single set of calibration experiments and

then generalizes to virtually any light source or mixture of light

sources whose spectral characteristics can be measured using a

spectroradiometer. Second, our optogenetic TCS model is compati-

ble with photoreceptors with very different action spectra, opposite

ground vs. active-state signaling logic, and dramatically different

dark reversion timescales. Third, the current model modularly

decouples the processes of sensing (photoconversion) and output

(signal transduction and gene expression). The sensing model

component (Fig 1A) should be compatible with a wide range of

photoreceptors, including those in other organisms, because the

core two-state photoswitching mechanism is used to describe their

performance in vitro. Then, to describe optogenetic tools based

upon those photoreceptors, our TCS output model can be replaced

with alternatives appropriate to other pathways.

A major current problem in optogenetics is that tools developed

in different studies are characterized using different culturing condi-

tions, experiments, light sources, reporters, metrics, and so on. This

lack of standardization makes it challenging to compare the perfor-

mance features of different optogenetic tools on even a qualitative

basis. The modeling and characterization approach we develop here

is based on openly available optical hardware (Gerhardt et al, 2016)

and flow cytometry analysis and calibration software (Castillo-Hair

et al, 2016). Thus, our results could be directly reproduced in other

laboratories using the light programs reported here (Datasets EV2,

EV7 and EV8). Furthermore, our approach could be used to make

data sheets that describe the behavior of diverse optogenetic tools in

standard units. This benefit would enable researchers to choose the

A B C D

Figure 6. Validation of the multiplexed system model.
Predicted responses of the multiplexed system (Fig 5A) to time-varying signals of green (kc = 526 nm) and red (kc = 657 nm) light are compared to experimental results.
Reference signals, light programs, and experimental data are as in Fig 4.

A “Green mono”. The green LED alone provides an optimized input signal for CcaSR.
B “Red mono”. The red LED alone provides an optimized input for Cph8-OmpR.
C “Sum”. The “Green mono” and “Red mono” programs are used simultaneously without any compensation, leading to a substantial deviation of the CcaSR output from

the reference trajectory.
D “Compensated sum”. The “Red mono” program is used; however, the green light program is produced while incorporating red light program into the LPG (above).

Data information: RMSE relative errors are expressed in log10 decades (Materials and Methods). Error bars correspond to the standard deviation in fluorescence
measurements over three separate experimental trials (Table EV6 and Dataset EV8).
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most appropriate tool for different applications. Additionally, short-

comings of specific tools could be identified, informing efforts to

optimize performance by rational approaches such as protein design

(McIsaac et al, 2014; Engqvist et al, 2015; Guntas et al, 2015).

Our approach should enable better control of optogenetic tools

with alternative or highly constrained optical hardware used in

many research laboratories. For example, many groups perform

single-cell optogenetic studies using fluorescence microscopes with

severely restricted optical configurations. Alternatively, consumer

projectors or tablet displays are potentially powerful, low-cost hard-

ware options for optogenetics (Stirman et al, 2012; Beyer et al,

2015). The output spectrum of the light source can be measured and

integrated into our workflow. After a simple recalibration (e.g.,

Fig 5) to account for any changes due to the new growth environ-

ment, one should be able to predict and control the optogenetic tool

using the new light source.

Oftentimes, it is desirable to simultaneously control an optoge-

netic tool while imaging a cell of interest using white-light sources

and excitation light for fluorescent reporters. Such alternative

sources of illumination can have deleterious effects on the ability to

control the optogenetic tool. However, if the nature of the alterna-

tive light signal is known, our approach can compensate for such

perturbations (e.g., Figs 6 and 7). In silico feedback control has also

been used to drive desired gene expression dynamics in optogenetic

experiments (Milias-Argeitis et al, 2011, 2016; Melendez et al,

2014). The major benefit of this approach is that perturbations of

unknown origin can be compensated by monitoring deviations in

the output of an optogenetic tool relative to a reference. Our model

is compatible with such in silico feedback control methods.

While basic multichromatic control of optogenetic tools has been

previously demonstrated (Tabor et al, 2011; Müller et al, 2013), the

multiplexed biological function generation approach demonstrated

here dramatically extends the capabilities of these systems, enabling

implementation of several classes of experiments. We have previ-

ously shown that expression dynamics of transcription factors, as

well as fluorescent proteins, can be controlled with our optogenetic

tools (Olson et al, 2014). First, the two-dimensional response of a

genetic circuit or signaling pathway could be rapidly evaluated with

high reproducibility and precision. For example, one could map the

response of two-input transcriptional logic gates (Nielsen et al,

2016), which integrate the expression levels of two different tran-

scription factors by systematically and independently varying their

expression levels while measuring the gate output with a reporter

gene. The dynamics of such gates are otherwise difficult to evaluate

and seldom characterized (Olson & Tabor, 2014). Second, the input/

output dynamics of a transcriptional circuit could be characterized

as a function of the state of the circuit itself. For example, one could

evaluate how well a synthetic transcriptional oscillator can be

entrained (Stricker et al, 2008; Mondragón-Palomino et al, 2011) as

a function of the strength of a feedback node. In this case, one opto-

genetic tool could be used for the entrainment, while the second

was used to alter expression level of a circuit transcription factor

regulating feedback strength. Third, transcription and proteolysis

(Fernandez-Rodriguez & Voigt, 2016) could be independently

A B C D

Figure 7. Multiplexed biological function generation.
The LPG is used to program CcaSR and Cph8-OmpR outputs to independently follow different reference signals. Red light (kc = 657 nm) programs are optimized first using the
LPG, and then, the “Compensated” approach (Fig 6D) is utilized to generate the green light (kc = 526 nm) program (Materials and Methods).

A “Dual-sines”. The sfGFP and mCherry reference trajectories are sinusoids with different periods, amplitudes, and offsets.
B “Sine and stairs”. The mCherry signal follows the same sinusoid in “Dual-sines”, but the sfGFP reference is a stepped trajectory with several plateaus and increasing

linear ramps.
C “Dual-stairs”. The sfGFP signal follows the same stair-shape in “Sine and stairs”; however, the mCherry response is a decreasing stair-shape.
D “Time-shifted waveform”. The sfGFP and mCherry reference trajectories both follow the same arbitrary waveform consisting of ramps, holds, and a sinusoid, with

sfGFP trailing mCherry by 40 min.

Data information: RMSE relative errors are expressed in log10 decades (Materials and Methods). Error bars correspond to the standard deviation in fluorescence
measurements over three independent experimental trials (Table EV6 and Dataset EV8).

ª 2017 The Authors Molecular Systems Biology 13: 926 | 2017

Evan J Olson et al A spectral model for multiplexed optogenetics Molecular Systems Biology

9



controlled with two different optogenetic tools to alternatively

program rapid increases or decreases in expression level. Such an

approach could accelerate the gene expression signals that we have

generated in this and our previous study (Olson et al, 2014),

enabling characterization of gene circuit dynamics on faster time-

scales. Finally, multiplexed biological function generation could be

used to evaluate how the timing of expression of two genes impacts

cellular decision-making (Kuchina et al, 2011; Vishnoi et al, 2013;

Castillo-Hair et al, 2015). For example, in Bacillus subtilis, the gene

circuits that regulate sporulation and competence compete via a

“molecular race” in the levels of the corresponding master regula-

tors (Kuchina et al, 2011). By placing them under independent opto-

genetic control, the means by which their dynamics impact these

cellular decisions could be evaluated more easily and rigorously.

Materials and Methods

Bacterial strains

All systems utilize the E. coli BW29655 host strain (Zhou et al,

2003). The CcaSR system strain carries the pSR43.6 and pSR58.6

plasmids, which confer spectinomycin and chloramphenicol resis-

tance, respectively (Schmidl et al, 2014). The Cph8-OmpR system

strain carries the pSR33.4 (spectinomycin) and pSR59.4 (ampicillin)

plasmids (Schmidl et al, 2014). The dual-system strain carries

pSR58.6, pSR78 (spectinomycin), and pSR83 (ampicillin). Plasmid

maps and sequences are available (Fig EV1 and Dataset EV1).

Bacterial growth and light exposure

Cell culturing and harvesting protocols were developed to ensure a

high degree of precision and reproducibility in experiments both from

well-to-well and from day-to-day (Appendix Method S1). Cells were

grown at 37°C and shaken at 250 rpm throughout the experiment

(Sheldon Manufacturing Inc. SI9R) with temperature calibrated and

logged by placing a thermometer probe in a sealed 125-ml water-

filled flask (Traceable Excursion-Trac 6433). Cultures were grown in

M9 media supplemented with 0.2% casamino acids, 0.4% glucose,

and appropriate antibiotics. Precultures were prepared in advance by

freezing 100-ll aliquots of early exponential phase cultures

(OD600 = 0.1–0.2) grown in the same media conditions at �80°C

(Appendix Method S2). Cultures were inoculated at low densities

(typically OD600 = 1 × 10�5) to ensure that final densities did not

reach stationary phase (OD600 < 0.2). For each experiment, 192

cultures were grown in 500 ll volumes within 24-well plates (Arc-

ticWhite AWLS-303008), sealed with adhesive foil (VWR 60941-126).

Experiments were performed using eight 24-well LPA instru-

ments (Gerhardt et al, 2016), enabling precise control of two LEDs

to define the optical environment of 192 cultures at a time. LPA

program files were generated using Iris (Gerhardt et al, 2016) and a

custom Python tool (Dataset EV9).

LED measurement

All LEDs were measured and calibrated (Appendix Method S3 and

Dataset EV3) using a spectrometer (StellarNet UVN-SR-25 LT16)

with NIST-traceable factory calibrations performed on both its

wavelength and intensity axes immediately prior to use for this

study. A six-inch integrating sphere (StellarNet IS6) was used,

enabling measurement of the total power output of each LED (in

lmol s�1). The spectrophotometer was blanked by a measurement

of a dark sample before each LED measurement. Measurements

were saved as .IRR files, which contain the complete LED spectral

power density Plight (k) (lmol s�1 nm�1) in 0.5 nm increments as

well as all setup parameters for the measurement (i.e., integration

time and number of scans to average). These files were processed

by Python scripts to calculate the LED characteristics, including the

peak, centroid, FWHM, and total power. For spectral validation

experiments, cinematic lighting filters (Roscolux) were cut, formed

into LED-shaped caps, and fitted atop white LEDs (Table EV1).

Calculation of nlight

Because the LEDs we utilize have fixed spectral characteristics, the

spectral flux density (lmol m�2 s�1 nm�1) incident on the photore-

ceptors can be parameterized by the LED intensity (lmol m�2 s�1).

The cultures are shaken throughout the experiment, and we assume

that the cells are well mixed within the culture volume. Thus, the

mean light intensity within the culture volume, nlight (k), can be

calculated by integrating the intensity throughout the volume of the

well. Under the assumption of negligible light absorption by the

culture sample (the M9 media is transparent, and the cultures are

harvested at low density), this integral simplifies to become the total

power of the LED (lmol s�1) divided by the cross-sectional area of

the well. Given a well radius of 7.5 mm, we calculate

nlight kð Þ ¼ Plight kð Þ
p 7:5� 10�3 m
� �2 � 5:659� 103 m�2 � Plight kð Þ

LED calibration

Each of the approximately 700 individual LEDs used in the study

were measured (Appendix Method S3 and Dataset EV3), enabling

compensation for variation in LED and LPA manufacturing (Tables

EV1–EV3 and Dataset EV9). Each LED was calibrated while powered

from the same LPA socket used in experiments. First, a sample of

LEDs were measured to identify the electrical current required to

achieve an appropriate level of total flux,
R
nlight kð Þdk. The amount

of current required varied depending on the wavelength and manu-

facturer. The current was adjusted using the LPA “dot-correction

(DC)” to achieve a total flux approximately 20% above

20 lmol m�2 s�1 when the LED was fully illuminated. The appro-

priate DC level was determined for each LED model. Using these DC

levels, the complete set of LEDs were measured. LEDs that produced

a total flux below 20 lmol m�2 s�1 were re-measured at a higher

DC level. This set of LED measurements was used to convert the

desired intensity time course of each LED into a series of 12-bit

grayscale values (i.e., 0–4,095) used by the LPA. The LPA reads the

grayscale values to produce the appropriate pulse-width-modulated

(PWM) signal to achieve the desired intensities.

Bacterial sample harvesting

Cultures were harvested for measurement (Appendix Method S1)

after precisely 8-h growth by placing the 24-well plates into ice-water

Molecular Systems Biology 13: 926 | 2017 ª 2017 The Authors

Molecular Systems Biology A spectral model for multiplexed optogenetics Evan J Olson et al

10



baths. Each culture was then subjected to both an absorbance

measurement to ensure consistent well-to-well and day-to-day

growth, and flow cytometry for quantification of sfGFP or mCherry

expression. Absorbance measurements were performed in black-

walled, clear-bottomed 96-well plates (VWR 82050-748) in a plate

reader (Tecan Infinite M200 Pro). Before fluorescence measurements

were performed, culture samples were processed via a fluorescence

maturation protocol to ensure measurements were representative of

the total amount of produced fluorescent reporter (Olson et al,

2014). Rifampicin (Tokyo Chemical Industry R0079) was dissolved

in phosphate-buffered saline (PBS, VWR 72060-035) at 500 lg/ml

and used to inhibit sfGFP production during maturation.

Flow cytometry

Population distributions of fluorescence were measured for each

culture on a flow cytometer as previously described (Olson et al,

2014). A calibration bead sample (Spherotech RCP-30-5A) in PBS

was measured immediately prior to the culture samples from each

experimental trial. At least 5,000 events were collected for the cali-

bration bead sample, and at least 20,000 events were collected for

each culture sample.

Flow cytometry data analysis

Single-cell distributions of sfGFP fluorescence were gated, analyzed,

and calibrated into MEFL and MECY units using FlowCal (Castillo-

Hair et al, 2016) via a custom Python script (Dataset EV9). Measure-

ments were gated on the FSC and SSC channels using a gate fraction

of 0.3 for calibration beads and 0.8 for cellular samples (Castillo-

Hair et al, 2016). Reported culture fluorescence values are the arith-

metic means of the cellular populations.

Sensing model

The light-sensing model can be described by the following system of

ODEs:

dSg
dt

¼ kS þ k2 þ kdrð Þ � Sa tð Þ � k1 þ kdilð Þ � Sg tð Þ

dSa
dt

¼ k1 � Sg tð Þ � k2 þ kdil þ kdrð Þ � Sa tð Þ;

where the variables and rates have been previously introduced

(Introduction, Results) with best-fit values summarized in Figs 2F

and EV2F. Note that k1 and k2 are implicitly dependent upon time,

as they are functions of the time-varying light environment of the

sensors.

If we substitute for the fraction of active sensors,

y � Sa=ðSg þ SaÞ, the system can be expressed as:

dy

dt
¼ k1 � k1 þ k2 þ kdil þ kdrð Þ � y tð Þ ¼ k1 � ktot � y tð Þ;

where

ktot � k1 þ k2 þ kdil þ kdr:

This ODE can be solved analytically for a step change in light

from one environment to another. If the step change occurs at time

t = 0, then k1, k2, and ktot are all fixed for t > 0. Given an initial

sensor fraction y(0) = y0, we find.

y tð Þ ¼ y0 þ k1
ktot

� y0

� �
� 1� e�ktott
� �

:

This solution represents an exponential transition from an initial

sensor fraction of y0 to a final fraction given by k1=ktot with a time

constant set by ktot. As a result, we anticipate that the transition

dynamics of y(t) will be slowest under zero illumination when

ktot = kdil + kdr. We also expect that the transition rates will be

unbounded as intensity increases.

Finally, for multiple light sources, we simply linearly combine the

photoconversion rates from each source: ki = ki,source 1 + ki,source 2.

TCS signaling model

We utilize a highly simplified model of TCS signaling and gene regu-

lation. This model relates the production rate of the output gene

kG(t) to the active ratio of light sensors Sa tð Þ
Sg tð Þ ¼ y tð Þ

1�y tð Þ � R tð Þ. We

model TCS signaling as a pure time delay s and a sigmoidal Hill

function. For CcaSR, the Hill function is activated by increasing

sensor ratios, while for Cph8-OmpR, the inverted TCS signaling

activity results in a repressing Hill function. Thus, we write

kG tð Þ ¼ b̂þ â R t�sð Þn
KnþR t�sð Þn for CcaSR and kG tð Þ ¼ b̂þ â Kn

KnþR t�sð Þn for

Cph8-OmpR, where the variables and rates have been previously

introduced (Introduction, Results) with best-fit values summarized

in Figs 2F and EV2F.

Output gene expression model

We model output gene expression by first-order production and

dilution dynamics:

dG

dt
¼ kGðtÞ � kdil � G tð Þ;

where the variables and rates have been previously introduced

(Introduction, Results) with best-fit values summarized in Figs 2F

and EV2F.

Generation of model simulations

Simulations (Datasets EV2, EV7 and EV8) were produced by numer-

ically integrating the system of ODEs using Python’s scipy.inte-

grate.ode method using the “zvode” integrator with a maximum of

3,000 steps (Dataset EV4).

Model parameterization

The CcaSR and Cph8-OmpR models were parameterized using

global fits of the model parameters to the complete training datasets

(Figs 2B–E and EV2B–E, and Datasets EV2 and EV7). The “lmfit”

Python package, which is based on the Levenberg-Marquardt mini-

mization algorithm, was used to perform the fits and analyze the

resulting parameter sets (Newville et al, 2014). The fits were

performed by minimizing the sum of the square of the relative error

between each measured data point and the same point in a corre-

sponding model simulation. Thus, the form of the error metric
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utilized was error ¼ P
i

Gdata
i

�Gmodel
i

Gdata
i

� �2

across the complete set of data

points fGdata
i g.

Estimation of PCSs

Photoconversion cross section estimates rest:i ðkÞ were constructed by

linearly regressing a cubic spline to the experimentally determined

photoconversion rates in order to produce a continuous PCS

(Appendix Fig S5 and Dataset EV5). The rest:i ðkÞ were produced by

minimizing the error between unit experimental photoconversion

rates k̂expt:i (Figs 2F and EV2F) and spline-derived predictions

k̂
pred:

i ¼ R
rest:i � n̂light dk. The splines were constructed by establish-

ing a series of integral constraints for the photoconversion rates,

continuity constraints for the spline knots, and boundary

constraints. As this problem contains more constraints than parame-

ters, optimization is required. We used weighted least-squares

with Lagrange multipliers to optimize each spline. To avoid over-

parameterization of the rest:i ðkÞ, we used “Leave-one-out cross-

validation (LOOCV)” to evaluate the performance of splines with

between 5 and 20 knots to determine the ideal number required

for each The rest:i ðkÞ (Appendix Fig S6). The resulting optimal

number of splines was 12 and 8 for CcaS rg and ra and 12 and 12

for Cph8 rg and ra. One knot was fixed at 1,050 nm, and the

remaining knots were evenly distributed between 350 and 800 nm

(Appendix Figs S5 and S6).

Calculation of prediction error (RMSEs)

For model validation, we use a relative error metric

(RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPi log10ðGðpred:Þ

i =G
ðexpt:Þ
i ÞÞ2=n

q
Þ that reports the root-

mean-square (RMS) of the log10 error between the predicted and

measured responses (Datasets EV2, EV7 and EV8).

Light program generator (LPG) algorithm

The LPG was used as previously described (Olson et al, 2014). The

only modification was to use simulations generated by the model

described herein rather than the previous model. Compensated light

programs were generated by incorporating the presence of the exter-

nal light signal into the model simulations.

Comparison of output gene expression ranges for single-
vs. dual-systems

The CcaSR output range is nearly conserved (60-fold vs. 56-fold),

while the mCherry response from Cph8-OmpR is substantially

reduced (210-fold vs. 6.0-fold). Additionally, the light response is

less sensitive than was observed for Cph8-OmpR individually, as

half-repression requires a 5.2-fold higher intensity (Appendix Fig

S14). We speculate that the reduction in the output range and

decrease in sensitivity of Cph8-OmpR results from a competition

between Cph8 and CcaS for limiting PCB, leading to a substantial

population of light-insensitive apo-Cph8. Notably, the growth rate

(Appendix Fig S13) of the dual-system strain (39.2 min per

doubling) is only marginally slower than the single-system strains

(37.4 and 37.9 min for CcaSR and Cph8-OmpR, respectively).

Detailed descriptions of multiplexed function generation
reference signals

In the below descriptions of the multiplexed function generation

reference signals (Dataset EV8), the percentages and fractions

correspond to a log-scaled representation of the output range (e.g.,

if a system has a 16-fold output range, the 50% level on a log scale

would be at the same expression at the 25% level on a linear scale).

1 Dual-sines. The mCherry reference signal is described by the

function 0:5þ 0:3 sinð2pt=480minÞ while the sfGFP reference

signal follows 0:7þ 0:2 sinð2pt=360minÞ.
2 Sine and steps. The mCherry reference signal is the same as in

“Dual-sines”, while the sfGFP signal is a series of 80-min holds

and 40-min linear ramps in increasing increments of 20% of the

output range.

3 The sfGFP signal is the same as in the “Sine and steps”

program, while the mCherry signal is the inverse of the same

program.

4 (Time-shifted waveform). The mCherry signal is a complex func-

tion consisting of the following steps:

a linear ramp from 0 to 70% over 80 min,

b hold at 70% for 40 min,

c linear ramp down to 50% over 60 min,

d hold at 50% for 40 min,

e sinusoidal signal described by the function 0:5þ 0:25

sinð2p t � 220minð Þ=220minÞ;
f hold at 50% for 40 min.

The sfGFP signal is the same program but delayed by 60 min.

Expanded View for this article is available online.
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