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Battery-free wireless imaging of underwater
environments

Sayed Saad Afzal1,2,5, Waleed Akbar2,3,5, Osvy Rodriguez1,2,5, Mario Doumet 2,
Unsoo Ha2, Reza Ghaffarivardavagh2 & Fadel Adib 1,2,3,4

Imaging underwater environments is of great importance to marine sciences,
sustainability, climatology, defense, robotics, geology, space exploration, and
food security. Despite advances in underwater imaging,most of the ocean and
marine organisms remain unobserved and undiscovered. Existingmethods for
underwater imaging are unsuitable for scalable, long-term, in situ observations
because they require tethering for power and communication. Here we
describe underwater backscatter imaging, a method for scalable, real-time
wireless imaging of underwater environments using fully-submerged battery-
free cameras. The cameras power up from harvested acoustic energy, capture
color images using ultra-low-power active illumination and a monochrome
image sensor, and communicate wirelessly at net-zero-power via acoustic
backscatter. We demonstrate wireless battery-free imaging of animals, plants,
pollutants, and localization tags in enclosed and open-water environments.
The method’s self-sustaining nature makes it desirable for massive, con-
tinuous, and long-term ocean deployments with many applications including
marine life discovery, submarine surveillance, and underwater climate change
monitoring.

Underwater images of marine animals, plants, oceanic basins, coral
reefs, and marine debris are key to understanding marine environ-
ments and their impact on the global climate system1–4. Underwater
imaging enables the discovery of newmarine species and advances our
understanding of the impact of climate change and human activity on
the underwater world1,5,6. Underwater imaging also supports global
aquaculture food production, the world’s fastest-growing food sector,
where it is used to detect diseases such as sea lice, monitor harmful
algae blooms, and regulate fish feeding patterns to optimize growth7,8.
More generally, underwater imaging has a large number of applications
across oceanography, marine biology, underwater archeology, clima-
tology, space exploration, sustainability, robotics, and defense9–16.

Despite advances in underwater imaging, studies estimate that
most of the ocean and marine organisms have not been observed
yet17–19. A long-standing impediment for underwater observations

stems from the difficulty of long-term, real-time, in situ imaging of
underwater environments. Existing methods for continuous under-
water imaging need to be tethered to ships, underwater drones, or
power plants for power and communication6,20–23. In the absence of
such tethering, they rely on batteries which inherently limit their life-
time (and require expensive oceanographic missions for battery
replacement). In principle, one could overcome this limitation and
power up underwater cameras by harvesting energy from ocean
waves, underwater currents, thermal gradients, or sunlight23–27. How-
ever, adding a tidal, solar, or wave harvester to each underwater
camerawouldmake it significantlymorebulky and expensive, andmay
limit its deployment environment (for example, solar and wave har-
vesters work well only near the surface). As a result, it remains chal-
lenging today to perform sustainable, continuous, and distributed
underwater imaging.
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Here, we report underwater backscatter imaging, a battery-free
wireless imaging method for underwater environments. Our method
consumes five orders of magnitude less power than previously
reported underwater wireless imaging systems28–30. The ultra-low-
power nature of our method enables it to operate entirely based on
harvested energy. Independence of batteries enables long-term, in situ
imaging of remote underwater objects, and wireless communication
enables real-timemonitoring of underwater environments. As a result,
this method may be deployed at scale to discover rare species and
observe marine populations, act as early warning systems for diseases
in aquaculture farms, monitor geological processes (such as sub-
marine volcanoes) and changes in ocean currents, and more closely
surveil commercial and military operations17,22,31.

Results and discussion
Wireless imaging method design and architecture
Ourmethod encompasses fully-integrated ultra-low-power operations
including optical sensing, active illumination, processing, and wireless
communication. It is capable of performing passive imaging as well as
active color imaging using ultra-low-power active illumination, which
enables it to operate in different lighting conditions, including com-
plete darkness. Captured images are communicated to a remote
receiver that uses them to reconstruct color images of underwater
environments. Thismethod can be powered by energy harvested from
external sources, such as acoustic, solar, thermal, or ocean current
energy. We implement acoustic energy harvesting because of its high
efficiency, low cost, and capacity for long-range propagation in
underwater environments32. The same approaches to energy-neutral
imaging can be realized with other sources of ambient energy, such as
solar, thermal, or ocean current energy.

Figure 1a schematically summarizes the key components of this
wireless imaging method. In acoustically-powered underwater back-
scatter imaging, a remote projector transmits an acoustic signal on the
downlink. Our battery-free sensor node harvests energy from the
received acoustic signal using piezoelectric transducers. The received

acoustic energy is converted to electrical energy, rectified using a full-
wave rectifier, and stored in a super-capacitor.When the stored energy
reaches a minimum required threshold, it autonomously activates a
powermanagement unit to regulate the voltage and supply it to an on-
board processing and memory unit (realizable as a field-
programmable gate array or FPGA) and ultra-low-power oscillators.
The processing unit and oscillator trigger an ultra-low-power mono-
chromatic CMOS camera and on-board active illumination to capture
the imageof an underwater object (Fig. 1b). The entire imagingprocess
is powered by the harvested energy in the super-capacitor, whose
stored voltage varies over time as a function of the power consump-
tion of different processing stages (Fig. 1c).

A critical step toward realizing battery-free imaging is the devel-
opment of a technique for ultra-low-power underwater communica-
tion. Specifically, the communication component of the system must
not consume more energy than what can be harvested from the
remote acoustic source, which typically ranges from a few tens to
hundreds of microwatts (see Range Analysis in Supplementary Infor-
mation for an analysis of acoustic energy harvesting as a function of
distance). However, state-of-the-art low-power underwater commu-
nicationmodems require 50–100milliwatts to communicate over tens
ofmeters33. Thus, they would require three to five orders ofmagnitude
more power than what is available from harvesting. This significant
energy imbalance would make battery-free operation with these
modems impractical (see SupplementaryDiscussion in Supplementary
Information).

To operate within the energy harvesting constraints of our pro-
posed battery-free imaging method, we leverage piezo-acoustic
backscatter to communicate the captured image on the uplink,
extending a recently developed net-zero power communication
technology34,35 to enable telemetry of imaging data. Underwater piezo-
acoustic backscatter communicates messages by modulating the
reflection coefficient of its piezoelectric transducer (Fig. 1a). Specifi-
cally, due to the electromechanical coupling between a piezoelectric
transducer and its electrical impedance load, it is possible tomodulate

Fig. 1 | Overview of underwater backscatter imaging. a A remote acoustic pro-
jector (top right) transmits sound on the downlink. The acoustic energy is har-
vested by a piezoelectric transducer and converted to electrical energy that powers
up the batteryless backscatter sensor node. The energy accumulates in a super-
capacitor that powers up an FPGA unit, a monochromatic CMOS sensor that cap-
tures an image, and three LEDswhich enable RGB active illumination. The captured
image is communicated via acoustic backscatter modulation on the uplink, and a
remote hydrophone measures the reflection patterns to reconstruct the

transmitted image.bThe batteryless sensor is shown in an experimental trial where
it is used to image an underwater object with active illumination that enables
capturing color images. cTheplot shows the voltage in the supercapacitor,which is
harvested from acoustic energy and varies over time as a function of the power
consumption of different processing stages. d The spectrogram shows the fre-
quency response of the signal received by the hydrophone over time, demon-
strating its ability to capture reflection patterns due to backscattermodulation and
decode them into binary to recover the transmitted image.
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the transducer’s radar cross section. Thus, the battery-free node
encodes pixels into communication packets by switching between
different electric loads (inductors) connected to the transducer (see
“Communication through backscatter” in Methods). The switching is
done by simply controlling two transistors and is realizable with 24
nanowatts of power. A remote hydrophone measures the received
acoustic signal to sense changes in the reflection patterns due to
backscatter (Fig. 1d). The reflection patterns are decoded and used to
reconstruct the image captured by the remote battery-free cameras.
Robust end-to-end communication is realizable by implementing a full
networking and communication stack that incorporates underwater
channel estimation, packetization, and error detection (see “Uplink
decoding” in Methods).

Our method is capable of capturing color images of underwater
objects at ultra-low power even in low-lighting conditions, which are
standard in the deep sea due to light absorption in the water column.
To do so, we utilize an ultra-low-power CMOS imaging sensor
(HM01B0 from Himax Corporation), which can capture monochro-
matic images. To reconstruct color images using the monochromatic
imaging sensor, we devised a method for low-power multi-color active
illumination. Our battery-free imaging system incorporates three
monochrome light-emitting diodes (LEDs): red, green, and blue. An
ultra-low-power processing and memory unit (IGLOO nano FPGA)
alternates between activating each of these LEDs and captures mono-
chromatic images with each active illumination cycle (Fig. 2a). The
monochromatic images are acoustically backscattered to the remote
receiver. After decoding each of the images, the receiver synthesizes
the received packets intomulti-illumination pixels by applying them to
the RGB channels of a digital pixel array to reconstruct color images,
demonstrating the possibility to recover color patterns of underwater
objects such as corals (Fig. 2b, see Supplementary Movie 1).

We demonstrate that in situ underwater wireless batteryless
imaging is possible using a self-powered camera system (Fig. 2c) that

harvests acoustic energy and communicates using piezo-acoustic
backscatter (Fig. 2d). The harvested energy is expended in cycles that
alternate between imaging and communication (Fig. 2e). Upon cap-
turing image segments, the processing unit packetizes the pixels and
communicates them using piezo-acoustic backscatter, at a power
consumptionof 59μW.Todealwith the bandwidthmismatch between
the ultra-low-power CMOS image sensors (few Mbps) and the under-
water acoustic communication channel (few kbps), the captured ima-
ges are buffered in thememory unit cells (see “FPGAcontrol and logic”
in Methods). Our fabricated opto-electro-mechanical system consists
of multilayer piezo-electric transducers, electronic components
(diodes, capacitors, low-power voltage regulators, and DC-DC con-
verters, low-power oscillators), a processing andmemory unit (FPGA),
LEDs, and a CMOS image sensor (Supplementary Fig. 1). Active illu-
mination using the LEDs is themost power consumingoperation of the
battery-free imaging system. For acoustic communication rates of
1 kbps, empirical measurements demonstrate an average power con-
sumption of 276.31μW for active imaging (see “Power analysis” in
Methods and Supplementary Table 1). In our demonstrations of pas-
sive monochromatic imaging where active illumination is not needed,
the batteryless camera consumes an average of 111.98μW (Supple-
mentary Table 2). In both configurations, the entire energy budget is
harvested from underwater acoustics. Other configurations with dif-
ferent throughput and active illumination techniques are possible.

Experimental demonstration and evaluation
We built a proof-of-concept prototype to demonstrate underwater
backscatter imaging with animals, plants, and pollution across con-
trolled and uncontrolled environments. The prototype was tested in
Keyser Pond in southeastern New Hampshire (43°N, 72°W), where it
was used to image pollution from plastic bottles on a lakebed at 50 cm
from the imaging sensor (Fig. 3a). Here, color imaging using a mono-
chromatic sensor was successful (Fig. 3b), despite the presence of
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Fig. 2 | Active illumination in underwater backscatter imaging. a To recover
color images with a monochrome sensor, the camera alternates between acti-
vating three LEDs—red, green, and blue. The top figures show the illuminated
scene, while the bottom figures show the corresponding captured monochro-
matic images, which are transmitted to a remote receiver. b The figure shows
the color image output synthesized by the receiver using multi-illumination
pixels which are constructed by combining the monochromatic image output
for each of the three active illumination LEDs. c A side view of the camera

prototype demonstrates a larger dome which houses the CMOS image sensor
and a smaller dome which contains the RGB LEDs for active illumination. The
structure is connected to a piezoelectric transducer. d The circuit schematic
demonstrates how the imaging method operates at net-zero power by har-
vesting acoustic energy and communicating via backscatter modulation. e The
plots show the power consumption over time. The power consumption peaks
during active imaging and drops when the captured images are being
backscattered.
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external illumination. Theprototypewas also successful in imaging the
Protoreaster linckii, also known as the African starfish, in a controlled
environment with external illumination; the captured image displays
numerous tubercles along the starfish’s five arms (Fig. 3c). Further-
more, due to the ability of underwater backscatter imaging to operate
continuously, the method was successful in monitoring the growth of
an Aponogeton ulvaceus, where imaging was performed in the dark
over a week, while relying entirely using the harvested energy and
active multi-color illumination (Fig. 3d). In all of these scenarios,
theprototype was fully-submerged, wireless, batteryless, and
autonomous.

The benefits of underwater backscatter imaging extend beyond
observational monitoring to more complex tasks such as underwater
localization and inference. Todemonstrate the feasibility of such tasks,
the imagingmethodwas used to detect and localize visual tags such as
AprilTags (Fig. 4a); these tags have been previously utilized for
underwater localization and roboticmanipulation36,37. Figure 4b shows
an image of an AprilTag obtained using underwater backscatter ima-
ging. Figure 4c shows the detection accuracy and the localization
distance of the AprilTags imaged at different ranges. The results
demonstrate very high detection rate and high localization accuracy
(localization error below 10 cm) up to 3.5m. Beyond this range, the
current resolution of the CMOS imaging sensor limits both detection
and localization; longer detection ranges would be possible with
higher-resolution sensors.

We also evaluated the method’s harvesting and communication
capabilities as a function of distance in the Charles River in eastern
Massachusetts (at 42°N, 71°W). Figure 4d shows the harvested voltage
in the river as the distance between the projector and the batteryless
sensor increases. The figure shows that the harvested voltage
decreases with distance, as expected. We also tested the method’s
ability to communicate with a hydrophone receiver at different dis-
tances, and computed the signal-to-noise ratio (SNR) and the bit error
rate (BER) of the decoded packets at different distances (Fig. 4e). The
plot shows that SNR decays and the BER increases with distance,
demonstrating the ability to robustly decode packets beyond 40m by
leveraging a decision feedback equalizer (DFE) at the receiver38. These
results show that underwater backscatter imaging is a viable battery-
less telemetry method and that higher ranges may be realizable with
higher levels of underwater acoustics or by leveraging underwater

transducers with higher efficiency39 (see Range Analysis in Supple-
mental Information).

In summary, we have demonstrated that wireless battery-free
imaging in underwater environments is possible. Our method
encompasses a highly efficient underwater color camera and innova-
tions that enable robust acoustic backscatter communication in
practical underwater environments. The tetherless, inexpensive, and
fully-integrated nature of our method makes it a desirable approach
for massive ocean deployments. Scaling the method for large-scale
deployments requires more sophisticated underwater transducers or
high-power underwater acoustic transmissions. Its scalability may be
further enhanced by leveraging a mesh network of buoys like those
already being deployed on the ocean surface, networks of subsea
robots like Argo floats, or surface vehicles like ships to remotely power
the energy-harvesting cameras40,41.Massive deploymentswould enable
tracking undersea movements—including the flow of particulate
organic carbon42, marine animals, and naval assets—at scales not rea-
lizable today. These may be used to create more accurate models
capable of monitoring climate change43, decrease the stealthiness of
nuclear submarines through large-scale observations, and advance
various marine scientific fields.

Methods
Communication through backscatter
To enable ultra-low-power communication, our batteryless sensor
employs piezo-acoustic backscatter34. Piezo-acoustic backscatter dif-
fers from traditional underwater acoustic communication in that it
does not need to generate its own acoustic signal to communicate.
Instead, it communicates by modulating the reflections of incident
underwater sound, and a remote receiver can decode the transmitted
data by recovering patterns in the reflected signals.

To transmit the stored image data via piezo-acoustic backscatter,
our prototype uses two N-channel MOSFETs to modulate the impe-
dance across the terminals of an underwater transducer. The design
uses these MOSFETs to switch the transducer’s reflectivity between
two states similar to prior underwater backscatter designs34,35,44. The
signal-to-noise ratio (SNR) at the receiver is maximized when the
complex-valued difference (i.e., amplitude and phase) between the
two reflective states is maximum. Through our empirical analysis, we
have observed that a high SNR on the uplink channel is achieved when
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Fig. 3 | Sample images obtained using underwater backscatter imaging. a The
figure shows a photo of a prototype deployed in Keyser Pond for monitoring pol-
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the imaging method while monitoring pollution in Keyser Pond. c RGB image

output for Protoreaster linckii, demonstrating qualitative success in recovering its
color and numerous tubercles along the starfish’s five arms. d The imagingmethod
wasused tomonitor the growth of anAponogetonulvaceusover aweek. The figures
show the captured images on different days of the week.
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the node switches between an inductively matched load and an open
circuit. Hence, the FPGA controls the switch to alternate the load
between an open circuit and the inductive load to send image data
using bi-phase space encodingmodulation (also known as FM0) which
is known to have high noise resilience in time-varying channels45. Other
modulation and coding schemes are also possible.

Uplink decoding
The backscatter communication signal is received by the hydrophone
and decoded using a robust demodulation and decoding pipeline
(Supplementary Fig. 2) that is implemented through offline packet
processing.

The demodulation pipeline consists of a series of filters followed
by amaximum likelihood decoder. To remove noise from the received
signal, we use a bandpass filter centered around the carrier frequency
of 20 kHz with a passband of 10 kHz from 15 to 25 kHz (the filter is
implemented as a linear phase type 1 discrete-time FIR filter with filter
length of 297). After the bandpass filter, wedownconvert the passband
signal to baseband bymultiplying it with the carrier frequency (20 kHz
sinusoid), then use a low pass filter with a bandwidth of 4 kHz (a linear
phase type 1 discrete-time FIR filter with filter length of 347, and 6 kHz
stopband frequency) to remove high-frequency components from the
signal. To mitigate low-frequency interference from naturally-
occurring surface waves and turbulence, we implement a high-pass
filter (a linear phase type 1 discrete-time FIR filter with filter length of
4535; the respective passband and stopband frequencies of the filter
are 150Hz and 20Hz). These filtering stages enable the receiver to
operate correctly in uncontrolled and time-varying underwater
environments.

After filtering and demodulation, the receiver proceeds to packet
detection. Each backscatter packet starts with a preamble, and each
image segment is sent over multiple packets (as discussed in the
subsequent section onFPGAcontrol and logic). The receiver correlates
the raw received signal with a known preamble sequence to detect the

beginning of the packet. After packet detection, the receiver proceeds
to decoding the FM0-encoded packets in baseband. We implemented
a bit-by-bit maximum likelihood decoder that has high resilience to
channel variations. Formally, consider a received FM0 symbol of size n
x = x0, x1,…, xn-1. The decoding operation is done in two steps. The first
step performs mean subtraction, exploiting the fact that each FM0
encoded bit has zeromean with respect to neighboring half bits. Mean
subtraction removes the constant self-interference signal from the
projector as well as any hardware offsets at the receiver. The mean-
subtracted symbol x′ can be expressed as:

x0 =x� 1
2n

Xn+ n
2�1

i=�n
2

xi ð1Þ

The second step ismaximum likelihood decoding, which is performed
by projecting the mean-subtracted received symbol on the time-series
symbols y0 and y1, which represent bits ‘0’ and ‘1’, respectively, as per
the equation:

b = argmax
k =0,1

Xn�1

i=0

yki x
0
i

∣∣x0∣∣2

 !
ð2Þ

Once a packet is decoded, a packet sequence number is used to
identify if any of the packets were missed or dropped during the
communication process, and a parity bit helps identify incorrectly
decoded packet payloads. The packet number and parity check allow
the receiver to detect corrupted or missed packets. By incorporating
downlink communication, future designs may leverage this capability
to request retransmissions from the batteryless sensor.

Finally, it is worth noting that while our implementation focused
on uplink communication between one camera sensor and a hydro-
phone receiver, it is possible to extend to this design with downlink
communication, multiple sensor nodes, and multiple receivers; it is
also possible to implement other packet sequences with alternate
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headers that include additional addressing and coding schemes similar
to prior work on underwater backscatter34,35.

Energy harvesting and power management
To operate at net-zero power, the batteryless underwater camera
sensor may harvest sufficient energy from a remote acoustic source.
We use an underwater projector that transmits a 20 kHz sinusoidal
acoustic signal (source level 180 dB re 1 µPa @ 1m) on the downlink.
The transmitter uses a layered transducer node to convert the input
electrical sinusoidal wave to an acoustic wave.

The transmitted acoustic signal propagates underwater and
reaches our batteryless sensor. On the sensor side, a harvesting
transducer converts the mechanical vibrations, which are due to
pressure changes of the incident acoustic signal, into an electrical
sinusoidal signal that can be used to power the circuit. Since the
electrical signal produced by our transducer is an alternating current
signal, it first needs to be rectified. In our design, the outer layer of the
harvesting transducer is directly connected to the harvester circuit;
the harvester circuit is composed of an impedance matching network
that ensures maximum power transfer efficiency and a four-stage
voltagemultiplier that rectifies the incoming differential input voltage
and quadruples the rectified DC voltage (Supplementary Fig. 1). The
rectifier utilizes Schottky diodes with a maximum forward voltage of
350mV. This rectified voltage is then fed into a super capacitor. The
super capacitor’s output voltage is regulated by a 2.8 V Low Dropout
(LDO) which drives digital components such as the bank voltage of the
FPGA and two external clocks (32 kHz and 4MHz). The LDO is con-
nected to a DC-DC step down converter, which steps down its 2.8 V to
1.4 V. This allows running the Himax camera and oscillators at their
required voltages while running the FPGA core at 1.4 V to minimize
power consumption.

In principle, the regulated voltage can be directly used to power
up the rest of the sensor electronics and bootstrap the image capture
operation and communication. In practice, however, the harvested
power may be less than that required to run the electronics for an
entire imaging cycle. This is particularly truewhen the sensor is further
away from the projector, leading to a lower harvested power than that
required for imaging. In such scenarios, if the capacitor were to pro-
vide energy to the rest of the electronic components prematurely, they
would drain its energy and abruptly shut down the circuitry before it
can capture an image segment.

To ensure that the rest of the circuit does not power up prema-
turely, our method incorporates a cold-start phase where it harvests
energy in its super-capacitor before it powers on the rest of the circuit
electronics. To implement this cold-start phase, our design leverages
theDC-DC step downconverter as a power-gatingmechanism (i.e., as a
way to buffer energy before providing it to the rest of the circuit),
exploiting the fact that the DC-DC converter controls the core voltage
of the FPGA logic unit. To do this, our design uses a potential divider to
feed a portion of the capacitor voltage to the “enable”pinof theDC-DC
step down, so that the DC-DC activates when the capacitor voltage
reaches a desired voltage (e.g., 3.2 V in our design). This allows our
circuit to harvest energy for a sufficient period of time before it starts
operation. In addition, once the DC-DC turns on, it does not turn off
until the enable pin voltage falls below a minimum threshold voltage
(e.g., 1.4 V in our design). In other words, hysteresis allows the DC-DC
to stay active even when the voltage at the enable pin is fluctuating
over a wide range. The fluctuation in voltage typically happens due to
two main reasons: the first is the variations in harvested energy (from
sound) due to the changing underwater channel, and the second is the
variation in current draw from various on-board components during
different phases of operation (as described in subsequent sections on
FPGA control and logic and on power analysis).

Finally, we discuss how the capacitance (C) of 7500μF and mini-
mum threshold value (Vthres) of 3.2 V are determined. Since the camera

sensor requires a minimum voltage (Vmin) of 2.8V for reliable opera-
tion, the design of the batteryless sensor must ensure that the capa-
citor voltage remains above Vmin when the camera is operational.
Conservatively, the super-capacitor needs to store enough energy to
power the circuit for capturing an entire image segment before the
energy drawn causes the voltage to drop below Vmin; this analysis is
conservative since the sensor continues harvesting even during the
imaging phase. Mathematically, we can express this energy buffer as:

Energy buffer≥
1
2
CV 2

thres �
1
2
CV 2

min ð3Þ

The energy buffer was determined empirically by measuring the
energy required by the camera prototype to capture an image segment
using active imaging (5mJ, see “Power analysis” in Methods). Given
that Vmin is 2.8 V, we can select C = 7500μF and Vthres = 3.2 V to satisfy
the above inequality.

Our proof-of-concept implementation employs two separate
transducers for harvesting and backscatter communication. In princi-
ple, it is possible to use a single transducer—rather than two—for both
energy harvesting and backscatter communication, since both trans-
ducers are identical. However, doing so would result in less harvested
energy; this is because less energymaybeharvested in theopen-circuit
state than in the inductively matched state. Thus, in our prototype
implementation, we decouple the communication from the energy
harvesting so that both processes can occur simultaneously without
either of them reducing the other’s efficiency. Alternate implementa-
tions with a single transducer for both harvesting and communication,
or with multiple transducers for each of harvesting and communica-
tion are possible. The latter is useful for enabling longer-range
operation since the combination of multiple transducers can harvest
more energy and achieve higher SNR on the uplink (both of which
increase with the number of transducers used).

FPGA control and logic
A key challenge in enabling net-zero power wireless underwater ima-
ging arises from the limited communication bandwidth of underwater
acoustic communication, which is typically of the order of few kilobits/
s46. Due to the limited bandwidth of underwater acoustic channels, the
transfer time of underwater images is typically tens ofminutes or even
hours47. In principle, one could keep the CMOS imaging sensor and
LED illumination turned on during this period. However, such an
approach would be counterproductive since these components con-
sume significantly more power than the rest of the circuit. Here, it is
worth noting that higher throughput (thus shorter transfer time) may
be realizable using more advanced modulation techniques such as
OFDM48. However, these techniques require much higher power con-
sumption than underwater piezo-acoustic backscatter34.

To enable low-power operation while dealing with the bandwidth
constraints of underwater acoustic channels, our method employs an
FPGA that operates in two phases: image capture phase (which is
power-limited) and backscatter communication phase (which is band-
width limited). The operation in each of these phases is optimized to
minimize overall energy consumption of the underwater backscatter
imaging method and enable net-zero operation, as explained below.

Image capture phase. Once the super-capacitor has stored sufficient
energy from harvesting (e.g., 3.2 V or higher), the voltage at the enable
pin of the DC-DC overcomes its threshold, allowing it to power the
FPGA core at 1.4 V, as well as the 32 kHz external oscillator. Once the
FPGA core is turned on, it initiates its logic sequence to power on the
Himax camera sensor along with an external 4MHz oscillator. The
higher frequency clock signal is necessary to operate the camera
(which requires at least 3MHz) and communicate with it over an I2C
interface (100–400 kHz).
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Once all the onboard components are powered on, the inter-
facing process starts. The FPGA configures the camera sensor
through the I2C communication bus, which enables it to set dif-
ferent parameters on the camera sensor—such as the image reso-
lution, exposure level, and data bits sequence—to enable adapting
the image capture to different environmental conditions. In our
implementation, the FPGA logic first resets the camera sensor,
then sets the image resolution to Quarter Video Graphics Array
(QVGA) frame with a resolution of 324 by 244 pixels (each pixel is
represented by 8 bits for a total of 632,448 bits per image) and
specifies the data transfer protocol to be serial (using a single port
and sending themost significant bit first). Finally, the FPGA sets the
clock of the camera sensor core to bemaster clock (MCLK) divided
by 8, or more specifically, 4 MHz/8 = 0.5 MHz. To set these para-
meters, the FPGA uses two I2C connections (SDA, SCL), and it
receives all necessary information from three distinct pins on the
camera sensor: (1) HSYNC (or line valid), a signal that goes high
when a row of the image is being sent and is low otherwise, (2)
PCLK (the pixel clock), and (3) DATA0, where the data is trans-
mitted serially. Moreover, the FPGA controls the power to the
camera through the power pins (AVDD/IOVDD) (Supplementary
Fig. 1). The CMOS imaging sensor sends an acknowledgment after
each I2C instruction, indicating the successful execution of the
corresponding instruction.

Upon successful I2C communication, the FPGApowers on the red
LED, then instructs the camera sensor to capture an image and initiate
data transfer process to the FPGA memory. Due to the limited FPGA
on-board RAM size (a total of four 4608-bit blocks), only 12 kbs are
saved to memory at a time. The RAM is configured as 256-word-deep
FIFO, with 48-bit words. After reaching full memory capacity, the FPGA
turns off the camera, LED, and 4MHz oscillator, and switches to the
32 kHz oscillator as it enters the communication phase where it
transmits the stored image segment to the receiver.

Backscatter communication phase. During the backscatter commu-
nication phase, our FPGAuses the lower frequency oscillator of 32 kHz
for reading from the memory and transmitting the stored image data
because the data rate is limited to 1 kbps due to the narrow bandwidth
of underwater acoustic channels. In addition, the low-frequency
oscillator allows the FPGA to operate at extremely low power
because its dynamic power consumption decreases with the clock
frequency. At 32 kHz, most of the power consumption is static (as
opposed to dynamic).

The FPGA encodes the image data into packets (Supplementary
Fig. 3). Each 77-bit-long packet contains a 16-bit preamble, followed by
a 12-bit packet number, 48 bits of data, and a single parity bit at the
end. Furthermore, to help the decoder identify packet boundaries, the
FPGA introduces a brief silent period (equivalent to the time needed to
transmit 23 bits) at the end of eachpacket. The FPGA converts the data
bits into FM0modulation. The FPGA feeds the FM0 encoded data bits
to the gate pin of the two MOSFETs to communicate the image data
through backscatter.

After each image segment (stored in memory) is sent, the afore-
mentioned process repeats for the same segment but with a different
LED turned on (i.e., green and then followed by blue). Once the same
image segment is transmitted and received for all three illuminations
(RGB), the FPGA stores the next segment of the image and repeats the
sameprocess until an entire image is transmitted. The FPGAalso stores
the segment index in a designated register and uses a counter to wait
for 12000*segment_index clock cycles to store the desired segment to
the FIFO memory.

The overall process requires 53 repetitions (53 segments per
image, due to memory constraints on the FPGA) for monochromatic
images and 159 for active color illumination. For FPGAs with larger
memory size, the number of repetitions will be lower.

Power analysis
Our proof of concept prototype can perform active and passive ima-
ging at an overall average power consumption of 276μW (Supple-
mentary Table 1) and 112μW (Supplementary Table 2), respectively.
Note that the additional power requirement for active imaging is due
to the active illumination, and that the average power is reported over
the duration of capturing and transmitting an entire image (i.e., by
dividing the total energy consumed across all operation phases by the
time to capture and transmit the image).

Our method’s ultra-low power consumption is realizable due to
multiple design factors. First is the use of underwater backscatter
communication to transmit pixel data. In contrast to traditional
underwater acoustic communication technologies, underwater back-
scatter does not need to generate its own signal; instead, it commu-
nicates by modulating the reflection patterns of incident acoustic
signals. The process of switching between the two states requires
passive switches (e.g., MOSFETs) which consume 24 nanowatts of
power, making the communication process extremely low power.
Second is the use of low-cost commercially available ultra-low-power
FPGAs, which consume as little as 22μW during certain phases of the
operation. Third is the switched dual-oscillator method (of 32 kHz and
4MHz), which allowsminimizing the energy consumption by adapting
clocking to different phases of operation. Specifically, in the
bandwidth-limited phase—i.e., when the method is constrained by the
bandwidth of the underwater acoustic channel, the method switches
to the low-frequency oscillator (32 kHz), minimizing the power con-
sumptionof the FPGA.On the other hand, in the power-limited phase—
i.e., when the method is limited by the power consumption of the
CMOS image sensor (0.77–1.1mW) and LEDs (1.9–8.2mW), it switches
to the high-frequency clock to rapidly complete the pixel transfer to
the FPGA and turn off the camera and LEDs during the communication
phase. Since the FPGA switches the high-power components off during
communication, the supercapacitor can harvest energy and recharge
during that phase. The overall power consumption is optimized
through a simple, low-cost, power-management unit with a DC-DC
converter, low-power LDOs, and resistor dividers as described earlier.
The ultra-low power consumption may be further reduced by duty
cycling rather than continuous operation.

Data availability
All relevant data supporting the findings of this study are available
within the main article or in the supplementary information.
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