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Abstract

Background: Infectious diseases are a cruel assassin with millions of victims around
the world each year. Understanding infectious mechanism of viruses is indispensable
for their inhibition. One of the best ways of unveiling this mechanism is to
investigate the host-pathogen protein-protein interaction network. In this paper we
try to disclose many properties of this network. We focus on human as host and
integrate experimentally 32,859 interaction between human proteins and virus
proteins from several databases. We investigate different properties of human
proteins targeted by virus proteins and find that most of them have a considerable
high centrality scores in human intra protein-protein interaction network.
Investigating human proteins network properties which are targeted by different
virus proteins can help us to design multipurpose drugs.

Results: As host-pathogen protein-protein interaction network is a bipartite network
and centrality measures for this type of networks are scarce, we proposed seven new
centrality measures for analyzing bipartite networks. Applying them to different virus
strains reveals unrandomness of attack strategies of virus proteins which could help
us in drug design hence elevating the quality of life. They could also be used in
detecting host essential proteins. Essential proteins are those whose functions are
critical for survival of its host. One of the proposed centralities named diversity of
predators, outperforms the other existing centralities in terms of detecting essential
proteins and could be used as an optimal essential proteins’ marker.

Conclusions: Different centralities were applied to analyze human protein-protein
interaction network and to detect characteristics of human proteins targeted by virus
proteins. Moreover, seven new centralities were proposed to analyze host-pathogen
protein-protein interaction network and to detect pathogens’ favorite host protein
victims. Comparing different centralities in detecting essential proteins reveals that
diversity of predator (one of the proposed centralities) is the best essential protein
marker.

Keywords: Pathogen-host protein interaction network, Network analysis, Bipartite
network, Centrality, Essential proteins
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Background
Killing millions of humans, infectious diseases are the most brutal enemies of the entire

history. Billions of dollars are spent to reveal the way hosts are infected by pathogens

and their presumptive victims. Host-Pathogen protein-protein interactions can be the

best clue for initiating infection which have been studied in different pathogens [1–8].

Exploring molecular functions, biological processes, cellular compartment, common

pathways and the other properties of host proteins targeted by pathogens can help us

in infectious disease inhibition. Investigating common targets of different pathogens

could help us to design multipurpose drugs.

Moreover, investigating protein-protein interactions between human proteins (HPPIs)

could help us to find viruses’ potential HPs victims. To do that, HPPI network is ana-

lyzed by different centrality measures. In network analysis, centrality is the main con-

cept of identifying gravity of each node in the network. Centrality measures can be

used to find most important HPs in HPPI network (HPPIN) to identify new drug tar-

gets [9–15]. Each centrality measure defines nodes’ weight from a different perspective.

HPPIN has been analyzed by different centralities such as Degree Centrality [16],

Closeness [17], Lobby Index [18], Betweenness [19], Clustering Coefficient [20], Leader

Rank [21], Topological Coefficient [22], Module Centrality [23], Eigenvector Centrality

[24], Neighborhood Connectivity [25], Normalized Alpha Centrality [26], Average

Shortest Path Length [27], Subgraph Centrality [28], Radiality [29], Range limited Cen-

trality [30] and Eccentricity [31].

Essential genes are minimal gene sets which are indispensable for a living cell and

their functions are the foundation of life [32]. As disruption of these genes can lead to

cell death, we investigate human virus protein-protein interaction network (HVPPIN)

to see whether the product of essential genes (essential proteins) are main targets of

virus proteins (VPS) and which human proteins (HPs) are targeted by more VPs.

In this paper, we focus on human as host and integrate experimentally protein-

protein interactions (PPIs) between human proteins and virus proteins (HVPPIs) from

different databases. Exploring the HVPPIN shows that human proteins which are tar-

geted by different virus strains either have a lot of interactors in intra HPPIN or bridge

between two large cliques.

Additionally, network analysis is performed on HPPIN by eight different centralities.

Results demonstrate that centrality scores of HPs targeted by different virus strains are

significantly higher than the other HPs. Besides, it reveals that centrality scores of es-

sential proteins (EPs) are significantly higher than non-essential proteins.

HVPPIN is a special type of network called bipartite in which interactions are inter-

species in contrast with HPPIN which is a unipartite network meaning interactions are

intraspecies. As most of the common centralities are designed for unipartite network

and HVPPIN is a bipartite network, seven novel bipartite centralities including CHTV

(connectivity of human proteins targeted by same virus protein), PS (propagation

speed), DP (diversity of predators), DSP (decreased shortest path), CI (component

index), CR (crown centrality) and VC (vulnerable centrality) are proposed to analyze

HVPPIN.

CHTV and CR scores of HVPPIN demonstrate the significant higher scores of real

samples in comparison with random ones. PS analysis reveals the property of three de-

gree of separation for HPPIN in presence of virus proteins. DSP results disclose the

Khorsand et al. BMC Bioinformatics          (2020) 21:400 Page 2 of 22



robustness of HPPIN. By doing extra analysis on VC, we found that virus proteins that

have higher VC score, target considerably more EPs in comparison with virus proteins

with lower VC score and could be chosen for drug target purposes. Finally, comparing

DP scores of EPs and non-EPs with other centrality scores of EPs and non-EPs reveals

that DP out performs the other centralities in detecting EPs and could be used as EPs

marker.

Moreover, we make a database for human proteins centralities, DP score and virus

families evolutionary distance which is publicly available at http://bioinf.modares.ac.ir/

software/PHINA.

Methods
Preliminaries and definitions

A graph is generally illustrated by G(V, E) where V(G) is the set of nodes also

known as vertex set and E(G) ⊂ V(G) ⨯ V(G) is the set of edges between the graph’s

nodes also known as edge set. Two vertices vi and vj which are connected by an

edge are called adjacent. All the vertices adjacent to vi are called the neighbors of

vi and declared by N(vi). Number of neighbors of vi is called degree of vi and de-

noted by deg(vi) = |N(vi)∣. Edges which have the same end vertices are called paral-

lel edges and if both end vertices are the same, it will be called a self-loop. A

graph which has neither parallel edges nor a self-loop is called a simple graph,

otherwise it is called multigraph or hyper graph. A sequence of alternating vertices

is called walk. Walk with no repeated edge is called trial and trial with sets of

unique vertices is called path. If a path exists between each pair of graph vertices,

it is called connected graph. Subgraph of a graph is a graph S(V, E) which V(S) ⊆

V(G) and E(S) ⊆ E(G). Maximally connected subgraph of a graph is called compo-

nent. A fully connected graph is said complete graph. A complete subgraph of a

graph is called clique [33].

A bipartite graph [34] G(T, B, E) is a kind of graph that has two vertices disjointing

subset T and B (top and bottom) which V(G) = T(G) ⋃ B(G) and T(G) ⋂ B(G) = .

Moreover, each edge has an end vertex from the top node and another from bottom

nodes (∀(tb) E(G) ∣ t T(G), b B(G)). In a bipartite graph for any top vertex ti
T(G), N(ti) ⊂ B(G) while for any bottom vertex bi B(G), N(bi) ⊂ T(G). There are many

real bipartite networks such as actor-movie network [35] which illustrates the movies

and the actors playing in them, author-article network [36] which shows the articles

and theirs authors, gene-disease network [37–43] which reveals diseases and their tar-

geted genes, metabolite-enzyme network [44–46] which shows metabolites and their

corresponding enzymes, and host-pathogen PPI network such as fungal pathogen sce-

dosporium aurantiacum with human long epithelial cells [47], Leptospira interrogans

and Homo sapiens [48], extracellular bacterial pathogen and human host [49], zika virus

non-structural proteins and human host proteins [50], bacterial and fungal pathogens

and maize stalks host [51].

Bipartite projection of graph G(T, B, E) is graph G ′ (B′, E′) where nodes are subsets of

G bottom nodes which have at least one common neighbor. Each pair of nodes that

have common neighbors are connected with an edge as it is shown in sample graph of

Fig 1. In other words, each top node makes a clique with the size of its degree.
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Human protein-protein interaction network (HPPIN) is a graph, the nodes of which

are human proteins (HPs) and interaction between them are illustrated by graph edges.

There are many public repositories for molecular interaction data [52]. We extracted

262,814 HPPIs from Intact [53] and BioGrid [54] including 19,995 HPs. Most of bio-

logical networks have one main component. As it is shown in Fig. 2-A, more than

0.999 of HPs are in one main component which reveals the existence of a path between

99.9% HP pairs in HPPIN.

Human-virus protein-protein interaction network (HVPPIN) is a bipartite graph in

which virus and human proteins are its top and bottom nodes respectively and inter-

action between them are illustrated by graph edges. We extracted 34,768 HVPPIs from

Intact [53], VirusMint [55], DIP [56], STRING [57], and BioGrid [54] including 7141

HPs and 1281 VPs which belong to 34 different families, 88 different types of genus

and 236 different strains as depicted in Fig. 2-B.

In the proposed article, we investigated the following famous centralities in HPPIN:

DC (Degree Centrality): For each HP, DC is the number of its interacting partners.

Virus proteins can infect many of HPs by targeting an HP with a high degree.

NC (Neighborhood Connectivity): For each HP, NC is the average degree of all its

neighbors. Virus proteins can infect many of HPs by targeting an HP with the high NC

through its neighbors.

SP (Average Shortest Path Length): The length of a path is the number of interac-

tions which will be traversed. The pass with minimum length between each two HPs is

considered as the shortest path. For each HP as shown in the following formula, SP is

the summation of the shortest path between that HP and all the other HPs divided by

the number of HPs. SPp ¼ ðPn
m¼1Sp;mÞ=n. HPs with low SP can be considered as good

targets for virus proteins. By reaching those HPs, virus proteins can quickly propagate

to the other HPs.

TC (Topological Coefficients): The extent to which an HP shares neighbors with

others. Zero would be assigned to HPs that have less than two neighbors. TC is defined

Fig. 1 Bipartite graph and its projection. Left graph shows a bipartite graph with 4 top nodes and 6
bottom nodes. Right graph illustrates the projection of the bipartite graph. Each top node in bipartite
graph makes a clique in projection graph. Top nodes of the bipartite graph are colored by different colors
to distinguish the related cliques
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as: TCp = avg(Jp, m)/kp, where Jp. m is defined for all HPs m that share at least one

neighbor with HP p and the value Jp. m is the number of neighbors shared between the

HPs p and m, plus one if there is a direct link between them. However, kp is the degree of p.

CS (Closeness Centrality): The reciprocal of the average shortest path length. It is,

in fact, a number between 0 and 1 which is computed as: CSp = 1/avg(Lp, m).

where Lp. m is the length of the shortest path between two HPs p and m.

Zero would be assigned to isolated HPs. This measure shows Propagation speed of vi-

ruses from a given HP to the other reachable ones in the HPPIN.

CC (Clustering Coefficients): For each HP, CC is the number of triangles passing

through it, relative to the maximum number of triangles that could pass through.

CCp = 2ep/kp(kp − 1)

where kp is the degree of p and ep is the number of connected pairs between all its

neighbors.

BC (Betweenness Centrality): The amount of control which one HP exerts over the

interactions of others in the HPPIN and it is defined as follows: BCp = ∑ σst(p)/σst,

where s and t are HPs in the HPPIN different from p, σst shows the number of shortest

paths from s to t, and σst (p) is the number of shortest paths from s to t that p lies on.

RD (Radiality): For each HP, RD is calculated by subtracting SP from the HPPIN

diameter. Hence, HPs with higher RD are usually closer to the other nodes, whereas,

HPs with lower RD are peripheral.

EV (Eigenvector centrality): EV is calculated by the eigenvector of the largest eigen-

value of adjacency matrix. It is a measure to declare the influence level of an HP node

within HPPIN. HPs with high EV have a wide-reaching influence on HPPIN.

PR (Page rank centrality): For each HP, it measures the importance of HPs con-

nected to that HP. It is equal to the sum of page rank score of its neighbors.

As it is shown in Fig. 4-C, for all of the 19,995 HPs of HPPIN, all of the mentioned

centralities are calculated and reported in our database which is publicly accessible at

the following address: http://bioinf.modares.ac.ir/software/PHINA/Centrality.php

Fig. 2 a Human protein-protein interaction network (HPPIN). 262,820 Interactions between 19,995 human
proteins. 24 HPs in 10 components and remaining 19,971 HPs in one main component. b Sunburst chart of
HVPPIN human and virus proteins distribution. The distribution of virus families and genus are respectively
shown in the first and second layer. The number of human and virus proteins are shown in the last layer by
dark and light brown colors respectively
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Moreover, we propose seven new centralities for analyzing HVPPIN:

Connectivity of the human nodes targeted by the same virus node (CHTV)

For each virus node, human nodes targeted by that node (HTV) are chosen. CHTV is

the number of connected pairs of HTVs in HPPIN over all possible pairs and reached

by the following formula:

CHTV i ¼
Xn

j¼1

Xn

k¼ jþ1
Ajk

CHTVi is connectivity of the human proteins targeted by ith virus protein, n is the

number of HTVis and Ajk is a binary function with one value in the cases where an

edge exists between Hj and Hk and zero otherwise.

As it is shown in Fig. 3-A, all the targeted nodes by the same source node will con-

struct a clique in projection network. Hence, CHTV will show the fraction of clique

edges which contribute in real world network of targeted nodes.

Propagation speed

Propagation speed (PS) is a measure which illustrates the speed of propagation of a

virus in HPPIN or a rumor in society. We defined three levels of PS. Each level indi-

cates the percentage of infected human proteins in that round. So PS1 is the number of

human proteins targeted by virus protein and their neighbors over the number of all

human proteins in HPPIN. PS2 is the number of infected human proteins of level one

plus all of their neighbors over the number of all human proteins in HPPIN. Finally,

PS3 is the number of infected human proteins of level two plus all of their neighbors

over the number of all human proteins in HPPIN.

As an example, consider node S as the first infected node in two different depicted

networks of Fig. 3-B. PS1, PS2 and PS3 for the first network (network at the top of the

figure) is 0.3, 0.7 and 1, respectively. PS1, PS2 and PS3 for the second network (net-

work at the bottom of the figure) is 0.2, 0.4 and 0.6, respectively. Score 1 for PS3 of the

Fig. 3 a For each virus protein, a clique was made by all of its HPs’ targets. Connectivity of the human
nodes targeted by the same virus node (CHTV) is the number of interactions between the elements of the
clique in human protein-protein interaction network (HPPIN) (pink lines) divided by number of clique edges
(blue lines). In this example, CHTV will be 0.3. b Propagation Speed (PS) illustrates the percentage of
infected human proteins (HPs) in three levels. At each level, PS is the Sum of the number of infected HPs
up to that level and their neighbors divided by the number of all HPs. By assuming yellow node labeled by
S as the first infected human protein, green nodes are the first group of human proteins which will be
infected by S, thus PS1 score is 0.3 and 0.2 for the first and second networks, respectively. The blue nodes
will be infected by the green nodes while the orange nodes will be infected by blue nodes
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first network reveals that all of the network nodes are infected while score 0.6 shows

that 60% of the second network nodes are infected.

In HPPIN, HTVs are chosen. Cumulative percentage of the number of HTVs’ first

neighbors, second neighbors and third neighbors are PS1, PS2 and PS3 scores, respect-

ively. In other words, PS1, PS2 and PS3 indicate the percentage of human proteins of

HPPIN which will be infected within the first, second and third round of interactions,

respectively.

Among all 34,768 interactions in HVPPIN, 28639 interactions containing virus strains

with at least 5 interactions are chosen. The final HVPPIN contains 1093 virus proteins

belonging to 26 different families, 67 different types of genus and 124 different strains.

For each strain separately, HTVs are chosen and PS1, PS2 and PS3 scores are

calculated.

Diversity of predators

In HVPPIN, HPs, which are targets of VPs of different families, are chosen. For each of

these HPs, each of the virus families is called a predator. Evolutionary distance (ED)

among any couple of predators of each HP is calculated. For each HP, mean of EDs of

its predators multiplied by the number of its predators is considered as its diversity of

predators (DP) score. As an example, Q9Y6H1 is targeted by VPs of four different virus

families (Matonaviridae (M), Flaviviridae (F), Herpesviridae (H) and Papillomaviridae

(P)). To calculate its DP, we need to calculate
n
2

� �
EDs between each couple of its

predators where n is the number of predators. Therefore, for the mentioned example,

we need to calculate
4
2

� �
¼ 6 Eds and the DP will be calculated as follows:

EDM;F þ EDM;H þ EDM;P þ EDF;H þ EDF;P þ EDH ;P
� �

=6�4

As there is not any database for ED among virus families, we create a database for

calculating ED of the most famous virus families. To calculate ED between two virus

families, we make Needleman-Wunsch [58] global pairwise alignment between each VP

of the first family with all VPs of the second one. Mean of alignment scores of all pairs

is considered as ED between the two families. As an example, for calculating ED be-

tween Orthomyxoviridae with 132 different VPs and Papillomaviridae with 106 VPs,

13,992 (132*106) global pairwise alignments were calculated and mean of all these

alignments were reported as ED of these two families. Our database (Fig. 4-B) is pub-

licly accessible at the following address: http://bioinf.modares.ac.ir/software/PHINA/

EvolutionaryDistance.php

Among all 6500 HPs targeted by different VPs in HVPPIN, 3141 HPs interact with

VPs of at least two virus families. For all of these HPs, DP is calculated and reported in

our database (Fig. 4-A) which is publicly accessible at the following address: http://

bioinf.modares.ac.ir/software/PHINA/VirusFamilies.php

(All the pictures of virus families inside our site are gathered from ViralZone:www.

expasy.org/ viralzone, SIB Swiss Institute of Bioinformatics [59] which is licensed under

a creative common attribution 4.0 international.)
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Decreased shortest path

In the main HPPIN component the shortest path between each two HP pair is calcu-

lated. Afterwards, HVPPIs of one of the virus strains is added to HPPIN and the short-

est path between each two HP pairs is recalculated. Difference between sum of all

possible HP pairs’ shortest path in presence or absence of HVPPIs is measured as de-

creased shortest path (DSP).

Among all 32,859 interactions in HVPPIN, 28306 interactions containing virus pro-

teins with at least 2 interactions are chosen. The final HVPPIN contains 784 virus pro-

teins belonging to 25 different families, 64 different types of genus and 111 different

strains. For each of these strains, DSP is calculated and DSPs’ mean of each family’s

strain is considered as DSP of that family. The same was performed for random cases

in a way that random nodes with the same degree distribution of real strains were

added to HPPIN and DSP were calculated.

Component index

Component index is the tendency of HPs targeted by VPs of one genus to interact with

each other rather than the HPs targeted by VPs of another genus. First, induced sub

graph (ISG) of HPs targeted by all VPs of each strain was extracted from HPPIN. Then,

Fig. 4 a Diversity of Predators: By entering the uniprot id of a human protein (HP) and pressing the submit
button, all virus families which have an interactor with that HP will be depicted (from ViralZone, SIB Swiss
Institute of Bioinformatics licensed under a creative common attribution 4.0 international license) and the
diversity score will be reported. b Virus Evolutionary Distance: By entering two virus families in the text
boxes and pressing submit button, evolutionary distance between them will be reported. c By entering
uniprot id of an HP and pressing submit button, centralities of that HP in HPPIN will be reported. In each
centrality, the number shows the real centrality score while the progress bar shows its normalized score
in [0,1]
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for each strain, the number of interactions within its ISG HPs, and the number of inter-

actions between its HPs and other ISG HPs was calculated. Finally, component index

was defined between two strains by the following formula:

Xnic

i¼1

Xnic

j¼i
eij −

Xnic

i¼1

Xnoc

o¼1
eio

� �
=

Xnic

i¼1

Xnic

j¼i
eij þ

Xnic

i¼1

Xnoc

o¼1
eio

� �

nic is the number of first ISG HPs, noc is the number of second ISG HPs, eij is 1 if ith

HP of first ISG interacts with jth HP of the first ISG. eio is 1 if ith HP of first ISG inter-

acts with oth HP of second ISG. In other words, component index is the difference be-

tween the intra-interactions of an ISG and inter-interactions of that ISG with another

ISG over the sum of inter and intra interactions.

Crown centrality

Virus proteins which target the same pair of HPs formed a crown. Number of virus

proteins which target the same pair of HPs determine the number of ivories of a crown

(Fig. 5-A). Number of ivories of a crown equals the degree of node reached by vertex

contraction of HP pairs. Existence of crowns in HVPPIN shows the tendency of virus

proteins to be cooperative in attacking HPs. Crowns with higher number of ivories

shows the more important interaction between HP pairs of that crown. HP pairs of a

crown which are adjacent in HPPIN has the clustering coefficient 1.

Among all 34,768 interactions in HVPPIN, 27859 interactions containing virus proteins

with a degree of more than one are chosen. The final HVPPIN contains 990 virus proteins

belonging to 19 different families, 42 different types of genus and 67 different strains.

We investigated the final HVPPIN for the crowns and did the same for random

models with the same degree distribution.

Vulnerable centrality

As projection of a bipartite network is a simple graph and there are many different available

centralities to analyze it, one way of analyzing bipartite network is analyzing its projection.

The main problem of this idea is the information loss in converting a bipartite net-

work to its projection.

We define vulnerable centrality to reflect the effect of each top node in bottom-

projection. As an example, as it is shown in Fig. 5-B, edge T1T4 is just made by S2 while

T1T3 is made by both S1 and S3 in projection. Thus, by elimination of S3, edge T1T3

Fig. 5 a Crown centrality. Virus proteins (yellow nodes) which target the same pairs of HPs (orange nodes)
make a crown. VW is a crown with five ivories while NM is a crown with one ivory. b Vulnerable Centrality.
It is defined for each top node as division of sum of reciprocal of related clique edges weight in projection
by its size
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remains, though by elimination of S2, edge T1T4 will be permanently dropped from

projection.

Vulnerable centrality is defined for each top node as sum of reciprocal of projection

weight divided by the equivalent clique size. As an example, for the graph of Fig. 5-B,

V1. V2. V3 (vulnerable score for S1. S2. S3) is calculated by:

V 1 ¼ 1
1
þ 1
2
þ 1
2

� �
=3 ¼ 0:67:V 2 ¼ 1

1
þ 1
1
þ 1
2

� �
=3 ¼ 0:83:V 3 ¼ 1

2

� �
=1 ¼ 0:5

Essential proteins functions are indispensable for life cycle and thus, investigating

them can be useful for both drug target purposes for inhibition and better understand-

ing of their behaviors. 2472 EPs were gathered from Georgi [60], 1734 EPs were re-

ported in Blomen [61], 1878 EPs were extracted from Wang [62], 3230 EPs were

derived from Lek [63] and 7127 were collected from Chen [64]. Finally, 6115 genes

which were at least reported in two of the mentioned studies were considered as essen-

tial proteins.

Lots of papers apply network topology for detecting new essential proteins [65–70].

Eight different mentioned centralities and two new proposed centralities (DP and VC)

were calculated for all of the HPs of HPPIN. Afterwards, centralities of essential HPs

were compared against non-essential HPs and the results were reported to investigate

whether they could be applied for detecting new essential proteins.

Furthermore, Virus proteins of each strain, were clustered into 2 groups based on

vulnerable score. Thereafter, the number of essential proteins targeted by each group

were compared to see whether there exists a significant difference between the two

groups.

Results
All the existing mentioned centralities and the two new proposed centralities (DP and

VC) are investigated to see whether they could be an essential protein marker.

For the other five proposed centralities, different topics were investigated. For CHTV

and crown centrality, we figured out if there is a significant difference in real sample

scores in comparison with random sample scores or not. We also uncovered the degree

of separation of HPPIN. Moreover, robustness of HPPIN is measured by DSP. Propen-

sity of HPs targeted by the same VP to have inter or intra interaction was investigated.

Essential proteins are critical nodes in HPPIN

Ten different centralities were measured in HPPIN and as it is shown in Table 1 and

Fig. 6, essential proteins’ centrality scores were significantly different in comparison

with non-essential proteins.

Virus proteins with higher VC scores have a huge tendency to target essential proteins

In our model, vulnerable centrality illustrates the effect of each virus protein in con-

structing the projection of infected human proteins. Thus, virus proteins with higher

vulnerable scores must be inhibited sooner than the others. In other words, inhibiting

the virus proteins with higher vulnerable scores will maximized the chance of early in-

hibition of whole virus spread. As it is illustrated in Fig. 7, by calculating vulnerable

scores of 29 different strains, virus proteins of each strain have a considerable diverse
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vulnerable score which makes this centrality capable of detecting the important virus

proteins of each strain.

Moreover, virus proteins of each strain were separated into two groups according to

VC scores. Essential HPs targeted by each group are reported in Table 2.

As clearly manifested by the results, virus proteins with higher VC scores have a huge

tendency to target essential proteins. Consequently, VPs with higher VC scores seem to

be better drug targets in comparison with others VPs.

DP centrality outperformed the other centralities in detecting essential proteins and

potential drug targets

Among all 6500 HPs targeted by different VPs in HVPPIN, 3141 HPs interact with VPs

of 34 different virus families. Table 3 shows 15 HPs with the highest DP score.

Table 1 Comparison of centrality scores of essential proteins versus non-essential proteins

Centrality Essential Proteins Non-Essential Proteins t-
score

p-value

Mean Standard Error Mean Standard Error

Degree 38.41 0.84 20.12 0.33 20.14 2.7e-88

Radiality 0.76 0.0004 0.73 0.0003 38.68 9.4e-311

Closeness 0.32 0.0004 0.3 0.0002 40.7 1.2e-313

Betweenness 0.0002 0.00002 0.00007 0.000003 6.45 1.2e-10

Clustering Coefficient 0.095 0.0017 0.082 0.0014 5.78 7.9e-09

Average Shortest Path 3.15 0.004 3.36 0.003 −38.68 9.4e-311

Topological Coefficient 0.096 0.0015 0.138 0.0013 −20.55 1.1e-92

Neighborhood Connectivity 233.93 4.84 206.64 3.28 4.66 3.1e-06

Eigen vector centrality 0.03 0.0006 0.01 0.0002 29.02 1.8e-176

Page rank centrality 0.0007 0.00002 0.0004 0.000005 15.06 1.3e-50

Fig. 6 Comparison of centrality scores of essential proteins versus non-essential proteins
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Further analysis reveals that EPs’ DP scores are significantly higher than non-EPs’ DP

score and it could be used as a marker for detecting EPs.

To prove our claim, we compare the ability of detecting EPs between the proposed

centrality and all the other mentioned centralities. To do so, for each centrality, we

picked 200 HPs with the highest score and counted the number of EPs to declare the

Table 2 Comparison of percentage of essential HPs targeted by virus proteins with high against
low vulnerable scores

Strains Total number
of targeted HPs

Number of
essential
targeted HPs

Percentage of
essential targeted
HPs with low VC
score

Percentage of
essential targeted
HPs with high VC
score

Adeno-associated dependoparvovirus 255 191 0.01 1

Human betaherpesvirus 5 76 48 0.1 0.94

Ebolavirus 291 194 0.37 0.66

Betapapillomavirus 1 618 324 0.23 0.83

Dengue virus 164 104 0.04 0.96

H5N1 342 237 0.22 0.92

H7N7 61 42 0.4 0.95

Varicellovirus 10 6 0.33 0.83

Orf virus 4 4 0.75 1

Human mastadenovirus D 14 6 0.67 0.67

HEV 10 8 0.12 1

Equine infectious anemia virus 4 3 0.33 0.67

Human polyomavirus 2 44 27 0.07 0.96

Hendra henipavirus 62 18 0.11 0.94

Primate T-lymphotropic virus 2 61 24 0.04 1

Table 3 Human proteins with the highest DP score. Columns three to six shows the number of
distinct virus families, genus, species and proteins which target that human proteins, respectively

Human Gene Family Genus Species Virus DP

P09651 HNRNPA1 12 14 18 32 65,080

P68104 EEF1A1 15 20 27 49 62,754

P07437 TUBB 14 22 29 49 61,135

P07910 HNRNPC 12 12 14 27 60,101

P06748 NPM1 14 17 21 34 56,997

Q08211 DHX9 10 13 15 27 56,766

P22626 HNRNPA2B1 10 11 13 29 56,218

P08670 VIM 8 10 15 26 56,058

Q12805 EFEMP1 8 8 9 13 55,709

P62753 RPS6 10 11 12 23 55,552

P17844 DDX5 10 13 16 28 55,121

P05141 SLC25A5 12 14 18 28 54,483

P11940 PABPC1 9 11 16 30 54,245

P38159 RBMX 9 9 11 31 54,235

P61978 HNRNPK 10 13 15 33 54,026
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sensitivity of that centrality. As it is shown in Table 4, DP centrality outperformed

others in detecting EPs.

To check the ability of different centralities in detecting potential drug targets, we chose

two different gene expression data (GSE1739, GSE150316). Two hundred ninety nine and

one hundred sixty two differentially expressed genes (DEG) were extracted from GSE150316

and GSE1739 respectively. Different centrality measures were calculated for them. In each

centrality, the number of DEGs with centrality scores more than 3rd quantile score were re-

ported in Table 5. This reveals the ability of each centrality in detecting potential drug targets.

CHTV scores of real samples are considerably higher than random cases

By considering n as the number of different viruses, n CHTV scores have been separ-

ately calculated for each genus. Mean of CHTV score of each type has been reported as

CHTV score of that type.

Moreover, 64 Random classes were constructed equal to the number of genus types. For each

class, CHTVi shown in Fig. 8, is calculated for each virus protein of the related class by selecting

random human proteins from human proteins of HPPIN equal to the number of HTVis.

Furthermore, for comparing the results of CHTV scores of real and random samples, sta-

tistics score (z-score) is calculated for each class of virus genus by the following formula:

Zi ¼ CHTV i −mean CHTV − Randomið Þ
sd CHTV − Randomið Þ

where Zi and CHTVi indicate the z-score and CHTV score of ith genus, respectively

and CHTV − Randomi shows the CHTV score of ith related genus.

The standard score Zi shows the distance of CHTV score of ith genus from the mean

of CHTV score of the related random class. As it is shown in Fig. 9, 83% of z-scores

are more than 3 times of standard deviation above mean of random CHTV scores.

Number of crowns with more than two ivories of real samples are substantive in

comparison with random classes

Results are depicted in Fig. 9 for crowns with one, two, three and more than three ivor-

ies. As evident in Fig. 10, real model precedes random model in terms of percentage of

crowns as well as the higher the number of ivories and the greater difference between

real and random model.

Table 4 Number of essential proteins detected by each centrality and its consequent sensitivity

DP EV CS RD BC DC PR NC TC CC SP

Number of EPs out of 200 166 156 142 142 118 116 116 80 56 50 38

Sensitivity 0.83 0.78 0.71 0.71 0.59 0.58 0.58 0.4 0.28 0.25 0.19

Table 5 Number of potential drug targets detected by each centrality and its consequent
sensitivity

DP EV CS RD BC DC PR NC TC CC SP

Number of central HPs 212 193 196 196 170 175 168 103 31 94 75

Sensitivity (GSE150316) 0.71 0.64 0.65 0.65 0.56 0.58 0.56 0.35 0.1 0.32 0.26

Number of central HPs 131 125 125 125 107 115 110 68 27 53 66

Sensitivity (GSE1739) 0.81 0.77 0.77 0.77 0.66 0.71 0.68 0.42 0.16 0.33 0.41
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More than 70% of HPs are infected in just two rounds (two degree of separation)

For each HVPPIN strain separately, HTVs are chosen and PS1, PS2 and PS3 scores are

calculated. For each family, mean of each score is illustrated in Fig. 11 with red color.

Moreover, 26 classes containing 124 random classes were constructed equal to the

number of families and strains. For each class, equal to the number of virus proteins’

targets of the related strain, random human proteins were selected as HTVs and PS1,

Fig. 7 Vulnerable scores box plot of 29 different strains. Vulnerable centrality illustrates the effect of each
virus protein in constructing the projection of infected human proteins. Thus, virus proteins with higher
vulnerable score must be inhibited sooner than the others

Fig. 8 Box plot and scatter plot of CHTV scores of 64 different virus genera with red color and equivalent
random classes with green color. As it is obvious in the plots, CHTV scores of real samples are considerably
higher than random cases
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Fig. 9 CHTV z-scores’ stack bar plot of different families. Colors illustrate the range of Z-scores of each
genus. Teal and violet colors indicate Z-scores between 2 to 3 and above 3, respectively, showing statistical
significance between real and random samples. Contrastively, red indicates there is not any difference and
green shows that there is a little difference between random and real samples

Fig. 10 Stacked bar plot of crown centrality of 67 different strains and equivalent random classes. To
compare crown frequency in real and random samples, number of crowns in each sample is divided by the
sum of the frequency of both real and random samples. Top left and top right panels show the frequency
of size one and two crowns respectively while bottom left and bottom right panels show the frequency of
size three and more than three crowns, respectively. Crowns’ frequency of real and random samples are
illustrated by red and teal color, respectively
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PS2 and PS3 scores were calculated. For each family, mean of each score was illustrated

in Fig. 10 with teal color.

Only in two rounds, in most of the virus families, more than 70% of HPs of

HPPIN are infected. Furthermore, for comparing the results of PS scores of real

and random samples, statistics score (z-score) was calculated for each class of virus

as shown in Fig. 12.

DSP illustrates the robustness of HPPIN

Watts-Strogats model [20] is a random model constructed by rewiring the edges of a

regular ring lattice. Shortest path between pairs of a regular ring lattice is so larger than

Watts-Strogats model because rewired edges act as shortcuts. As shown in Fig. 13, ran-

dom classes thus far, have better DSP scores which is due to the shortcuts created by

random choosing of HPs in random model, while in real models, as virus proteins tar-

get specific HPs in specific tissue, local shortest path reduction will happen. This result

also shows the robustness of HPPIN.

Most of strains have a positive component index

Component Index (CI) was calculated between all 1431 pairs of 54 strains which had at

least 5 HVPPIs. Mean and median of all CIs were 0.62 and 0.71, respectively, which

shows the great tendency of HPs targeted by each strain to interacts within its ISG and

make most of them as a real component. As an example, in Table 6, Alphainfluenza-

virus CI is calculated with the first 10 largest genera (in terms of the number of

Fig. 11 Bar plot of PS1, PS2 and PS3 scores of 26 different virus families and equivalent random classes. PS
scores of real and random samples are illustrated by red and teal color, respectively
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Fig. 12 PS z-scores’ stack bar plot of different families. Panel 1, 2 and 3 show the z-scores extracted from
PS1, PS2 and PS3 scores, respectively. Colors illustrate the range of z-scores of each genus. Teal and violet
colors indicate z-scores between 2 to 3 and above 3, respectively which show statistical significance
between real and random samples. Contrastively, red reveals there is not any difference and green shows
that there is a little difference between random and real samples

Fig. 13 Mushroom plot of Decreased Shortest Path (DSP) of 25 different virus families and equivalent
random classes. Number of shortest paths which decreased by appending virus proteins and their
interactions with human proteins to HPPIN are measured with DSP. DSP scores of real and random samples
are illustrated by red and teal colors, respectively
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interactions). Alphainfluenzavirus has 2794 HPs and 27,296 interactions. The number

of HPs and interactions of the other strains are placed in OCHPs and OCIs columns,

respectively.

Discussion
Figure 14 summarizes the selections of the most central host proteins by different mea-

sures. For each of the 11 centrality measures worked in this article, 200 HPs with the

highest centrality scores were selected. Degree, closeness, average shortest path, and

page rank centralities had the most common HP targets among their first 200 highest

score HPs.

By investigating all the centrality measures, we found that all of the top 10 HPs with

the highest centrality scores in different centrality measures are essential proteins.

Table 6 Component Index of Alphainfluenzavirus against first 10 biggest genera

Genus 1 Genus 2 CI OCIs OCHPs

Alphainfluenzavirus Lymphocryptovirus 0.589 7073 1082

Alphainfluenzavirus Alphapapillomavirus 0.396 11,809 1634

Alphainfluenzavirus Flavivirus 0.515 8745 1525

Alphainfluenzavirus Lentivirus 0.652 5767 1020

Alphainfluenzavirus Rhadinovirus 0.581 7240 812

Alphainfluenzavirus Hepacivirus 0.586 7134 963

Alphainfluenzavirus Betapapillomavirus 0.644 5911 750

Alphainfluenzavirus Simplexvirus 0.748 3932 551

Alphainfluenzavirus Morbillivirus 0.914 1221 465

Alphainfluenzavirus Betapolyomavirus 0.766 3613 312

Fig. 14 The pictures on the top and bottom right corner and the one on the left respectively show four,
seven, and eight centralities with the most common central host proteins
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Moreover, the following HPs were detected as HPs with high centrality score in the

most of the centrality measures:

� P05412 (Transcription factor AP-1)

� P62993 (Growth factor receptor-bound protein 2)

� P08238 (Heat shock protein HSP 90-beta)

� Q99459 (Cell division cycle 5-like protein)

� Q08379 (Golgin subfamily A member 2)

� P61981 (14–3-3 protein gamma)

� Q86VP6 (Cullin-associated NEDD8-dissociated protein 1)

� P10809 (60 kDa heat shock protein, mitochondrial)

� P11142 (Heat shock cognate 71 kDa protein)

� P27824 (Calnexin)

Connectivity of HPs targeted by the same VP and propagation speed of viruses in

HPPIN reveals that VPs select their targets purposefully.

The tendency of virus proteins with high VC scores in targeting essential proteins

and the results of DP centrality in detecting essential proteins shows that HPs with high

DP score can be considered as potential drug targets.

Investigating Crown centrality scores reveals the tendency of VPs to have collabor-

ation in targeting same HP pairs.

Finally, Table 7 summarizes some of the possible usages of the proposed centralities.

Conclusions
In this article, we studied the properties of a bipartite network generated from interac-

tions between human proteins versus virus proteins. As there are different virus fam-

ilies, we investigated each family as a separate network and reported the results for

most famous virus families. As HVPPIN is a bipartite network and centrality measures

for this type of network is scarce, seven new centralities were proposed on HVPPIN

and measured on different strains of famous virus families. In all proposed centralities,

significant difference was observed between real and random samples’ scores.

Moreover, we found some significant properties of essential proteins. By investigating

HPPIN and calculating ten famous centralities, it was revealed that essential HPs have

Table 7 Some of the usages of new proposed centralities

Centrality

CC Crown Specifying the amount of cooperation between the two authors
in writing articles, or the cooperation between viruses in
targeting the same pair of HPs.

CI Component Index Detecting groups in social networks, or components of HPPIN.

PS Propagation Speed Revealing the speed of the rumor in society, or the speed of
spreading virus in HPPIN.

DP Diversity of Predator Disclosing favorite HP targets of viruses.

VC Vulnerable Centrality Revealing the indispensable parts of a network, or the most
important proteins of a virus which should be initially inhibited.

DSP Decreased Shortest Path Detecting critical points of a network, or potential drug targets.

CHTV Connectivity of Human node
Targeted by the same Virus node

Disclosing the clique like subnetworks, or the attack tendency of
viruses.

Khorsand et al. BMC Bioinformatics          (2020) 21:400 Page 19 of 22



a considerable higher centrality scores in comparison with non-essential HPs and it

could be used for finding new essential HPs. In addition, we observed that DP scores

have the same pattern. For finding the best marker of EPs, for each of the centralities,

we select 200 HPs with the highest scores and calculated the sensitivity of detecting

EPs with them. Results demonstrate that DP outperforms the others. Furthermore, ana-

lyzing VC scores of HVPPIN disclosed that VPs with high VC scores target essential

HPs significantly higher than VCs with low VC scores. This observation could be used

for choosing VCs with high VC score as the first target of drug design.

The current work can be extended by using the proposed centralities in the other bi-

partite networks. Moreover, it is suggested to recalculate centralities by adding new

HPPIs to HPPIN for finding potential EPs. Doing the same with HVPPIN and consider-

ing new HP targets of high-VC-scores VPs and HPs with high DP scores as potential

EPs are also recommended.
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