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Abstract

Renal cell carcinoma (RCC) is the sixth most common cancer in the US. While RCC is highly metastatic, there are few
therapeutics options available for patients with metastatic RCC, and progression-free survival of patients even with the
newest targeted therapeutics is only up to two years. Thus, novel therapeutic targets for this disease are desperately
needed. Based on our previous metabolomics studies showing alteration of peroxisome proliferator-activated receptor a
(PPARa) related events in both RCC patient and xenograft mice materials, this pathway was further examined in the current
study in the setting of RCC. PPARa is a nuclear receptor protein that functions as a transcription factor for genes including
those encoding enzymes involved in energy metabolism; while PPARa has been reported to regulate tumor growth in
several cancers, it has not been evaluated in RCC. A specific PPARa antagonist, GW6471, induced both apoptosis and cell
cycle arrest at G0/G1 in VHL(+) and VHL(2) RCC cell lines (786-O and Caki-1) associated with attenuation of the cell cycle
regulatory proteins c-Myc, Cyclin D1, and CDK4; this data was confirmed as specific to PPARa antagonism by siRNA
methods. Interestingly, when glycolysis was blocked by several methods, the cytotoxicity of GW6471 was synergistically
increased, suggesting a switch to fatty acid oxidation from glycolysis and providing an entirely novel therapeutic approach
for RCC.
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Introduction

Renal cell carcinoma (RCC) is globally the 13th most common

cancer, and one of the few cancers whose incidence is increasing

for reasons that are not entirely clear but may be related to

smoking and obesity (reviewed in [1] and [2]). Over the past

several years, targeted therapies have become increasingly

available and have shown considerable promise for the treatment

of RCC and other malignancies; however, even with such

therapies life expectancy is generally only extended by less than

one year, owing to the development of drug resistance [3]. In light

of the increasing number of patients presenting with late-stage

disease and the prevalence of resistance to currently available

drugs, new therapeutic targets are desperately needed. Identifica-

tion of such targets could lead both to the design of new drugs

and/or to the reevaluation of existing drugs for use in RCC

patients.

The peroxisome proliferator-activated receptor a (PPARa)
belongs to the steroid hormone receptor superfamily [4]. To date,

three subtypes of PPAR (a, ß, and c ) have been identified in many

species including humans [5]. As occurs with other steroid

hormone receptors, upon ligand activation, the PPARs hetero-

dimerize with the retinoid X receptor (RXR), bind to the specific

promoter sequence (the peroxisome proliferator response element

or PPRE), and as a result trigger the expression of a variety of

target genes [6] including those involved in glucose, lipid, and

amino acid metabolism [7].

The PPARa receptors have an important, although likely

pleiotropic given their multiple functions, role in malignancy.

Whether they function as tumor suppressors or inducers in

cancers is still uncertain; such functions may relate to cancer

type and/or specific microenvironment of the tumor. While

tumor suppression by PPARa has been reported in some

cancers including melanoma [8] and glioblastoma [9], PPARa
has also been found to lead to progression of tumor growth in

other cancers including hepatocellular carcinoma [10] and

breast cancer [11]. In our continuing study of kidney cancer

using metabolomics methods, we found metabolic signatures of

PPARa modulation in a human RCC cell (Caki-1) xenograft

model across all three ‘‘matrices’’ (tissue, serum, and urine) [12].

Whether this finding is due to causality of PPARa activation in

oncogenesis or whether it is simply a cancer ‘‘signature’’ was

not determined in that study. Nevertheless, this finding led us to
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evaluate PPARa agonists and antagonists, for the first time, as

potential RCC therapies.

We now show, using a specific PPARa antagonist as well as

siRNA methods, that specific PPARa antagonism results in early

cell cycle arrest as well as apoptosis in RCC cell lines.

Furthermore, we provide evidence that when RCC cells are

deprived of the glycolysis substrate, they become more sensitive to

PPARa antagonists, suggesting that RCC cells alter their energy

metabolism pathways under these conditions, and pointing to the

feasibility of combination of PPARa antagonists and glycolysis

inhibitor therapy for this disease.

Materials and Methods

Cell Lines
RCC cell lines, Caki-1, and 786-O were obtained from the

American Type Culture Collection (Rockville, MD, USA), and the

‘‘normal human kidney’’ (NHK) cell line was obtained from Lonza

(Basel, Switzerland). 786-O and Caki-1 cells were maintained in

RPMI and NHK cells were maintained in DMEM, both

supplemented with 10% FBS, 100 units/mL streptomycin, and

100 mg/mL penicillin. The cells were maintained at 5% CO2 and

at 37uC.

Materials
Formalin-fixed paraffin-embedded slides (hematoxylin eosin

[H&E] staining and unstained) of archived RCC tissues were

obtained from the UC Davis Department of Pathology after

appropriate IRB approval. The PPARa agonist, WY14,643 (WY)

and antagonist, GW6471 (GW) were dissolved in DMSO. WY,

GW, DMSO, 2-Deoxy-D-glucose (2-DG), MTT solution, and

mouse monoclonal anti-ß-actin antibody were obtained from

Sigma (St. Louis, MO, USA). 2-DG was dissolved in water. Rabbit

polyclonal anti-PARP antibody, mouse monoclonal anti-CDK4

antibody, rabbit polyclonal anti-cyclin D1 antibody, and rabbit

polyclonal anti-c-Myc antibody were obtained from Cell Signaling

Technology, Inc. (Beverly, MA, USA). Rabbit polyclonal anti-

PPARa antibody was obtained from Abcam (Cambridge, MA,

USA). Goat anti-mouse and goat anti-rabbit HRP conjugated IgG

were obtained from Bio-Rad (Hercules, CA, USA). VECTA-

SHIELD and DAB Peroxidase Substrate Kit, 3,39-diaminobenzi-

dine were purchased from Vector Laboratories (Burlingame, CA,

USA). ECL Plus solution was obtained from Thermo Fisher

Scientific (Waltham MA, USA). The PPARa and scrambled

control siRNA were obtained from QIAGEN (Gaithersburg, MD,

Figure 1. PPARa protein level was higher in grade 4 RCC tissues than grade 1 RCC tissues. RCC tumor tissues of different Fuhrman grades
were prepared for immunohistochemistry as described in Materials and Methods and probed with PPARa antibody. The photomicrographs shown
are representative of at least three patients for each group. Bar = 50 mm.
doi:10.1371/journal.pone.0071115.g001

PPARa Attenuates RCC Growth and Causes Apoptosis
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USA). Lipofectamine RNAiMAX was obtained from Invitrogen

(Carlsbad, CA, USA).

Immunohistochemistry
Human RCC (grades 1 and 4) and adjacent normal tissues were

deparaffinized, pretreated in sodium citrate buffer, and blocked in

the blocking buffer (5% normal goat serum and 0.3% Triton X-

100 in PBS) for an hour at room temperature. After blocking, the

slides were incubated with mouse monoclonal anti-PPARa
antibody from Millipore (Billerica, MA) for overnight at 4uC.
The slides were washed with TBST and incubated with 0.3%

hydrogen peroxide in TBST for 15 minutes. The slides were

washed with TBST, incubated with goat anti-mouse HRP

conjugated IgG for two hours at room temperature. After

washing, DAB Peroxidase Substrate Kit, 3,39-diaminobenzidine

was applied according to the manufacturer’s instructions. Hema-

toxylin was used for counter staining. The slides were coverslipped

with VECTASHIELD.

MTT Assay
Cell viability assay was performed as described previously [13].

Briefly, cells were plated in 96 well plates, and after the indicated

treatments, the cells were incubated in MTT solution/media

mixture. Then, the MTT solution was removed and the blue

crystalline precipitate in each well was dissolved in DMSO. Visible

absorbance of each well at 540 nm was quantified using a

microplate reader.

Cell Cycle Analysis
Cell cycle analysis was performed utilizing MuseTM Cell

Analyzer from Millipore (Billerica, MA) following manufacturer’s

instruction. Briefly, after the indicated treatments, the cells were

washed with PBS and stained with propidium iodide (PI). After

staining, the cells were processed for cell cycle analysis.

Apoptosis Assay
Annexin V & Dead Cell Assay was performed utilizing MuseTM

Cell Analyzer from Millipore (Billerica, MA) following manufac-

turer’s instruction. Briefly, after the indicated treatments, the cells

were incubated with Annexin V and Dead Cell Reagent (7-AAD)

and the events for dead, late apoptotic, early apoptotic, and live

cells were counted.

Immunoblotting
Immunoblotting was done as described previously [13]. Briefly,

after the indicated treatments, the cells were washed with PBS,

lysed in lysis buffer, and cell lysates were immunoblotted. The

membranes were blocked in 5% nonfat dry milk for one hour at

room temperature, incubated with indicated antibodies, and then

probed with horseradish peroxidase tagged anti-mouse or anti-

rabbit IgG antibodies. The signal was detected using ECL Plus

solutions.

siRNA Transfection
The indicated cells were plated in a six well plate for

immunoblotting or T25 flasks for cell cycle analyses and apoptosis

assays. After 24 hours, cell monolayers at approximately 75%

confluency were subjected to siRNA transfection. The transfection

mixture was prepared in Opti-MEM GlutaMax medium from

Invitrogen (Carlsbad, CA, USA) with siRNA and Lipofectamine

RNAiMAX according to the manufacturer’s protocol. The final

concentration of siRNA added to the cells were 100 nM. The cells

were cultured in the presence of transfection mixture for 24 h and

the following day, the transfection mixture was replaced by fresh

RPMI medium, and cell culture was pursued for an additional 48

hours. After the transfection, cells were collected for immunoblot-

ting, cell cycle analysis, or apoptosis assay.

Statistical Analysis
Comparisons of mean values were performed using the

independent samples t-test. A p-value of ,0.05 was considered

significant.

Figure 2. PPARa antagonist inhibited RCC and NHK cell
viability. RCC cells (Caki-1 and 786-O) were treated with DMSO,
WY14,643 (WY), or GW6471 (GW) at the indicated doses from 12.5 to
100 mM for 72 hours and a cell viability assay was performed as
described in Materials & Methods. The data shown are representative of
at least three repeats. *p,0.05 compared to DMSO. Error bars indicate
standard deviation.
doi:10.1371/journal.pone.0071115.g002

Figure 3. PPARa antagonist arrested cell cycle at G0/G1 phase
and attenuated cell cycle related proteins. RCC cells (Caki-1 and
786-O) were treated with DMSO (Cont) or GW6471 (GW) 25 mM for 24
hours and cell cycle analysis was performed as described in Materials
and Methods. The data shown are representative of at least three
repeats.
doi:10.1371/journal.pone.0071115.g003
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Results

PPARa Shows Increased Expression in High Grade as
Compared to Low Grade RCC
To begin to determine the relevance of PPARa in RCC, we first

evaluated its protein levels in grade 1 and grade 4 RCC tissues by

immunohistochemistry. Archived RCC tissues taken from ne-

phrectomy samples were evaluated by immunohistochemistry with

a specific PPARa antibody. RCC tissues with a histological

diagnosis of Fuhrman grade 4 showed pronounced staining of

PPARa while there was minimal staining of grade 1 tissues (Fig. 1).

Of interest, the majority of the cytosol in grade 1 cells was

comprised if a ‘‘clear’’ constituent, known to be glycogen and

lipids, which did not stain with PPARa antibody [14].

A Specific PPARa Antagonist, but not an Agonist,
Attenuated RCC Cell Viability
The increased levels of PPARa observed in high grade tissues

provides little information concerning the functional status or

signaling properties of this receptor. To begin to answer this

question, we evaluated the functional role of PPARa on RCC cell

viability by MTT assay. Both Caki-1 (VHL wild type) and 786-O

(VHL mutated) cells were incubated separately with a specific

PPARa agonist, WY14,643 [15], or a specific PPARa antagonist,

GW6471 [16] at concentrations from 12.5 to 100 mM for 72

hours, and cell viability was assessed. While WY14,643 either had

no affect on, or slightly increased, cell viability, GW6471

significantly and dose-dependently inhibited cell viability (up to

approximately 80%) in both cell lines (Fig. 2).

The PPARa Antagonist caused Both Cell Cycle Arrest and
Apoptosis in both Cell Lines
The decreased cell viability observed after incubation of both

RCC cell lines with the PPARa antagonist GW6471 could occur

as a result of either decreased proliferation, induction of apoptosis,

or both. To begin to answer this question, we first evaluated cell

proliferation using flow cytometry methods. Both cell types were

incubated with GW6471 or DMSO vehicle for 24 hours after

Figure 4. PPARa antagonist induced apoptosis in RCC cells. A. RCC cells (Caki-1 and 786-O) were treated with DMSO or GW6471 (GW) at the
indicated doses for 24 hours and an annexin V-based apoptosis assay was performed as described in Materials and Methods. B. RCC cells (Caki-1 and
786-O) were treated with DMSO or GW6471 (GW) at the indicated doses for 24 hours and immunoblotting was performed as described in Materials
and Methods. ß-actin was immunoblotted as a loading control. The data shown are representative of at least three repeats.
doi:10.1371/journal.pone.0071115.g004
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which cell cycle analysis was performed. GW6471 arrested the cell

cycle at the G0/G1 phase in both Caki-1 and 786-O cells (Fig. 3),

suggesting that the MTT assay is, at least in part, indicating cell

cycle arrest.

To determine whether PPARa antagonism resulted in apoptosis

in addition to cell cycle arrest, we next evaluated annexin V

staining under similar conditions as the above. After treatment of

both cell lines with GW6471 or DMSO for 24 hours the cells were

subjected to flow cytometery analysis after annexin V staining as

described in Materials and Methods. As assessed by cell sorting,

GW6471 increased the quantity of total apoptotic cells in both

Caki-1 and 786-O cell lines (Fig. 4A). To confirm apoptosis under

these conditions, PARP cleavage in the cells treated with GW6471

compared to DMSO was also assessed (Fig. 4B). Taken together,

these data indicate that the reduced signal seen in the MTT assay

after incubation of the cells with GW6471 is due to both cell cycle

arrest and apoptosis induction.

To further evaluate the mechanism of cell cycle arrest and

apoptosis induction by GW6471, we measured levels of cell cycle

and apoptosis relevant signaling proteins involved in regulating the

G0/G1 checkpoint. Both cell lines were treated for 24 hour with

GW6471, and then the cell lysate was immunoblotted with CDK4,

cyclin D1, and c-Myc antibodies; all of these proteins were

markedly decreased by the PPARa antagonist, supporting the

observed G0/G1 arrest and suggesting a mechanism for same

(Fig. 5).

siRNA Transfections Confirm Specificity of the PPARa
Inhibitor
To confirm that the effects observed with GW6471 inhibition

are specific to PPARa inhibition, we used an siRNA approach.

Caki-1 cells were transiently transfected with a PPARa siRNA or

scrambled sequence control siRNA as described in Materials and

Methods. When compared to the control siRNA, PPARa siRNA

attenuated protein levels of PPARa (Fig. 6A) similar to what was

observed with GW6471 in this cell line (compare Fig. 6A to Fig.

5 left panel), confirming both efficacy of the siRNA and specificity

of GW6471 towards PPARa. Several attempts were made to

transfect 786-O cells with the identical siRNA but these were not

successful.

To confirm that the cell cycle and apoptotic events observed

with GW6471 incubation were in fact due to PPARa inhibition

and not to off-target effects of the antagonist, we evaluated the cells

under conditions of siRNA transfection parallel to GW6471

incubation. siRNA transfection of Caki-1 cells arrested the cell

cycle at G0/G1 (Fig. 6B), attenuated protein levels of CDK4,

cyclin D1, and c-Myc (Fig. 6C), and induced apoptosis (Fig. 6D) in

an identical fashion to what was observed with GW6471

treatment, indicating that cell cycle arrest and attenuation of

these proteins by GW6471 was in fact due to PPARa antagonism.

Thus, the effects of GW6471 on the cell cycle, its regulatory

proteins, and apoptosis resulted from specific PPARa antagonism.

PPARa Antagonism and Glycolysis Inhibition
Synergistically Attenuates RCC Cell Viability
Since PPARa has been known to activate fatty acid oxidation

(FAO) and to decrease glucose utilization [17], we hypothesized

that PPARa antagonism might cause the cells to decrease their

reliance on FAO and thus be exquisitely dependent on glycolysis

for their energy source; such a finding would suggest a novel

approach for clinical utility of PPARa antagonists, especially with

regard to RCC therapy. To evaluate this hypothesis, we treated

RCC cells with GW6471 and/or the glycolysis inhibitor 2-DG and

then measured cell viability. Under these conditions, there was a

synergistic attenuation of cell viability with GW6471 and 2-DG.

To confirm that 2-DG, which competes with glucose and hence

attenuates cellular glycolysis, was causing the cells to decrease

glucose utilization, we treated the cells with GW6471 grown in

glucose depleted media. Both 2-DG treatment and glucose

depletion sensitized RCC cells to PPARa antagonism (Fig. 7),

suggesting basal dependence of RCC cells on PPARa-induced
FAO such that the cells switch to glucose dependence when FAO

is attenuated with PPARa inhibition. To evaluate potential

differences in RCC vs. ‘‘normal’’ RTE cell lines, we performed

parallel experiments in a ‘‘normal’’ human kidney cell line (NHK)

obtained commercially and found similar changes (Figure S1).

These data suggest that the dual inhibition of PPARa and

glycolysis is a potential novel and powerful combination thera-

peutic approach for RCC.

Discussion

RCC is the sixth most common cancer in the U.S. and is one of

the few cancers whose incidence is currently increasing; the 5-y

survival for patients with metastatic RCC is a dismal 26% (TNM

Stage IV based on 2005 statistics) [18]. For the approximately one-

third of patients who present with metastatic disease, there are

several FDA-approved drugs available, among them the multi-

kinase inhibitors (e.g. sorafenib and sunitinib) [19] and the

mammalian target of rapamycin (mTOR) inhibitors [20]. Since

progression-free survival even with these new drugs is a paltry one

to two years, and because nearly all patients initially presenting

with metastatic cancer succumb to their disease [21], it is essential

to explore novel therapeutic approaches for patients with

metastatic RCC.

PPARa is a ligand-activated transcription factor that belongs to

the nuclear hormone receptor superfamily [22]. This receptor has

Figure 5. Levels of cell cycle and apoptosis relevant proteins
were altered by PPARa Antagonist. RCC cells (Caki-1 and 786-O)
were treated with DMSO (Cont) or GW6471 (GW) 25 mM for 24 hours
and immunoblotting was performed as described in Materials and
Methods. The pictures shown are representative of at least three
patients for each group.
doi:10.1371/journal.pone.0071115.g005
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been shown to stimulate fatty acid metabolism [17], to attenuate

glycolysis [17], and to regulate tumorigenesis through promoting

transcription of its target genes [23–28]. Despite extensive

knowledge of the various targets of PPARa, the precise role of

this receptor in regulation of cancer is still uncertain.

PPARa agonists have been shown to decrease the growth of

melanoma, glioblastoma, and fibrosarcoma, and these effects have

been associated with PPARa-induced inhibition of endothelial cell

proliferation as well as PPARa-dependent down-regulation of

cytochrome P450, resulting in inhibition of neoangiogenesis

[29,30]. On the other hand, activation of PPARa has been shown

to increase proliferation in breast cancer cell lines [11].

Furthermore, long-term administration of PPARa agonists caused

liver cancer in rodents [31], and Ppara-null mice were resistant to

the hepatocarcinogenic effects of PPARa agonists [31,32]. These

data show that PPARa plays a pleiotropic role in cancer, but

whether it functions as a tumor suppressor or an oncoprotein

appears to be highly dependent on cancer type or even cell type.

As a basis for this study, we recently discovered a metabolic

signature of RCC in mice xenografted with human RCC (Caki-1)

cells [12]. Our study is supported by another in genitourinary

cancers comparing mRNA and miRNA profiling, which showed

evidenced of an enriched PPARa pathway in RCC but not in

bladder cancer [33]. While these studies support an oncogenic

effect of PPARa in RCC, the molecular mechanisms of

tumorigenesis by PPARa and a potential therapeutic approach

of PPARa inhibition have not been evaluated in RCC. In the

present study we show for the first time that PPARa antagonism

attenuates RCC cell growth through G0/G1 phase cell cycle

arrest and the induction of apoptosis associated with decreased

CDK4, cyclin D1, and c-Myc levels.

While there have been studies that show up-regulation of

PPARa related metabolites [12] and genes [33] in RCC, no study

has shown alteration of actual PPARa protein levels associated

with tumorigenesis. In this study, we show increased PPARa levels

in high grade RCC tissues vs. low grade tissues, suggesting that

Figure 6. Downregulation of PPARa by siRNA transfection confirmed the antagonist’s on-target effects in Caki-1 cells. Caki-1 cells
were transfected with control siRNA or PPARa siRNA at 100 nM for 72 hours and processed for immunoblotting, cell cycle analysis, and apoptosis
assay as described in Materials and Methods. A. PPARa protein level was attenuated in the cells transfected with PPARa siRNA. B. PPARa siRNA
transfection arrested cell cycle at G0/G1 phase. C. CDK4, cyclin D1, and c-Myc protein levels were attenuated in the cells transfected with PPARa
siRNA. D. PPARa siRNA transfection induced apoptosis. The data shown are each representative of at least three repeats.
doi:10.1371/journal.pone.0071115.g006

PPARa Attenuates RCC Growth and Causes Apoptosis
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PPARa protein levels is associated with aggressiveness of RCC.

Because PPARa regulates fatty acid oxidation (FAO) through its

target gene transcription [34], and in light of the fact that grade

dependent alterations of energy pathways (including FAO)

proteins has been reported [35], it is possible that PPARa at least

partially plays a role in aggressiveness and energy metabolism

differences as a function of grade in RCC. This possibility is

supported by the finding that low-grade RCC cells have more

extensive clear cytosol, which consists of lipid and glycogen, than

higher grade cells [14,36].

To evaluate whether PPARa is a viable potential therapeutic

target for advanced RCC, we analyzed the efficacy of PPARa
antagonism utilizing a specific PPARa antagonist, GW6471, in

RCC cell lines. Our data showed for the first time that such

manipulation caused G0/G1 cell cycle arrest as well as induction

of apoptosis. It is possible that these events are related to energy

metabolism alterations which have been well studied in normal

cells and in many diseases, including cardiovascular diseases and

cancer, in which PPARa has been suggested as a therapeutic

target [10,17,37,38]. To our knowledge, ours is the first study to

show cell cycle arrest by PPARa inhibition in RCC.

PPARa antagonism by both GW6471 and a specific siRNA

showed decreases in c-Myc, cyclin D1, and CDK4. These findings

are supported by a study which showed PPARa-dependent
increases of c-Myc, cyclin D1, and CDK4 protein [39] by the

PPARa agonist WY-14,643 in wild type mouse liver cells but not

in the PPARa null cells. The cellular proto-oncogene, c-myc, is

associated with a variety of human cancers and is strongly

implicated in the control of cellular proliferation, programmed cell

death, and differentiation [40]. PPARa has been shown to stabilize

c-Myc protein through repression of the let-7c miRNA [41]. Thus,

it is possible that attenuation of c-Myc protein in RCC cells by

PPARa antagonism was through increased let-7c resulting in

decreased stability of c-Myc. The cyclin D1/CDK4 complex

promotes cell cycle progression through phosphorylation of its

substrate including pRb (reviewed in [42]). Attenuation of c-Myc

represses cyclin D1/CDK4 expression and activity at G1/S

transition [43,44]. These findings suggest that our observation that

PPARa inhibition results in decreased c-Myc levels may account

for the decrease in cyclin D1/CDK4 and thereby cause the

observed cell cycle arrest at G0/G1 in RCC cells.

A significant finding from our study was that PPARa inhibition

not only arrested cell cycle but also caused apoptosis in RCC cells.

Interestingly, CDK4 inhibition has been reported to induce

apoptosis [45] by causing translocation of RelA, the principal

component of NFkB, from the cytoplasm to the nucleoplasm and

Figure 7. Glucose depletion synergized cytotoxicity of PPARa antagonist but not agonist. A. RCC cells (Caki-1 and 786-O) were treated
with DMSO (Cont), GW6471 (GW) 25 mM, and/or 2-DG (5 mM) for 72 hours and cell viability assay was performed as described in Materials and
Methods. B. RCC cells (Caki-1 and 786-O) were treated with DMSO (Cont), GW6471 (GW) 25 mM, low glucose media (Lo Glu), or GW6471 in low
glucose for 72 hours and cell viability was assessed by an MTT assay as described in Materials and Methods. The data shown are representative of at
least three repeats. **Synergistic effect compared to each treatment separately. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0071115.g007

PPARa Attenuates RCC Growth and Causes Apoptosis
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then to the nucleolus resulting in repression of anti-apoptotic

protein production including survivin. Because we observed

profound CDK4 inhibition after PPARa antagonism, it is possible

that PPARa inhibition-induced apoptosis was a result of CDK4

attenuation at least in RCC cells.

To further extend the potential of PPARa inhibition as a

therapeutic approach, we sought combination treatments that

increase efficacy of the PPARa antagonist. Since one of the roles of

PPARa involves increasing FAO [10] as well as decreasing

glycolysis at the transcriptional and functional levels leading to a

decrease in pyruvate and lactate production [17], we hypothesized

that PPARa antagonism may result in enhanced dependence of

the cells on glycolysis due to the attenuation of FAO. Our finding

that the efficacy of GW6471 was significantly higher in glucose-

depleted media than the regular media further confirmed this

supposition and further suggested that the synergistic effect of the

PPARa antagonist and 2-DG combination treatment was

specifically due to inhibition of glycolysis and not to off-target

effects of 2-DG. Furthermore, this finding supports the future

evaluation of dual therapeutics which could be used concurrently

thereby attacking RCC at its Achilles heel of energy metabolism.

Our findings that NHK cells showed similar changes under

these conditions should be tempered by several issues. First, the

behavior of all cell lines, especially cells claimed to be ‘‘normal’’,

need to be evaluated in their in vivo context before firm

conclusions can be drawn about their behavior, due to such issues

as the stromal cell influence as well as cytokine release and other

autocrine influences. Second, administration of GW6471 in a

rabbit model (4 mg/kg as a bolus IV injection) [46] resulted in no

gross changes in the kidney or alterations in urine output as

compared to control animals after 5 hours (Christopher Lotz,

personal communication).

In conclusion, we show here for the first time that (1) PPARa is

upregulated in high grade RCC tissues compared to low grade

tissues, (2) PPARa inhibition attenuates RCC cell viability through

c-Myc, CDK4, and cyclin D1 decrease mediated cell cycle arrest

and apoptosis induction, and (3) glycolysis inhibition synergizes

with PPARa against cell viability. Taken together, these data

suggest PPARa inhibition as a novel therapeutic approach for

advanced RCC.

Supporting Information

Figure S1 Glucose depletion synergy with the PPARa
antagonist occurs in primary normal human kidney
epithelial (NHK) cells. NHK cells were treated with 2-DG and

subjected to no glucose media as described in Fig. 7. The data

shown are representative of at least three repeats. **Synergistic

effect compared to each treatment separately. Error bars indicate

standard deviation.
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