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Abstract

Pulmonary arterial hypertension (PH) and chronic kidney disease (CKD) both profoundly impact patient outcomes, whether as

primary disease states or as co-morbid conditions. PH is a common co-morbidity in CKD and vice versa. A growing body of

literature describes the epidemiology of PH secondary to chronic kidney disease and end-stage renal disease (ESRD) (WHO group

5 PH). But, there are only limited data on the epidemiology of kidney disease in group 1 PH (pulmonary arterial hypertension

[PAH]). The purpose of this review is to summarize the current data on epidemiology and discuss potential disease mechanisms

and management implications of kidney dysfunction in PAH. Kidney dysfunction, determined by serum creatinine or estimated

glomerular filtration rate, is a frequent co-morbidity in PAH and impaired kidney function is a strong and independent predictor of

mortality. Potential mechanisms of PAH affecting the kidneys are increased venous congestion, decreased cardiac output, and

neurohormonal activation. On a molecular level, increased TGF-b signaling and increased levels of circulating cytokines could have

the potential to worsen kidney function. Nephrotoxicity does not seem to be a common side effect of PAH-targeted therapy.

Treatment implications for kidney disease in PAH include glycemic control, lifestyle modification, and potentially Renin-

Angiotensin-Aldosterone System (RAAS) blockade.
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Introduction

Kidney dysfunction is a common co-morbidity and inde-
pendent risk factor for poor outcome in a broad spectrum
of cardiovascular disease, including left ventricular systolic
and diastolic dysfunction.1–3 Pulmonary hypertension (PH)
describes a cardiovascular syndrome affecting the right heart
that is characterized by increased blood pressure in the pul-
monary circulation (mean pulmonary artery pressure
[mPAP] >25mmHg), which can occur in the context of a
large number of disease states.4 Currently, PH is divided
into five different clinical groups according to the underlying
pathophysiology, clinical presentation, and treatment strat-
egy (Table 1).4 This classification, derived during the 5th

World Symposium held in Nice, France, in 2013, provides
the most commonly used framework to approach PH. A
hemodynamically focused schema, tightly aligned with the
Nice Classification, identifies patients who will benefit
from drug therapy for pre-capillary PH. A hemodynamic
classification rigorously divides according to hemodynamic
conditions, using the pulmonary capillary bed to divide con-
ditions into pre-capillary and post-capillary forms of PH.
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Pre-capillary PH is defined by elevated pulmonary artery
pressure (PAP) in the absence of increased pulmonary venous
or left sided filling pressures. In contrast, post-capillary PH is
defined by increased PAPs with evidence of elevated pulmon-
ary venous and/or left-sided filling pressures. A combined
pre- and post-capillary form of PH can also be present,
defined as PH with an increased diastolic pressure gradient.5

There is evidence for an overlap between pre- and post-
capillary PH and certain patients with post-capillary PH
might benefit from pre-capillary PH-targeted therapy.6

Of course, the Nice and hemodynamic classification
schemes are intimately related. For example, WHO Group
1 PH is a distinct group of pre-capillary PH, also called
pulmonary arterial hypertension (PAH) and defined by a
mPAP >25mmHg in the presence of a pulmonary capillary
wedge pressure �15mmHg. PAH has a low incidence but
typically high mortality rate. PAH occurs as an idiopathic
disease entity or one associated with a co-existent condition
such as a PAH-specific gene mutation, drug or toxin expos-
ure, connective tissue disease (CTD), congenital heart dis-
ease, or other condition. WHO Group 2 captures PH due
to left-heart disease, therefore describing a population of
subjects with post-capillary PH; this group has the highest
incidence and prevalence of PH. It was reported that around
60–80% of patients with left heart disease have PH.7 WHO
Group 3 PH is associated with chronic hypoxemic pulmon-
ary disease, which is most often pre-capillary in nature.
Group 4 PH is due to chronic thromboembolic occlusion
of the pulmonary arteries and oftentimes is associated with a
history of pulmonary embolism or thrombophilic disorders;
while post-capillary disease can exist, this too is more often
pre-capillary in nature. Group 5 encompasses PH in the
setting of a primary disease outside the lungs that affects
the pulmonary circulation via multiple different and/or
unknown mechanisms and may involve both pre- and/or
post-capillary presentations. PH in the setting of CKD
and ESRD belongs to this group. The majority of data
about the epidemiology of kidney dysfunction comes from
WHO Groups 2 and 5. Data about kidney dysfunction and
potential disease mechanisms in PH group 1 (PAH) are
more limited in scope.

CKD, or CKD stage 3, is defined as the presence of a
reduced glomerular filtration rate (GFR) below 60mL/min/

1.73m2 for three or more months. The definition of CKD
also includes persistent albuminuria with a spot urine albu-
min to creatinine ratio of 30mg/g or above for three or more
month regardless of GFR. Additional criteria of CKD
include the presence of urinary white or red cell casts for
three or more month and renal imaging or biopsy abnorm-
alities.8 In this review, we consider kidney dysfunction as
CKD stage 2 or higher. The rationale for this definition
comes from epidemiological data showing that mild
kidney dysfunction (CKD stage 2) with an estimated GFR
(eGFR) above 60mL/min/1.73m2 is independently asso-
ciated with the risk for cardiovascular disease.9,10

This review will summarize the epidemiology of kidney
dysfunction in PAH and its impact on outcome in this
patient population. Potential disease mechanism evident in
PAH that can impact kidney function will be discussed.
Conversely, the impact of kidney dysfunction on PAH
pathophysiology will be addressed. Potential effects of
PAH targeted therapy on kidney function and potential
treatment implications will be reviewed. The most evident
overlapping molecular mediators contributing to PAH and
kidney dysfunction will be reviewed. Finally, we discuss
important treatment implications for PAH patients with
evidence of kidney dysfunction.

Epidemiology and impact of kidney
dysfunction on outcomes in PAH

The precise prevalence of kidney dysfunction in PAH has
not been determined and may vary according to subtype. It
is clear that the prevalence of kidney dysfunction in PAH is
high, in the range of 4–36% (Table 2). This substantially
exceeds the prevalence of kidney dysfunction in the general
population, which was reported on the order of 0.6% in men
and 0.3% in women.11,12 Patients with connective tissue
disease-associated PAH (CTD-PAH) have the highest
rates of kidney impairment, although kidney dysfunction
is also a feature of other PAH forms. Older age, high sys-
temic blood pressure, diabetes, and increased right atrial
pressure seem to be associated with kidney impairment in
PAH patients.

Table 2 summarizes the available information related to
the epidemiology of kidney dysfunction in PAH. The

Table 1. Classification of pulmonary hypertension (adjusted from Simonneau et al.201).

Group Entities

1 Pulmonary arterial hypertension Idiopathic, Heritable, CTD, portopulmonary, CHD, others

2 Pulmonary hypertension due to left heart disease Left ventricular systolic/diastolic dysfunction, valvular

heart disease, others

3 Pulmonary hypertension due to lung disease or hypoxia COPD, ILD, sleep-disordered breathing, others

4 Chronic thromboembolic pulmonary hypertension (CTEPH)

5 Pulmonary hypertension with unclear mechanisms CKD, hematologic disorders, others

CHD: congenital heart disease; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CTD: connective tissue disease; ILD: interstitial lung

disease.
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Registry to Evaluate Early And Long-term PAH disease
management (REVEAL) evaluated 2716 patients with
PAH, and found that 4 percent of REVEAL subjects
had kidney dysfunction, although it was not clearly
defined. Kidney dysfunction in this cohort was associated
with a threefold increased risk for death in a univariate
regression model and a twofold increase for poor outcome
in a multivariate model, adjusted for PAH subgroup,
BMI, six-minute walking distance (6MWD), demographic,
hemodynamic, and functional variables.13 In a subgroup
analysis from the REVEAL cohort, Chung et al. found
that compared to idiopathic PAH (IPAH) patients,
patients with CTD-PAH had a higher incidence of
kidney dysfunction (7% versus 4%). Scleroderma-asso-
ciated PAH (SSc-PAH) patients had the highest incidence
(8.4%) among those with CTD-PAH. The differences in
kidney function could not be explained by hemodynamic
variables at the time of catheterization.14 Similarly,
Tedford and Kane et al. confirmed the higher incidence
of kidney dysfunction in CTD-PAH, compared to other
PAH subgroups.15,16 None of these studies reported
prevalence of pre-existing renal disease in patients with
CTD-PAH.

Meanwhile, Navaneethan et al. reported a prevalence of
kidney dysfunction defined as stage 3 (GFR< 60mL/min/
1.73m2 measured on two occasions 90 days apart) in 47% of
552 PAH patients. This study identified factors associated
with kidney dysfunction as older age, systemic hypertension,
and higher right atrial pressure. PAH patients with kidney
dysfunction at baseline or worsening kidney function had an
increased risk of death even after adjusting for demographic
and hemodynamic variables.17 In a cross-sectional study of
patients referred for right heart catheterization, O’Leary
et al. found that in 840 patients with PAH, the prevalence
of kidney dysfunction was 37% and mortality increased in a
graded fashion across CKD stages.18

Shah et al. investigated baseline serum creatinine levels in
578PAHpatients and found that 12%of patients had evidence
of kidney dysfunction defined by a single eGFR below 60mL/
min/1.73m2. Age, male gender, systemic hypertension, dia-
betes mellitus, CAD, worse right ventricular hemodynamics,
and diuretic use were associated with worse kidney function.19

Chakinala investigated the impact of changes in kidney
function in PAH patients on outcome using an updated
REVEAL cohort including 2368 patients with serial GFR
measurements. Patients with a decrease in GFR over time
had worse outcomes compared to patients with a stable or
increasing GFR, independent of the baseline eGFR,
6MWD, and WHO-FC.20

The variability in the prevalence of kidney dysfunction in
PAH patients reported above has likely multiple reasons,
including the lack of a consistent definition of impaired
kidney function, differences in GFR estimation, different
inclusion and exclusion criteria, diverse distribution of
PAH subgroups, differences in co-morbidities associated
with CKD, and lack of report of diuretic use.

In the initial REVEAL registry, for example, each sin-
gle investigator determined CKD and it is unclear what
criteria were used. Shah et al. used a single serum creatinine
measurement at study entry and excluded patients with
documented kidney insufficiency. Navaneethan et al. used
two eGFRs <60mL/min/1.73m2 three months apart to
define CKD.

The differences of GFR estimations (MDRD, CKD-EPI,
Cockcroft) in PAH is likely minimal. Kaiser et al. applied all
three formulas in 64 patients with PH (32 with PAH) and
did not find significant differences in estimation of eGFR.
The Cockcroft formula performed best in terms of predic-
tion survival.21 Renal dysfunction is common in many
CTDs and may account for the higher prevalence of
kidney impairment found in CTD-PAH patients. Renal dys-
function was reported to range from 5% in SSc to 50% in
systemic lupus erythematosus.22,23 Various mechanisms
have been associated with kidney disease in CTDs, including
tubule-interstitial nephritis, minimal change disease, and
membranous nephropathy (reviewed in Kronbichler and
Mayer24). Besides PAH subtypes, it is also important to
note differences in co-morbidities like systemic hypertension
and diabetes when interpreting study results of kidney dis-
ease in PAH.

The use of diuretic therapy is—as standard of care—
highly prevalent in patients with PAH. Amount, combin-
ation, and duration of diuretic therapy can impact serum
creatinine levels and GFR. Most studies do not report
details of diuretics used. In those studies that do report
the use of diuretics, the variance of patients on diuretics is
high, in the range of 50–90%.19,25

In summary, even though there is a wide discrepancy in
the prevalence kidney dysfunction in patients with
PAH and only one study so far used the Kidney
Dialysis Outcomes Quality Initiative (KDOQI) CKD def-
inition of two separate GFR values at least three months
apart, there is robust evidence of impaired kidney func-
tion in PAH. It seems that right ventricular hemo-
dynamics, PAH subtype (especially CTD-PAH) and
traditional risk factors like systemic hypertension, age,
and diabetes are associated with kidney dysfunction in
PAH patients. Kidney dysfunction has an important
impact on survival in PAH and even mild impairment
of kidney function seems to be an independent predictor
of mortality.

Potential mechanisms of kidney
dysfunction in PAH

Numerous potential mechanisms exist to explain the high
prevalence of kidney dysfunction in PAH. Major contribu-
tors are the tight interplay between the heart and the kidney
(cardiorenal syndrome [CRS]) and neurohormonal activa-
tion in the setting of right heart failure. As vasoactive sub-
stances, the majority of PAH-targeted therapy seems to
have renal protective properties.

Pulmonary Circulation Volume 7 Number 1 | 41



Cardiorenal syndrome and the right ventricle

A common feature of kidney dysfunction in all forms of
PH is CRS, a clinical state in which the treatment of
heart or kidney failure is limited by worsening heart or
kidney function. CRS describes the tight bidirectional
relationship between these two organs (reviewed in
Ronco et al.26).

CRS type 2 describes kidney dysfunction in the setting
of chronic heart disease. Evidence for presence of CRS in
PAH comes from the observation that there was a particu-
larly strong correlation between right atrial pressure and
kidney dysfunction that outperformed the association
with cardiac index in PAH patients.19 The strong inter-
action of elevated right atrial pressures and kidney function
was also observed in group 2 PH patients, suggesting the
importance of venous congestion in kidney dysfunc-
tion.17,27,28 In one study there was a significant correlation
between right atrial pressure and GFR in all groups of PH
patients and an elevated right atrial pressure was in inde-
pendent predictor of CKD.17 This is in line with the obser-
vation in patients with different forms of heart failure,
where it was shown that elevated right-sided filling pres-
sures were the most important predictor of worsening
kidney function.29,30

CKD defined by a GFR <60mL/min/1.73m2 in patients
with left-sided heart failure is common and in the range of
20–80%.3,31,32 Patients with kidney dysfunction and left
heart disease are older and have a higher prevalence of sys-
temic hypertension and diabetes.2,3 Apart from a higher rate
of cardiovascular disease, kidney function in patients with

left heart disease was shown to be independent of left ven-
tricular ejection fraction or cardiac index, but linked to
diastolic dysfunction and right atrial pressures.1,2,31,33 In
patients with heart failure with reduced ejection fraction
(HFrEF), the presence of PH was associated with worse
kidney function. In patients undergoing right heart catheter-
ization for evaluation of valvular heart disease, coronary
artery disease, and heart failure, central venous pressure
was independently associated with kidney function.34 The
degree of kidney dysfunction pre- and postoperatively in
patients undergoing aortic valve replacement was directly
related to the degree of PH measured by right heart
catheterization.35

Experimental evidence from isolated dog kidneys
revealed that changes of venous pressure had a greater influ-
ence on the reduction of kidney blood flow and urine output
then an equal reduction of arterial pressures.36

In summary, right ventricular hemodynamics, especially
right atrial pressure, seem to play a major role in the devel-
opment and progression of kidney dysfunction in PAH
(Fig. 1).

Neurohormonal activation

Right ventricular hemodynamics are of major prognostic
importance in patients with PAH and have been linked to
increased neurohormonal activation.37–41

Although it is uncertain whether increased neurohormonal
activation is caused by right heart failure, sympathetic activa-
tion in PAH patients measured by postganglionic activity was

Fig. 1. Cardiorenal syndrome in PAH and CKD. CRP, C-reactive protein; UA, uric acid; Ang-2, angiopoietin 2; IL-6, Interleukin 6. Figures were

produced using Servier Medical Art found on www.servier.com.
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shown to be related to the progression of right heart failure
and to decrease after atrial septostomy.37,38 Sympathetic nerve
fibers are located in the bifurcation of the main pulmonary
artery in men.42,43 It was shown that sympathetic denervation
of the pulmonary artery improved hemodynamics and func-
tional capacity in patients with IPAH. Furthermore, pulmon-
ary artery denervation was shown to decrease neurohormonal
activity in preclinical models.44,45

The prognostic importance of increased Renin-
Angiotensin-Aldosterone-System (RAAS) activity has been
demonstrated in PAH for circulating levels of renin, angio-
tensin-1 and 2, vasopressin, and high prevalence of hypona-
tremia (as an indirect marker of RAAS activation).25,46,47

Polymorphisms in angiotensin converting enzyme (ACE)
and angiotensin two receptor type 1 (ART1) have been
found in patients with PAH and were associated with favor-
able right ventricular hemodynamics and later age of disease
onset.48 Evidence for a pathobiological role of the RAAS
system in PAH comes from studies demonstrating increased
ACE activity, upregulated angiotensin receptor type 1
expression, and enhanced angiotensin II production in pul-
monary vessels of PAH patients that was linked to hyperpla-
sia of pulmonary arterial endothelial cells (ECs).46 Increased
aldosterone expression in human pulmonary arterial ECs
was linked to nitric oxide production and worsening of
experimental PH via modulation of endothelin B (ET-B)
receptor.41

Increased activity of the neurohormonal axis is a well-
established phenomenon in patients with CKD.49,50 There
is also evidence that diseased kidneys are the primary source
of induction of neurohormonal and RAAS activity, inde-
pendent of blood pressure, GFR, or volume status.49,51,52

Similarly to the effect on the pulmonary circulation, it
was shown that infusion of angiotensin II in rats leads
to structural remodeling of the renal vasculature.53,54

Overwhelming clinical evidence of the pathobiological
importance of RAAS in CKD comes form studies that
show significant reno- and cardiovascular protective effects
of pharmacological RAAS blockade in CKD.55–58

In summary, there is evidence that a combination
of PH and CKD leads to increased neurohormonal
activation, which can be linked to worsening vascular
remodeling of the pulmonary and renal circulation.
Therefore, patients with PAH and concomitant kidney
dysfunction are at higher risk of increased neurohormonal
activation and poor outcome. Clinical trials to investigate
safety and efficacy of neurohormonal inhibition in PAH
are lacking.

PAH targeted therapy and CKD

The pathogenesis of CKD consists of hemodynamic
changes, inflammation, and oxidative stress, leading to glo-
merulosclerosis and kidney atrophy.59

The mainstay of current PAH-targeted therapy consists
of potent vasoactive substances like Endothelin receptor

antagonists (ERAs), Phosphodiesterase type 5 Inhibitors
(PDE5I), and Prostacyclin analogues and therefore can
affect the highly vascularized kidneys.60,61

Sildenafil, the first PED5I studied in PAH, has multiple
nephroprotective effects, including lowering systemic blood
pressure, reducing tissue damage after ischemia-reperfusion
injury, decreasing contrast and cyclosporine-induced kidney
injury, and reduction of diabetes induced glomerulosclerosis
(reviewed in Afsar et al.62).

The endothelin system is a family of peptides and G-pro-
tein coupled receptors with an important role for vascular
tone, especially in the kidneys and lungs. Endothelins bind
to type A and type B receptors. Type A receptor (ET-A) is
preferentially expressed on smooth muscle cells (SMCs) and
promotes vasoconstriction. Type B receptor (ET-B) is
expressed on ECs and promotes vasodilation (reviewed in
Kedzierski and Yanagisawa63). Circulating endothelin levels
are increased in patients with PAH and CKD and the
endothelin system plays important roles in both disease
states.64,65 Froma physiological point of view, ET-Ablockade
should be superior to dual endothelin blockade in CKDdue to
an antagonistic role of ET-B to ET-A mediated glomerular
vasoconstriction. A small randomized controlled trial (RCT)
could show that ETA receptor antagonism has renal-protec-
tive effects that were independent of blood pressure lowering
effects and not present in patients receiving combined ETA/B
receptor antagonism.66 In addition, preclinical data showed
that ET-B blockade caused salt-sensitive hypertension and
fluid retention,67,68 whereas ET-A blockade showed promising
results in different animal models of CKD (reviewed in
Neuhofer and Pittrow69). In summary, selective ET-A block-
ade could have superior renal protective effects, compared to
dual ET-A/ET-B blockade in PAH patients.

Prostanoids are arachidonic acid metabolites that play an
important role in vascular homeostasis and are among the
first PAH-targeted therapies (reviewed in Mubarak70).

Several lines of evidence support renal protective effects
of Iloprost in patients with CKD or kidney dysfunction.
Iloprost was shown in a RCT to protect against contrast-
induced nephropathy.71 In patients undergoing coronary
artery bypass grafting, prophylactic Iloprost administration
was associated with significantly improved urine output and
decreased serum creatinine.72 Administration of Iloprost in
patients with inoperable limb ischemia and kidney dysfunc-
tion (CKD stage 2) was associated with improvements in
serum creatinine and eGFR.73 Similarly, long-term admin-
istration of Beraprost in patients with diabetic CKD was
shown to decrease urinary albumin excretion.74 A recent
RCT in patients with non-diabetic CKD showed a trend
towards slower decline in renal function in patients on
Beraprost compared to placebo.75

Riociguat. Riociguat is a novel treatment for PAH that
stimulates the soluble guanylate cyclase in vascular SMCs.
There is preclinical evidence that soluble guanylate cyclase
stimulators have reno-protective effects in different animal
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models (reviewed in Stasch et al.76). There are no clinical
data on the effects of soluble guanylate cyclase stimulators
on kidney disease available as of now. Riociguat is renally
cleared, but Riociguat has not been evaluated in patients’
ESRD (reviewed in Khaybullina et al.77).

In summary, most PAH-targeted therapy was shown to
have nephroprotective potential in a pre-clinical or clinical
setting. However, there are no dedicated clinical trials inves-
tigating the role of PAH-targeted therapy and its impact on
kidney function. These trials are highly warranted.

Systemic impact of CKD in PAH

Regardless of the mechanism(s) involved in CKD in PAH
patients, its impact may be significant. The presence of CKD
is a key contributor to several pathophysiologic processes,
which may amplify the deleterious effects of PAH.

Kidney dysfunction was shown to contribute to cardiac
remodeling, EC dysfunction, and decreased clearance of
toxins and cytokines leading to systemic inflammation.

Cardiorenal syndrome type 4

CRS type 4 is defined by reduced kidney function, increased
blood pressure, volume overload, and circulating uremic
toxins, leading to myocardial dysfunction characterized as
myocardial hypertrophy, fibrosis, and loss of capillary dens-
ity (reviewed in Larsen et al.78 and Cerasola et al.79).
Chronic kidney insufficiency at any stage is associated
with a significant increased risk for or progression of car-
diovascular disease, heart failure, and atrial fibrillation.80–83

Recent reports provided evidence that patients with PAH
also have toxic myocardial lipid accumulation and the
prevalence of atrial fibrillation was reported to be four
times higher in patients with PAH and inoperable chronic
thromboembolic pulmonary hypertension (CTEPH) when
compared to the general population.84–86 It is possible that
in PAH the presence of kidney dysfunction contributes to
adverse cardiac remodeling leading to right heart failure and
atrial arrhythmias.

Systemic endothelial cell dysfunction, inflammation,
and uremic toxins

Systemic vascular changes in ECs and SMCs are common in
CKD including accelerated arteriosclerosis, increased
vascular stiffness, and SMC transformation (reviewed in
Moe and Chen87). EC dysfunction measured by flow-
mediated vasodilation was shown to be present in the
early stages of CKD and seemed to be independent from
other co-morbidities like hypertension and diabetes.88

Similar observations were made in patients with PAH.89,90

It was further shown that patients with CKD have elevated
levels of C-reactive protein (CRP), fibrinogen, and homo-
cysteine, markers that are associated with cardiovascular
disease and that are also elevated and of prognostic

importance in PAH.91–94 Hyperuricemia is common in
patients with PAH and was shown to be an independent
predictor of survival.95,96 Nagaya et al. showed that uric
acid (UA) levels correlated with kidney function, cardiac
output, and higher doses of diuretics, respectively.95 It was
further shown that UA levels decreased with the initiation of
PAH targeted therapy.96,97 An ultrasound-based study
showed that increasing UA levels could predict the develop-
ment of PH in SLE patients.98 Voelkel et al. found a striking
correlation between UA levels and right atrial pressure in
PAH patients that could not be explained by impaired
kidney or liver function alone.97 The authors therefore con-
cluded that the ischemic right ventricle might be the site of
excessive UA production.

Potential mechanisms by which UA could contribute
to PAH include systemic inflammation,99–101 vasoconstric-
tion,102 and vascular remodeling.103,104 Impaired kidney
function could contribute to decreased clearance of UA
and therefore promote unfavorable pulmonary vascular
remodeling.

In summary, impaired kidney function could contribute
to the progression of pulmonary vascular and/or right
ventricular remodeling in PAH by induction or decreased
clearance of inflammatory cytokines and uremic toxins,
associated with vasoconstriction, EC dysfunction, and
adverse cardiac remodeling (Fig. 2).

Molecular mediators

PAH and CKD are different pathologic and pathophysiolo-
gic entities. However, there is a significant overlap of mul-
tiple critical cell signaling pathways and circulating
cytokines/chemokines that seem to play important roles in
development and progression in both diseases. This overlap
may reveal new insights into the factors that contribute to
deleterious outcomes in PAH.

Transforming growth factor b (TGF-b) and bone
morphogenetic protein (BMP) signaling

TGF-b and BMP signaling is fundamental for many
important cellular processes. The proper functioning of
the TGF-b/BMP axis is dependent on a highly abundant
and overwhelmingly complex network of ligands, receptor
assemblies, and downstream signaling pathways that depend
on an extensive crosstalk with other signaling molecules
(reviewed in Moustakas et al.105). Smad proteins are import-
ant downstream transducers of the TGF-b/BMP pathway.
Cell-based studies have shown that TGF-b ligands predom-
inantly activate Smad2/3, whereas BMP ligands seem to
activate Smad1/5/8 (reviewed in Moustakas et al.105). The
TGF-b/BMP axis is cell-type and context dependent. It is
therefore difficult to draw parallels between TGF-b signal-
ing in PAH and CKD, but there is evidence that the TGF
network is a fundamental player in both pathologic states.
Current concepts of disease development and progression

44 | Kidney dysfunction in patients with pulmonary arterial hypertension Nickel et al.



propose that PAH is caused by an imbalance of TGF-b and
BMP signaling. Loss of function mutations of the BMPR-2
(found in more than 70% of HPAH and about 20% of
sporadic cases106) were associated with increased TGF-b sig-
naling and more advanced disease, compared to patients
without mutations in the BMPR-2 receptor.107 It was
shown that patients with PAH have about four times
higher levels of circulating TGF-b, when compared to
healthy controls. Furthermore, PAH patients had a signifi-
cant trans-pulmonary gradient of TGF-b levels that was not
seen in controls, suggesting production of TGF-b in the
PAH lung.108 There is also cumulative evidence that TGF-
b and Smad2 expression is increased in the pulmonary
vasculature of PAH patients, when compared to healthy
control or emphysema lungs.109,110 In contrast to that, one
study showed significant reduction of TGF-b receptors and
activation of Smad2 in the MCT-induced PH rat model.111

It was shown that TGF-b induces proliferation of pulmon-
ary arterial SMCs from patients with PAH when compared
to pulmonary SMCs from control arteries.107,110

Furthermore, in pulmonary arterial SMCs with reduced
BMPR2 expression, the TGF-b, Smad2 pathway was poten-
tiated.112 Reduced BMPR-2 expression is associated with
pulmonary vascular inflammation, ECs apoptosis in
humans, and the development of PH in several animal
models.113–118 In addition, it was shown that BMP-2 signal-
ing induces differentiation, inhibits proliferation, and pre-
vents post-injury hyperplasia of aortic SMCs.119,120

CKD is characterized by vascular rarefication and fibro-
sis. A variety of different pathologic processes contributing
to CKD have been identified, including premature cell-cycle
arrest, activation of myofibroblasts and fibrocytes, extension

of extracellular matrix (ECM), and recruitment of various
infiltrating immune cells to the site of injury (reviewed in
Chawla et al.121).

There is growing evidence that increased TGF-b signaling
also plays a key role in the progression of various kidney
diseases (reviewed in Wang et al.122). Research in human
and experimental kidney disease has established the critical
role of Smad2 and Smad3 signaling in promoting renal
fibrosis, the most common pathobiological pathway of pro-
gressive CKD.123–125 TGF-b overproduction was linked to
various human kidney diseases including IgA nephropathy,
lupus nephritis, and diabetic nephropathy.126,127

In several animal models, enhancement of the TGF-b
pathway has been shown to promote renal fibrosis, due to
renal vascular, glomerular, and tubular damage character-
ized by ECM accumulation and SMC hyperplasia.128,129 In
contrast, inhibition of TGF-b was associated with decreased
renal vascular and SMC hypertrophy.130,131 One study
could demonstrate that reduction of kidney injury by
TGF-b neutralization was characterized by significantly
decreased endothelin 1 production, an important
promoter of pulmonary vascular constriction and treatment
target in PAH.131,132

In preclinical studies it was shown that BMP-7 was able
to ameliorate TGF-b-induced renal fibrosis by decreasing
the accumulation of myofibroblasts and tubular atrophy
and to improve GFR.133,134 It was shown in a mouse
model of nephrotoxic-induced kidney fibrosis, that deletion
of a BMPR2 co-receptor, activin-like kinase 3 (Alk3) in
tubular epithelial cells was associated with enhanced
TGF-b–Smad 3 signaling and worsening of renal fibrosis
characterized by increased interstitial inflammation and

Fig. 2. Impact of impaired TGF-b signaling in PAH and CKD. BMPR-2, bone morphogenetic protein 2; TGF-b, transforming growth factor beta;

ECs, endothelial cells; Alk-3, activin receptor like kinase 3; ECM, extracellular matrix; ET-1, endothelin 1. Figures were produced using Servier

Medical Art found on www.servier.com.
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tubular epithelial apoptosis. Restoration of BMP signaling
with a peptide agonist improved kidney fibrosis. This study
therefore suggests a protective role of the Alk3-BMPR2
pathway in kidney injury.135 Even though this study
received substantial criticism for the role of the BMP agon-
ist,136 it underscores the importance of disturbed TGF-b/
BMPR2 signaling in kidney fibrosis. It is possible that in
PAH, decreased systemic BMPR2 signaling and increased
systemic TGF-b levels, lead to increased activity of the
TGF-b/Smad2/3 pathways and promotes significant prolif-
erative stress in the kidneys, leading to expansion of ECM
and SMC hyperplasia and therefore increased risk of the
development of CKD (Fig. 2).

Angiopoietins

Angiopoietin (Ang)-1 and its antagonist Ang-2 are essential
factors for vascular development and homeostasis. Both
proteins bind to the Tie2 receptor, which is almost exclu-
sively expressed on ECs. Ang-1 is believed to constitutively
phosphorylate Tie2 to maintain vascular quiescence and
structural integrity. Ang-2 can disrupt Ang-1/Tie2 signaling
and destabilize EC homeostasis leading to an angiogenic
response or vascular regression (reviewed in Fagiani and
Christofori137). Several lines of evidence support a role of
dysregulated Ang/Tie2 signaling in experimental and human
PH/PAH associated with SMC proliferation and EC apop-
tosis.138–143 Even though the data are controversial, it was
shown that circulating Ang-1 and Ang-2 were elevated in
PAH. Ang-2 levels correlated with right ventricular hemo-
dynamics, response to treatment, and outcome.
Furthermore, levels of Ang-2 were highly expressed in
areas of vascular remodeling.143

The Ang/Tie-2 system is also of significant importance in
kidney development, homeostasis, and glomerular patho-
biology (reviewed in Woolf et al.144). Ang-2 overexpression

was shown to result in a significant increase in albuminuria,
indicating EC dysfunction.145,146 Patients with CKD have
higher circulating levels of Ang-2 compared to healthy con-
trols that predict poor outcome in this patient popula-
tion.147 In PAH, increased circulating levels of Ang-2
could disturb vascular homeostasis and promote pathology
in pulmonary and renal vessels, resulting in disease worsen-
ing of pulmonary hypertension and progression of CKD
(Fig. 3).

Asymmetric dimethylarginine

Asymmetric dimethylarginine (ADMA) is an endogenous
inhibitor of nitric oxide synthesis and associated with sys-
temic endothelial dysfunction (reviewed in Cooke148).

In PAH, increased levels of ADMA were shown to be
associated with unfavorable pulmonary hemodynamics
and worse outcome. ADMA is considered a uremic toxin
that was shown to be elevated in patients with CKD and
associated with cardiovascular events in this patient popu-
lation.149,150 Elevated circulating levels of ADMA were dir-
ectly linked to the development of renal fibrosis in mice
characterized by EC dysfunction, ECM synthesis, and rar-
efaction of peritubular capillaries.151 Increased levels of
ADMA could promote worsening PAH and CKD by
depleting nitric oxide in the pulmonary and renal vascula-
ture, leading to vascular constriction and remodeling.

Interleukin (IL-6)

Several pro-inflammatory cytokines were shown to be ele-
vated in patients with PAH and animal data support a
pathophysiological role of inflammation in pulmonary vas-
cular remodeling. Similarly, pro-inflammatory cytokines
were shown to play a pivotal role in the response to injury
in the kidneys (reviewed in Shum et al.152). IL-6 is the most

Fig. 3. Molecular mediators of PAH and CKD. EC, endothelial cells; PASMC, pulmonary arterial smooth muscle cells; SMC, smooth muscle cell;

ECM, extracellular matrix. Figures were produced using Servier Medical Art found on www.servier.com.
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studied cytokine in PAH/PH and seems to play an import-
ant role in the pathogenesis of pulmonary vascular remodel-
ing, associated with EC proliferation, pulmonary arterial
SMC migration as well as pulmonary macrophage and
lymphocyte recruitment (reviewed in Groth et al.153 and El
Chami and Hassoun154). IL-6 is an acute-phase cytokine,
with diverse biological function such as hypercoagulability,
accelerated atherosclerosis, and associated with activation of
lymphocytes and leukocyte recruitment (reviewed in Jones
et al.155). Serum levels of IL-6 are significantly elevated in
patients with PAH compared to normal controls and asso-
ciated with outcome and mutations in BMPR2.156,157

Interestingly, IL-6 does not seem to correlate with hemo-
dynamic parameters measured by right heart catheterization,
which could suggests that IL-6 levels are not a reflection of
right ventricular failure, but potentially systemically involved
in pathogenesis of vascular remodeling in PAH.157 Animal
data showed that IL-6 is expressed in lung tissue of rats with
experimentally induced PH and dexamethasone decreased IL-
6 production and attenuated PH.158 Subcutaneous injection of
IL-6 causes mild PH in mice and worsens hypoxia-induced
PH.159 Lung-specific IL-6 overexpressing mice showed pro-
found vascular remodeling that resembled changes seen in
human PAH (plexiform lesions).160 IL-6 was shown to be ele-
vated and an important independent predictor of mortality in
patients with CKD. IL-6 levels were associated with higher
CKD stages, but did not correlate with GFR.161,162 Elevated
levels of IL-6 have been linked to adverse cardiac remodeling
and atrial fibrillation in patients with CKD.163,164

Experimental data provided evidence for a direct role of IL-
6 in models of acute kidney injury. In mice, systemic levels of
IL-6 rise during kidney injury and expression of IL-6 was
increased in in tubular epithelial cells. Furthermore, IL-6 defi-
cient mice were protected against mercury chloride-induced
kidney damage and showed reduced peritubular neutrophil
accumulation.165 Kidney dysfunction could contribute to ele-
vated levels of IL-6 in PAH and worsen pulmonary and car-
diac remodeling. Vice versa, elevated levels of IL-6 could
contribute to worsening kidney function by inducing inflam-
mation of the tubular epithelium (Fig. 3).

Treatment implications for CKD in PAH

There are no dedicated clinical trials or guidelines
addressing best clinical management of kidney dysfunction
in PAH patients. Given the high prevalence of kidney
dysfunction in PAH and its substantial effects on patient
outcome, management strategies to prevent kidney dys-
function and its progression are important. Studies to for-
mulate management guidelines of kidney dysfunction in
PAH are lacking. Findings from non-PAH patients with
CKD can provide important insights into potential man-
agement strategies of kidney disease in PAH. These could
include systemic blood pressure control, glucose and UA
management, lifestyle modifications, as well as RAAS
blockade.166

Blood pressure control

Lowering systemic blood pressure reduces the rate of CKD
progression and international consensus guidelines recom-
mend a systemic systolic blood pressure below 140mmHg
and a diastolic blood pressure below 90mmHg in non-dia-
betic patients with CKD.167 Elevated systemic blood pres-
sure is an increasingly recognized co-morbidity in PAH and
was reported in recent PAH registries between 27% and
40%.168,169 Data from the CKD population without PH
cannot be extrapolated to patients with PAH and there
are no RCTs addressing blood pressure control in this vul-
nerable population and current guidelines do not support
use of ACE inhibitors, angiotensin receptor blockers
(ARBs), or beta-blockers.60,61 In addition, tight blood pres-
sure control in patients with cardiovascular disease might be
associated with increasing risk for cardiovascular
events.170,171

RAAS blockade

ACE inhibitors and ARBs are standard treatment for
patients with CKD and have been shown to reduce progres-
sion of CKD, CVD, and improve outcome.172–175

Aldosterone antagonists are considered as standard in
heart failure management and associated with improved sur-
vival.176 Early trials from the 1980s with the ACE inhibitor
Captopril in patients with PAH did not show any effect on
pulmonary hemodynamics, but kidney function was not
monitored.177,178 A recent study showed that aldosterone
blockade with spironolactone in conjunction with
Ambrisentan tends to improve clinical parameters like
6MWD, WHO-FC, and reduce circulating levels of NT-
proBNP. However, given the small sample size, none of
those parameters reached a clinical significant difference.
In addition, there was no assessment of kidney function in
this study.179

Glycemic control

Glycemic control in patients with diabetes and CKD has an
important influence on microvascular complications, pro-
gression of CKD, and was shown to reduce albuminuria.180

In the UKPDS study, intensive glucose control (hemoglobin
A1C< 7%) was associated with a significant reduction in
progression of CKD in patients with type 2 diabetes melli-
tus.181 Given the high prevalence of hyperglycemia and insu-
lin resistance in patients with PAH,182–184 attention to
improved glycemic control could prevent progression of
CKD and improve outcome in this patient group.

Protein intake

Data from the Nurses Health Study implies that in patients
with mild kidney dysfunction (GFR above 55 but below
80mL/min/1.73m2) and high protein intake (>82 g/d) is
associated with a threefold higher risk for a further decline
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in kidney function. Given the high prevalence of mild kidney
dysfunction in PAH patients, an upper limit of daily protein
intake warrants examination in this patient population.185

Salt intake

Accumulating evidence linked increased salt intake to wor-
sening albuminuria and increased likelihood of worsening
GFR.186 Salt restriction (1.15 g/d versus 4.6 g/day) was
shown to enhance the beneficial effects of ACE inhibitors
on kidney function in patients with non-diabetic CKD.187

Experimental evidence has linked increased salt intake with
stimulation of the TGF-b pathway.188,189 Given the import-
ance of the TGF-b/BMPR-2 axis in PAH and CKD
(see above), excessive dietary salt intake could have an
important impact on the progression of CKD in patients
with PAH.

Hyperuricemia

Pharmacological reduction of UA levels has been linked to
delayed progression of CKD and improved cardiovascular
risk profile.190–192 However, current guidelines do not rec-
ommend the use of UA lowering agents in asymptomatic
CKD patients.193 Given the high incidence of hyperuricemia
in PAH, clinical trials would be warranted to investigate the
usefulness of lowering UA levels for prevention of the pro-
gression of CKD and right ventricular failure in PAH.

Physical activity

Patients with CKD and reduced exercise capacity have
increased mortality and poor quality of life.194,195 A RCT
in CKD patients could show improved physical capacity,
quality of life, and arterial stiffness in patients undergoing
a supervised exercise program.196 Beneficial effects of regu-
lar exercise are thought to have positive effects on blood
pressure, lipid profile, and glycemic control.196–200 Current
guidelines recommend supervised exercise and physical
rehabilitation in deconditioned patients with PH. RCTs
have shown that supervised physical training improved exer-
cise and functional capacity, cardiorespiratory function, and
quality of life in PAH patients. Supervised physical activity
could also prevent development or progression of CKD due
to improved control of associated risk factors.

Summary

Kidney dysfunction is highly prevalent in PAH patients and
numerous potential mechanisms exist to explain the inter-
action of PAH and kidney disease, including CRS and neu-
rohormonal activation. The majority of PAH-targeted
therapy seems to have potential nephroprotective effects.
Kidney disease constitutes a significant risk for mortality
in patients with PAH. Impaired kidney function could
potentially contribute to progression of PAH by worsening

pulmonary vascular and cardiac remodeling. Even though
PAH and CKD are pathophysiologic distinct entities, there
is a significant overlap of molecular mediators in both dis-
eases. Potential management implications to reduce kidney
disease in PAH include: systemic blood pressure, glucose
and UA control, lifestyle modifications, and RAAS
blockade.
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