
Bioscience Reports (2017) 37 BSR20170707
DOI: 10.1042/BSR20170707

*These authors contributed
equally to this work.
†Present address: Cancer
Therapeutics Department,
Institute of Cancer Research,
Sutton SM2 5NG, U.K.
‡Present address: Lonza
Biologics, 228 Bath Road,
Slough, SL1 4DX, UK

Received: 19 April 2017
Revised: 30 May 2017
Accepted: 31 May 2017

Accepted Manuscript Online:
31 May 2017
Version of Record published:
7 July 2017

Research Article

The exon junction complex senses energetic stress
and regulates contractility and cell architecture in
cardiac myocytes
Olivier A. Pierrat†, Anju Paudyal, James Woodruff, Olga Koroleva*,‡ and Samuel Y. Boateng*

School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, U.K.

Correspondence: Samuel Boateng (s.boateng@reading.ac.uk) and Olga Koroleva (olga.koroleva@lonza.com)

The exon junction complex (EJC) is the main mechanism by which cells select specific mR-
NAs for translation into protein. We hypothesized that the EJC is involved in the regulation
of gene expression during the stress response in cardiac myocytes, with implications for
the failing heart. In cultured rat neonatal myocytes, we examined the cellular distribution
of two EJC components eukaryotic translation initiation factor 4A isoform 3 (eIF4A3) and
mago nashi homologue (Mago) in response to metabolic stress. There was significant re-
localization of eIF4A3 and Mago from the nucleus to cytoplasm following 18 h of hypoxia.
Treating myocytes with 50 mM NaN3 for 4 h to mimic the metabolic stress induced by hy-
poxia also resulted in significant relocalization of eIF4A3 and Mago to the cytoplasm. To
examine whether the effects of metabolic stress on the EJC proteins were dependent on
the metabolic sensor AMP kinase (AMPK), we treated myocytes with 1 μM dorsomorphin
(DM) in combination with NaN3. DM augmented the translocation of Mago and eIF4A3 from
the nucleus to the cytoplasm. Knockdown of eIF4A3 resulted in cessation of cell contrac-
tility 96 h post-treatment and a significant reduction in the number of intact sarcomeres.
Cell area was significantly reduced by both hypoxia and eIF4A3 knockdown, whilst eIF4A3
knockdown also significantly reduced nuclear size. The reduction in nuclear size is unlikely
to be related to apoptosis as it was reversed in combination with hypoxia. These data sug-
gest for the first time that eIF4A3 and potentially other EJC members play an important role
in the myocyte stress response, cell contractility and morphology.

Introduction
The adult heart responds to stress by undergoing biochemical and molecular changes which result in
adaptation. Stresses such as haemodynamic overload or hypoxia trigger a response which leads to the
expression of genes associated with early stages of heart development, called the foetal gene pattern [1].
The foetal gene pattern is beneficial in the short term because it increases the efficiency of the heart and
enables it to cope with the stress [2]. However, in the long term, the foetal pattern of gene expression leads
to maladaptive remodelling and heart failure by a mechanism which is still poorly understood.

Others have examined the regulation of gene expression in the heart, and in many cases
found no correlation between mRNA and protein levels [3]. Protein expression does not only
depend on transcriptional activity in the failing heart, but also occurs at the post-translational
level. Several variants of mRNA can be made from the same gene and several genes may code
isoforms of similar proteins, and regulated processes select which of these mRNAs are pro-
cessed for translation into protein [4]. The post-transcriptional regulation of gene expression be-
comes particularly important for the selection of spliced isoforms needed in different physiological
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conditions, for cellular adaptation to environmental conditions. The mechanism by which cells select specific mRNAs
for translation is not fully understood, but the exon junction complex (EJC) plays a major role in this process in
eukaryotes [4].

The EJC selects the mRNA isoforms to be exported to the cytoplasm and determines whether they are then trans-
lated into protein. It also targets transcripts with premature stop codons for degradation via nonsense-mediated decay
[5]. The role of the EJC in post-transcriptional regulation of gene expression following myocardial stress has not been
investigated but is likely to play a major role in cardiac function. This is because the stresses which lead to heart failure
such as hypoxia and mechanical stress also lead to significant changes in gene expression [6]. Understanding the role
of the EJC and its associated proteins in response to stress will provide significant new insights into the pathogenesis
of heart failure, by identifying potential new targets for the treatment of the disease.

The EJC contains more than 20 different proteins, including the core proteins eukaryotic translation initiation
factor 4A isoform 3 (eIF4A3), Y14, mago nashi (Mago), metastatic lymph node 51 (MLN51) and UAP56 which anchor
other EJC components to the spliced mRNA [7,8]. eIF4A3 is also the least abundant of the EJC proteins with only
10,000 subunits per cell compared with 40,000 for both Mago and Y14 [9]. This makes eIF4A3 levels the limiting
factor in the regulation of gene expression. Therefore, small variations in the expression and distribution of this
nucleocytoplasmic shuttling protein will have a profound impact on mRNA processing and potential adaptation to
stress. Previous work has shown that in Arabidopsis, there is rapid relocalization of eIF4A3 protein within the domains
of the nucleus in response to hypoxic stress [10]. These data indicate that members of the EJC are involved in the stress
response in plant cells.

We studied cardiac myocytes to determine whether the subcellular distribution of two members of the EJC (eIF4A3
and Mago) proteins is altered by metabolic stress. We show for the first time that hypoxia or NaN3-mediated metabolic
stress induced the relocalization of eIF4A3 and Mago preferentially to the cytoplasm. Inhibition of AMP kinase
(AMPK) with dorsomorphin (DM) did not inhibit the NaN3-mediated relocalization but rather augmented it and
accordingly resulted in enhanced cessation of beating. This suggests that the EJC response to metabolic stress is inde-
pendent of AMPK activation. Knockdown of eIF4A3 with siRNA significantly reduced sarcomere number, cell and
nuclear size, and subsequently abrogated myocyte beating. This indicates that eIF4A3 is required for maintaining
cardiac contractility and cell architecture. Studying the EJC proteins in cardiomyocytes may therefore provide new
insights into the mechanisms which link metabolic stress with cardiac disease following myocardial infarct.

Materials and methods
Cell culture and treatments
Myocytes were isolated from the cardiac ventricles of 1–2-day-old rats by sequential collagenase digestion, as pre-
viously described [11]. Cells were pre-plated for 1h and 15 min to reduce fibroblasts and other non-myocyte cell
contamination and then plated at 2 million cells per 35 mm diameter fibronectin-coated Petri dish. Myocytes cul-
tures were performed in PC1 medium (Lonza) for 24 h minimum, then transferred to Dulbecco-modified Eagle’s
medium DMEM-F12:M199 serum-free medium 24 h before treatment with drug or hypoxia.

Sodium azide (NaN3, Sigma) was prepared at 1 M in phosphate buffer saline (PBS), and pH of stock solution was
adjusted to 7.4. To mimic the energetic stress resulting from hypoxic condition, cells were treated for 4 or 8 h with
50 mM NaN3. For AMP-activated protein kinase (AMPK) inhibition, cells were pre-treated for 1 h with 1 μM DM
dihydrochloride (Tocris Bioscience) and then incubated further for 4 h in the presence of 50 mM NaN3.

Hypoxia was achieved by using an MIC-101 modular incubator chamber (Billups-Rothenberg, Inc, Del Mar, Cal-
ifornia) which is capable of depleting oxygen down to 0.1% after 10 min flushing at 20 l/min with 5% CO2/95% N2
pre-mixed gases (BOC), as monitored by a Dräger Pac3500 O2 detector. Cultured neonatal rat cardiomyocytes were
subjected to acute hypoxic conditions (pO2 < 0.1%) in the anaerobic chamber at 37◦C for various time points ranging
from 1 to 18 h, while controls were left in normoxic conditions at 37◦C for the same time periods. Oxygen depletion
was controlled at the end of each hypoxic cycle with Methylene Blue indicators. Once removed from the 37◦C hypoxia
chamber, samples were quick chilled on an ice-cold copper plate to limit the likely reversibility of molecular processes
induced by hypoxia. Changes induced by hypoxia such as phosphorylation and subcellular relocalization of proteins
are transient and can be reversed upon reoxygenation [12].

Recombinant proteins and antibodies used in the present study
Recombinant GST-eIF4A1 (full sequence) and truncated GST-eIF4A2 (first 100 amino acids) proteins were purchased
from Novus Biologicals. eIF4A3 antibodies were raised in rabbit against the first N-terminal either 74 (Sigma Prestige,
antibody a) or 20 (antibody b, generous gift from Dr Herve Le Hir, Ecole Normale Superieure, Paris) amino acids.
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Other antibodies used in the present study are from Abcam (actin, sarcomeric alpha actinin, hif1α, integrin β1),
Merck Millipore (Mago), Novus Biologicals (eIF4A1), Sigma (Y14), GenTex (histone H2B) or Cell Signaling (AMPK,
pAMPK and polyA-binding protein, PABP1).

DNA cloning and cell transfection
eIF4A3 protein was cloned using Invitrogen Gateway recombination method. Rat eIF4A3 full-length cDNA clones
MGC:125040, pDONR221, Vivid colours pCDNA 6.2/N-term-Em GFP-DEST, Vivid colours pcDNA 6.2/N-term-Em
GFP-GW-CAT (GFP expression positive control), and pcDNATM-DEST40 (C-term 6xHis-V5 epitope Tag) were ob-
tained from Thermo-Scientific (Life Technologies Ltd, Paisley, U.K.). Using clone MGC:125040 as a template and
attB-containing primers (Forward: 5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC ATC ATG GCG GCC
ACG GCC ACG ATG-3’; Reverse with stop codon : 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC
TCA GAT GAG GTC AGC CAC ATT C-3’ or without stop codon 5’-GGG GAC CAC TTT GTA CAA GAA AGC
TGG GTC GAT GAG GTC AGC CAC ATT CAT AG-3’), eIF4A3 full-length fragments were amplified by PCR.
The resulting attB-containing PCR-generated fragments were used for recombination reaction with pDONR221
(mediated by BP clonase II) to produce Gateway entry clones containing full-length eIF4A3 cDNA in pENTR221.
Subsequently, LR clonase II recombination reaction was performed between entry clones and destination vectors
pcDNA 6.2/N-Em GFP-DEST and pcDNA-DEST-40, to generate expression clones of eIF4A3 with N-terminal GFP
tag (pGFP-eIF4A3-11/12/21) or C-terminal V5 epitope tag (peIF4A3-V5-31), respectively. All cloned DNA sequences
were fully checked by sequencing using Source Bioscience (Oxford) sequencing service.

Plasmids were propagated, in DB3.1 Competent Cells with gyrA462 allele, Cat. No. 11782-018, were used to confer
resistance to the CCdB toxin and were purified using HiSpeed Plasmid Midi Kit from Qiagen Ltd. (Manchester). Prior
to transfection, primary cardiomyocytes were platted 24 h in advance in PC1 media, to reach 50–80% confluency at
the time of transfection using JetPei (PolyPlus) reagent. Following the manufacturer’s transfection protocol, 200 μl of
3 μg DNA plasmid:JetPei reagent (1:1) were pre-mixed and added dropwise to each culture well already containing
2 ml of PC1 media. Cells were incubated overnight at 37◦C, then media were changed to Dulbecco-modified Eagle’s
medium DMEM-F12:M199 (1:4). Transfected cells were identified by GFP-fluorescence (indicating expression of
recombinant protein), detected on inverted fluorescent microscope and overexpressed tagged-protein was confirmed
by Western blot analysis.

siRNA-mediated knockdown
eIF4A3 was knocked down in myocytes by passive uptake of Accell (Thermo Scientific Dharmacon) SMART pool
rat eIF4A3 siRNA with following sequences: CAAUCAAGAUGUUGGUUUU, CCAUCAAUUUUGUGAAGAA,
GGACGAGUCUUUGAUAUGA, CAUUAAACAUGGAAAUUUU. As negative control, SMART pool non-targeting
control (NTC) siRNA was used with the following scrambled sequences: UGGUUUACAUGUCGACUAA, UGGU-
UUACAUGUUUUCUGA, UGGUUUACAUGUUUUCCUA and UGGUUUACAUGUUGUGUGA. Twenty-four
hours after plated in PC1 media, myocytes were incubated overnight in 1 ml of Accell delivery media supplemented
with 1 μM SMART pool eIF4A3-targeting or NTC siRNA or siRNA buffer only (20 mM KCl, 6 mM HEPES (pH 7.5),
and 0.2 mM MgCl2, Thermo Scientific Dharmacon). After 16-h incubation, myocyte cultures were toped up with 1
ml of complete PC1 medium and incubated at 0.5 μM siRNA final concentration for further 48, 72, 96 and 120 h
before processed to treatment.

Cell fractionation
For subcellular fractionation of myocytes, the ProteoExtract Subcellular Proteome Kit from Calbiochem (Merck Mil-
lipore) was used as described previously [11]. Cellular proteins were sequentially extracted into four compartments:
cytosolic, membrane/organelles, nuclei and cytoskeleton. The accuracy of the fractionation method was verified with
antibodies to well-documented subcellular markers.

Western blotting
Myocytes were rinsed with PBS and scraped from the Petri dishes in 1X RIPA lysis buffer (RIPA buffer 10X, Cell
Signaling) supplemented with 0.1% SDS, protease inhibitor cocktail III (Calbiochem) and phosphatase inhibitor
cocktail (Sigma). DC Protein Assay from BioRad was used to determine total protein. Samples were treated with
β-mercaptoethanol and heated to 95◦C for 5 min. Proteins were separated by SDS/PAGE and transferred to PVDF
membrane (BioRad). Blots containing either whole cell lysates or fractionated cells were probed with primary antibod-
ies: eIF4A3 1:500 (antibody a) or 1:5000 (antibody b); all other antibodies at 1:1000 except actin (1:5000). Horseradish
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peroxidase-conjugated secondary antibodies anti-mouse, anti-rabbit or anti-goat (Thermo-Scientific, Life Technol-
ogy) were used to visualize proteins by enhanced chemiluminescence (ECL) solutions of various sensitivity (Thermo
Scientific West Pico & Femto; BioRad Clarity), depending on the strength of the chemiluminescent signal. The bands
corresponding to the various proteins were detected on ImageQuant LAS 4000 (GE Healthcare) and quantified by
densitometry using ImageJ software. Protein bands were standardized to total protein as previously described [13].

Immunocytochemistry
For immunocytochemical staining, cells were washed twice in PBS, fixed in 4% paraformaldehyde for 5 min and
then covered with 70% ethanol for storage at −20◦C. When immunostained, cells were rehydrated in PBS and then
stained with antibodies as described previously [11]. Primary antibodies were used at a dilution of 1:500, except
for Mago (1:250) and eIF4A3 (antibodies a and b at 1:250 and 1:2000 respectively). Alexa fluorophore-conjugated
secondary antibodies (Thermo-Scientific, Life Technology) were used at a dilution of 1:500. Fluorescently labelled
cells were viewed using Zeiss Axioscope fluorescence microscope (Zeiss, Cambridge, U.K.), and images were captured
using an Axiocam digital camera system (Zeiss) and Axiovision image analysis software (version 4.7, Zeiss). Images
from immunocytochemistry were analysed on ImageJ and ratio of cytosolic over nuclear fluorescence was obtained
by subtracting the background fluorescence measured in several points next to each cell. The corrected total cell
fluorescence (CTCF) intensity is measured according to the formula: CTCF = integrated intensity – (area of selected
cell × mean fluorescence of background readings).

Time lapse live cell imaging microscopy
Live cells in bright field and fluorescently labelled cells were observed under a Nikon eclipse (TE2000-U) time-lapse
inverted microscope (Nikon Instruments).

Sarcomere damage analysis
The number of intact sarcomeres was determined by staining the cells for α-actinin and counting the number of
sarcomeres in a 10 × 10 μm box in four areas chosen at random per image as described previously [14]. At least four
images were analysed per condition, and data are shown where n = number of images.

Statistical analysis
For the experiments described here, at least three separate primary cultures were averaged. Each culture used ap-
proximately 30 neonatal hearts. All values are means +− SEM. All values of significance were calculated using the
appropriate comparisons: one-way analysis of variance or the Student’s unpaired t-test. Differences among means
were considered significant at P<0.05. Data were analysed using Microsoft Excel and Minitab statistical software.

Results
Subcellular fractionation of cultured neonatal myocytes
In the present study, we set out to study the subcellular movement and potential function of the EJC proteins in re-
sponse to hypoxia and metabolic stress since these are major causes of cardiovascular disease in man. To study how
metabolic stress affects EJC function, we have examined the effect of hypoxia and the respiratory inhibitor sodium
azide (NaN3) in cultured neonatal myocytes. Using a detergent-based subcellular fractionation method [15], we frac-
tionated myocytes into cytosolic, membrane, nuclear and cytoskeletal components. Figure 1(A) shows that Hif-1α
localized to the cytosol, β1-integrin to the membrane, histone H2B in the nucleus and actin in the cytoskeleton. Once
the methodology was verified using proteins with a known subcellular location, we followed by analysis of changes
in the pattern of protein localization for EJC components as well as other marker proteins.

Specificity of eIF4A3 antibodies
eIF4A3 shares 65% sequence identity with cytoplasmic homologues eIF4A2 and eIF4A1, so we wanted to validate
our antibodies before use. We detected purified human recombinant GST (gluthatione S-transferase)-tagged eIF4A
isoforms (Novus Biologicals) in Western blots (Supplementary Figure S1). We found that the custom-made antibody
raised against the first 20 amino acids of eIF4A3 (antibody b) was the most specific in detecting isoform 3 of eIF4A
proteins, whereas the Prestige antibody (first 74 amino acids, antibody a) cross-reacted with cytoplasmic isoform
2 (Supplementary Figure S1, panel A), albeit more weakly than the eIF4A1 antibody. This demonstrates that the
specificity of the antibody for isoform 3 of eIF4A proteins is governed by the size of the N-terminal peptide sequence
used as immunogen.
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Figure 1. Hypoxia induces the subcellular relocalization of core EJC proteins eIF4A3 and Mago

(A) Western blot of Hif-1α, integrin-β1, histone H2B and actin following subcellular fractionation of cultured rat neonatal cardiac myocytes.

These have been used as the marker of the cytoplasmic (C), membrane (M), nuclear (N) and cytoskeletal (S) pool of protein respectively, to

verify the fractionation process. (B) Western blot to assess the subcellular distribution of eIF4A3 and Mago following treatment of cultured

neonatal rat cardiac myocytes with 18 h of hypoxia. Histone H2B has been used as a marker of the nuclear fraction. (C–F) Quantification of

subcellular distribution of eIF4A3, Mago and histone H2B in the nucleus and cytoplasm (C + M + S) following treatment of myocytes with

18 h of hypoxia; *P<0.05 and **P<0.01, n=4. NS: not significantly different.

Hypoxia induced relocalization of EJC proteins in cardiac myocytes
Previous work by one of the authors here has shown that eIF4A3 protein fused to green fluorescent protein (GFP)
is highly dynamic in Arabidopsis cells, and rapidly changes its pattern of localization in the nucleus under hypoxic
conditions [10]. In the present study, we set out to determine whether endogenous EJC proteins would alter their
subcellular distribution in response to hypoxia in cardiac myocytes. Western blot analysis on cell fractions was per-
formed with anti-eIF4A3(b) and anti-Mago antibodies. Core EJC proteins eIF4A3 and Mago relocalized outside the
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nucleus to the cytoplasm and/or the cytoskeleton following 18 h of hypoxia (<0.1% O2) as seen in Figure 1(B)–(D).
This movement was not observed at earlier time points, including 12 h of hypoxia (data not shown). Histone H2B, a
nuclear protein associated with chromatin, was used as an internal control and showed no change in localization in
response to hypoxia (Figure 1B and E).

Sodium azide treatment activates AMP kinase similar to hypoxia in
cardiac myocytes
Studying the effect of metabolic stress by hypoxia presents a number of technical challenges, including rapid reoxy-
genation during multiple sample processing. As a result, we determined whether the respiratory inhibitor NaN3 could
mimic the effect of hypoxia as a mean of studying metabolic stress in cardiac myocytes. The myocytes were treated
with NaN3 to induce chemical hypoxia and this was compared directly with hypoxia. To analyse the hypoxia and
chemically induced anoxia treatments at the molecular level, we measured activation of the metabolic sensor AMPK
by determining its phosphorylation at Thr172 in response to treatments. Both hypoxia and NaN3 increased AMPK
phosphorylation as shown in Figure 2(A). The treatments did not change total AMPK or actin protein levels.

Sodium azide induces stress granules in cardiac myocytes
Metabolic stress sometimes results in the formation of SGs [16], so myocytes were immunostained for SGs marker
PABP1 following either hypoxia or NaN3 treatment (Figure 2B–D). Distinctive cytosolic SGs were formed after 4-h
treatment of myocytes with 50 mM NaN3, as shown in Figure 2(D). No such SGs were detected after 12 h of hypoxia
(Figure 2C).

Mago relocalized to the cytoplasm after metabolic stress
Based on the above data, we used NaN3 as a substitute for hypoxia to study the EJC in cardiac myocytes. Cells were
treated with 50 mM NaN3 for 4 h and immunostained for Mago (Figure 2E and F). There was an apparent redis-
tribution of Mago to the cytoplasm following treatment. Following quantification of the background-corrected flu-
orescence, there was a significant 43% increase in the cytoplasmic to nuclear ratio in cardiac myocytes following
NaN3 treatment (**represents control myocytes versus NaN3 treatment, P<0.01, n=25), Figure 2(G). Western blot
analysis showed that Mago relocated from the nuclear fraction to the cytoplasm following NaN3 treatment (Figure
2H). Histone H2B was used as a fractionation control and showed no movement in response to treatment. Finally, to
determine whether the relocalizing Mago protein was associated with SGs, cells were co-stained with the SG marker
PABP1 (Figure 2I–J). Mago did not co-localize with PABP1 in SGs following NaN3 treatment.

Metabolic sensing of EJC proteins is not AMP kinase dependent
Since AMPK is activated by metabolic stress in cardiac myocytes (Figure 2A), we examined whether the subcellular
movement of EJC components in response to NaN3 might be dependent on the enzyme. To test this, myocytes were
treated with 50 mM NaN3 in combination with 1μM DM to inhibit AMPK activation. In untreated cells, a majority of
eIF4A3 and Mago protein is localized to the nucleus (Figure 3A). However, following NaN3 treatment both proteins
are significantly reduced in the nucleus with a translocation to the cytosolic fraction (Figure 3B and C). NaN3 in
combination with DM further augmented the cytosolic translocation of eIF4A3 and Mago, whilst AMPK inhibitor
DM alone had no effect.

Concomitant with these biochemical observations, the dual treatment of NaN3 and DM completely arrested my-
ocyte contractility while NaN3 treatment alone did not completely inhibit contraction (please see the video files in the
supplementary material). These data suggest that inhibition of AMPK enhances the nuclear to cytoplasmic translo-
cation of both eIF4A3 and Mago proteins in response to metabolic stress.

eIF4A1 does not respond to metabolic stress
To determine whether the cytoplasmic translocation observed in response to metabolic stress was unique to the eIF4A
protein isoform 3, samples were also probed for eIF4A1 (the cytoplasmic isoform involved in translation initiation)
following NaN3 treatment. As expected, a majority of eIF4A1 protein was in the cytoplasm and showed no mobility
in response to metabolic stress while eIF4A3 showed a clear movement from nucleus to cytoplasm (Figure 3D).
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Figure 2. Metabolic stress induced by sodium azide is similar to hypoxia in activating AMPK and promoting the cytoplasmic

relocalization of Mago

(A) Western blot of total and phosphorylated AMPK in cardiac myocytes treated for 8 h with 50 mM sodium azide (NaN3) or 12 h with hypoxia.

Actin was used as a loading control. (B–D) Immunostaining of cardiac myocytes with the stress granule (SG) marker PABP1 (red) and DAPI

(blue) following hypoxia and NaN3 treatments. Panel (D) shows the formation of SGs only with NaN3-treated cells. (E) Immunostaining of

cardiac myocytes for Mago (green) in control (E) and NaN3-treated (F) cells. (G) Quantification of the immunofluorescence of Mago in control

and NaN3-treated cells where P<0.01, n=25 cells. (H) Western blot to assess the subcellular distribution of Mago and histone H2B following

NaN3 treatment. (I–J) Immunostaining of cardiac myocytes for Mago (green), PABP1 (red) and DAPI (blue) in control (I) and in cells treated

with NaN3 (J), showing SG formation. **represents the difference between control and NaN3-treated cells.
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Figure 3. Synergistic effect of sodium azide and AMPK inhibitor DM on the EJC protein eIF4A3 and Mago subcellular

relocalization

(A) Western blot of eIF4A3 and Mago following subcellular fractionation of cardiac myocytes in control cells, cells treated with 50 mM NaN3

and in cell treated with NaN3 plus 1 μM DM. Quantification of subcellular distribution of eIF4A3 (B) and Mago (C) in control cells and cells

treated with DM, NaN3 and DM + NaN3. **P<0.01 and *P<0.05 compared with controls; NS=non-significant. N=4 separate cultures. (D)

Western blot to test the specificity of eIF4A3 and eIF4A1 antibodies following NaN3 treatment. Cytosolic (C), membrane (M) nucleus (N) and

cytoskeleton (S) (labels (a) and (b) represent two eIF4A3 antibodies; (c) and (d) show two eIF4A1 antibodies).
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Tagged eIF4A3 has aberrant distribution and does not respond to
metabolic stress
To further study the function and activity of eIF4A3 protein, we transfected cardiac myocytes with plasmids contain-
ing the full-length rat sequence of eIF4A3 tagged to GFP on the N-terminus or V5 on the C-terminus. As a control,
cells were non-transfected (Supplementary Figure S1B, lane 1) or transfected with GFP-Cat (chloramphenicol acetyl
transferase). The cells were then fractionated into cytosol (C), membrane (M), nucleus (N) and cytoskeleton (S).
By Western blot, we confirmed that both recombinant GFP-tagged eIF4A3 (Supplementary Figure S1B, lane 3) and
GFP-Cat (Supplementary Figure S1B, lane 2) were expressed in myocytes following transfection.

GFP N-terminal tagged eIF4A3 had an aberrant subcellular distribution in cardiac myocytes with a majority of
the protein in the cytosolic fraction compared with mostly nuclear for the native protein (Supplementary Figure S2,
panel A). Following metabolic stress induced by NaN3, there was no change in the subcellular distribution of the
N-terminally tagged eIFaA3 protein, whilst the native protein showed a clear nuclear to cytoplasmic shift following
treatment (Supplementary Figure S2, panel A). The gel has been probed with eIF4A3 antibody b. Western blot of
cardiac myocytes transfected with C-terminal tagged V5 (Supplementary Figure S2, panel B). Following NaN3 treat-
ment, there was no change in the subcellular distribution of the V5 C-terminal tagged-eIF4A3 (gel probed with V5
antibody), whilst the native protein showed a clear nuclear to cytoplasmic shift (Supplementary Figure S2, panel B).

eIF4A3 genetic knockdown impaired myocyte contractility and
sarcomeric structure
To determine the function of the EJC core component eIF4A3 in cardiac myocytes, the protein was knocked down
by siRNA treatment (Figure 4A). 96 h post-siRNA treatment resulted in cessation of myocyte contractility. After this
period, there was a significant reduction in eIF4A3 expression by up to 70% and an alteration of cell morphology in
which the cells became more elongated, with fewer intact sarcomeres (Figure 4D). Myocyte sarcomere number was
quantified and showed a significant reduction in sarcomere density following eIF4A3 knockdown as shown in Figure
4(F). To further assess cell morphology, both cell and nuclear area was measured with and without hypoxia or eIF4A3
knockdown. Myocyte cell area was significantly reduced by both hypoxia and eIF4A3 knockdown. Control versus
hypoxia *P<0.05 and control versus eIF4A3kd P<0.05, n=40–50 cells. eIF4A3 knockdown significantly reduced
nuclear area NTC versus eIF4A3kd, P<0.05, n=40–50 cells. However, this was prevented in the presence of hypoxia.
eIF4A3kd versus eIF4A3kd with hypoxia *P<0.05, n=40–50 cells.

Discussion
The EJC has been studied in simple model systems including transformed cell lines; however, very little is known about
the expression, activity and function of this important complex in more specialized cell types such as cardiac myocytes.
In the present study, we show for the first time that members of the EJC relocalize to the cytoplasm following metabolic
stress induced by both hypoxia and sodium azide treatment in cardiac myocytes. This metabolic stress was designed
to mimic some of the changes which occur in the heart following a myocardial infarct and therefore these data may
be relevant to disease. The relocalization is independent of AMPK activity and inhibition of the metabolic sensor
actually augmented the effect of metabolic stress on the EJC. These observations are somewhat distinct from those
we previously described in Arabidopsis in which hypoxia caused a rapid relocalization of eIF4A3 to nuclear speckles
[10]. The EJC response to hypoxia in myocytes is considerably slower and may be a specific feature of cardiomyocytes
which are usually resistant to metabolic stress. The EJC components usually cycle back into the nucleus after entering
the cytoplasm and the accumulation of eIF4A3 and Mago here is likely to alter both the selection and translation of
mRNA transcripts into protein. The EJC has been shown to interact with the mTOR signalling pathway involved in
nutrient, energy and stress-sensing in mammalian cells, providing a potential mechanistic link between the cellular
stress-response and altered translation efficiency of spliced over non-spliced mRNAs [17].

In the heart, atherosclerosis is the main cause of hypoxia and has severe clinical implications in being the ma-
jor cause of heart failure in man [18]. Hypoxia and the subsequent metabolic stress result in the activation of the
metabolic sensor AMPK which is cardioprotective [19]. Interestingly, the response of the EJC to metabolic stress,
namely its accumulation outside the nucleus into the cytosol, was completely independent of AMPK and inhibitors
of this enzyme actually augmented the response to metabolic stress. These data strongly suggest that the EJC reacts to
the magnitude of metabolic stress and is independent of AMPK in cardiac myocytes. AMPK is activated by increases
in the AMP:ATP which can be caused by stresses which inhibit ATP synthesis or increase ATP usage [20]. Our data
show that chemical hypoxia induced by NaN3 also activates AMPK and this has been previously shown to increase
cellular glucose uptake through the up-regulation of GLUT-4 receptors in myocytes [21]. This may indicate that both

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. siRNA knockdown of eIF4A3 results in reduced myocyte sarcomeres, cell and nuclear size

(A) Western blot showing the level of eIF4A3 protein in cardiac myocytes where the cells have been transfected with just the siRNA buffer

(SiB), with NTC siRNA or transfected with eIF4A3 siRNA to knockdown the level of eIF4A3. Immunofluorescence of α-actinin (green) and

DAPI (blue) in NTC siRNA treated-cells (B), 18 h of hypoxia (C), cells where eIF4A3 has been knocked down with siRNA (D) and those

with siRNA and hypoxia (E). (F) Quantified cardiac myocyte sarcomere numbers in cells from control and siRNA treated; N=3 separate

experiments; *P<0.05 compared with NTC siRNA. (G) Measurement of cell area in the four treatment groups, with and without siRNA or

hypoxia. NTC versus hypoxia, *P<0.05, n=40–50 cells; NTC versus eIF4A3kd P<0.05, n=40–50 cells. (H) Measurement of nuclear area in

the four treatment groups, with and without siRNA or hypoxia. NTC versus eIF4A3kd, P<0.05, n=40–50 cells; eIF4A3kd versus eIF4A3kd

with hypoxia, *P<0.05, n=40–50 cells. KD= knockdown

10 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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hypoxia and NaN3 result in similar degrees of metabolic stress. eIF4A3 is an ATP-dependent helicase and therefore
it is possible that the alteration to its localization during metabolic stress is a direct response to depleted cellular ATP
levels [22].

During periods of stress, specific mRNAs may accumulate in cytoplasmic structures called SGs [23]. Proteins in-
volved in RNA processing, cell adhesion, signalling and growth also integrate within these structures. SGs may be
protective in the short term because they allow proteins involved in cell survival to be expressed and regulated during
stress [23]. However, SGs have also been implicated in the pathogenesis of diseases including cancer, neurodegener-
ation and autoimmune diseases suggesting that in the long term, they may be detrimental [23-25]. Interestingly, in
cardiac myocytes, we found that sodium azide but not hypoxia induced SGs despite both of them activate AMPK. This
suggests that SG formation pathways may not necessarily be linked to metabolic stress alone. The EJC cytoplasmic
relocation occurs whether or not SGs are present. A number of RNA processing proteins associate with cytoplasmic
SGs and influence the stress response [23] including MLN51 [26]. MLN51 is also involved in the formation of a new
type of cytoplasmic RNA granule which is distinct from stress-granules or p-bodies [27]. Our data show that eIF4A3
and Mago both accumulate in the cytoplasm in response to metabolic stress but we were unable to observe the associ-
ation of Mago with the SGs marker PABP1. Whether they associate with p-bodies or not, their physiological function
needs to be investigated in specialized cells like those of the heart. What seems clear is that the EJC members appear
to have an ability to sense hypoxia/respiratory stress upstream of metabolic sensing pathways.

Our data show that the movement of eIF4A3 and Mago occur in synchrony suggesting that components of the
EJC can act as a single unit; however, it cannot be ruled out that they are capable of acting separately. We selected
eIF4A3 for knockdown in cardiac myocytes because this RNA helicase is known to be essential for mRNA quality
control in human cells [28,29]. eIF4A3 is also the least abundant of the EJC proteins with only 10,000 subunits per
cell compared with 40,000 for both Mago and Y14 [9]. This makes eIF4A3 levels the limiting factor in the regulation
of gene expression. Therefore, small variations in the expression of this protein would have had a profound impact
on mRNA processing and potential adaptation to stress. We showed that knockdown of eIF4A3 in myocytes by 70%
produced a major phenotype. After 96 h, the myocytes stopped beating and the number of intact sarcomeres signif-
icantly decreased along with significant changes in cell shape. We have previously shown that the loss of sarcomeres
is associated with decreased myocyte function [30]. These data strongly suggest that eIF4A3 plays an important role
in the heart, including contractility and sarcomerogenesis. Mutation in another EJC component CDC174 results in
loss of skeletal muscle myofibrils, suggest a strong link between EJC activity and striated muscle structure [31].

Our data show that knockdown of eIF4A3 in myocytes resulted in reduced cell and nuclear size. The reduction in
nuclear size usually a hallmark of cellular apoptosis [32]. However, this is very unlikely to be the case here since the
combination with hypoxia actually reversed the reduction induced by eIF4A3 knockdown. This probably suggests
that eIF4A3 is involved in the regulation of cell architecture as illustrated by the concomitant reduction in cell size.
The reduction in cell size by eIF4A3 knockdown mimicked the effect induced by hypoxia alone. The reduction in cell
size following hypoxia in myocytes is usually the result of rigour induced by reduced cellular ATP [33]. It seems that
loss of eIF4A3 has a dramatic effect on myocyte cell architecture and function.

Interestingly, recombinant eIF4A3 tagged on either the C- or N-terminus had aberrant localization in cardiomy-
ocytes and did not respond to energetic stress by cytoplasmic relocation. This may suggest that tagging of the protein
altered its metabolic sensing function and possibly its interaction with other proteins and members of the EJC in car-
diomyocytes. We have previously shown that recombinant proteins tagged on either the C- or N-termini can result
in abnormal protein function and localization [34].

In the present study, we investigated the role of the EJC in post-transcriptional regulation of gene expression fol-
lowing myocardial stress caused by hypoxia and NaN3. Our results provide the first evidence that EJC components are
likely to play a major role in cardiac function. This is because the stresses which lead to heart failure such as hypoxia
and mechanical stress also lead to significant changes in gene expression [6]. Cellular processes such as apoptosis are
significantly increased in heart failure [35] and the EJC members regulate this via alternative splicing of apoptotic
regulators [36]. Further work needs to be done to determine the role of the EJC components in cardiac adaptation
and disease. It is likely that such studies will require inducible models since the early knockdown of the EJC compo-
nents will most likely be lethal. However, studies such as those presented here provide a first step in understanding
the potentially complex role of the EJC in health and disease.

The EJC provides a potential therapeutic target for regulating alternative splicing to change the initiation and pro-
gression of disease. Small molecules can be used to affect the activities of RNA-binding proteins via phosphoryla-
tion, and can have substantial effects on splicing, processing and translation efficiency of targeted transcripts [37]. In
conclusion, we show for the first time that metabolic stress significantly disrupts the nucleocytoplasmic shuttling of
eIF4A3 and Mago which is enhanced by AMPK inhibition. siRNA knockdown of eIF4A3 disrupts myocyte sarcomere
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structure and contractile activity. This suggests that the members of the EJC play a prominent role in myocyte and
heart function.
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