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Abstract: 
Understanding the functional and structural implication of a protein encoded in novel genes using function association or fold 
recognition approaches remains to be a challenging task in the current era of genomes, metagenomes and personal genomes. In an 
attempt to enhance potential-based fold-recognition methods in recognizing remote homology between proteins, we propose a 
new approach “Higher Order Residue Interaction Based ALgorithm for Fold REcognition (HORIBALFRE)”. Higher order residue 
interactions refer to a class of interactions in protein structures mediated by Cα or Cβ atoms within a pre-defined distance cut-off. 
Higher order residue interactions (pairwise, triplet and quadruplet interactions) play a vital role in attaining the stable 
conformation of a protein structure. In HORIBALFRE, we incorporated the potential contributions from two body (pairwise) 
interactions, three body (triplet interactions) and four-body (quadruple interaction) interactions, to implement a new fold 
recognition algorithm. Core of HORIBALFRE algorithm includes the potentials generated from a library of protein structure 
derived from manually curated CAMPASS database of structure based sequence alignment. We used Fischer’s dataset, with 68 
templates and 56 target sequences, derived from SCOP database and performed one-against-all sequence alignment using T-
Coffee. Various potentials were derived using custom scripts and these potentials were incorporated in the HORIBALFRE 
algorithm. In this manuscript, we report outline of a novel fold recognition algorithm and initial results. Our results show that 
inclusion of quadruplet class of higher order residue interaction improves fold recognition. 
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Background: 
Protein sequence encodes the fundamental structural unit of 
life: “protein structure” and protein structure defines its 
biological function [1-5]. Knowledge of the structure and 
function of proteins is, therefore, important in the area of 
biomedical sciences.  Protein structure prediction from 
sequence information has been a grand challenging problem in 
molecular biology for the last forty years. Nature conserves 
structure core, due to convergent evolution, and the number of 
unique structural (domain) folds in nature is possibly limited. 
The probability for a protein sequence to have a native-like 

structural fold in Protein Data Bank (PDB) [6] is estimated to be 
60-70%. Various fold recognition methods based on 
mathematical, statistical, and computational algorithms have 
been developed to predict possible from sequence information. 
For example, contact map model-based pseudoenergy function 
incorporating pairwise residue interaction potential by allowing 
variable gaps have been developed and implemented to predict 
protein 3D structure through fold recognition method. The 
ability of these fold recognition methods to accurately 
distinguish the correct, folded structure from moderately 
distorted (misfolded) structures is limited [7-14].  
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In this manuscript, we propose a new method called as Higher 
Order Residue Interaction Based ALgorithm for Fold 
REcognition (HORIBALFRE). We incorporated potential 
contributions not just from one-body and two-body terms, but 
also from the three-body (triplet interactions) and the four-body 
(quadruple interaction) interactions, to improve the 
performance of fold prediction using sequence data. Core of 
HORIBALFRE includes the potentials generated from a 
structure library derived from CAMPASS database [15] of 
structure based sequence alignment. We used Fischer’s dataset, 
with 68 templates and 56 target sequences, derived from SCOP 
database and performed one-against-all sequence alignment 
using T-Coffee [16].  These potentials were incorporated into 
HORIBALFRE algorithm. Currently, the algorithm was applied 
to the Fischer’s dataset with 68 template-target pairs.  
 
Sequence databases are experiencing an unprecedented growth 
in the post-genome era due to automated sequencing 
techniques. Annotation of the sequences by computational 
approaches using structure and sequence based methods are 
getting increasingly important [1-3, 7, 12, 17-22]. As attempts to 
sequence entire genomes increases the number of protein 
sequences by a factor of two each year, the gap between 
sequence and structural information stored in public databases 
growing rapidly [23]. To fill the sequence-structure-function 
gap and to completely understand the function role of a protein 
and its multitude of cellular interactions, the knowledge of 3D 
structures is very crucial. As the cost of sequencing technologies 
are decreasing at an increased rate, the experimental 
approaches for high–throughput characterization of protein 
structures using X-ray crystallography and NMR spectroscopy 
remains a challenge due to cost and laborious nature and often 
unsuccessful experimental processes. As an alternative, 
theoretical and computational methods to predict the structure 
from sequence such as homology, ab initio, and fold recognition 
are widely employed. Homology (comparative) modeling, 
attempts to predict protein structure on the strength of a protein 
sequence similarity to another proteins with known structures. 
Even though it has been the most reliable technique for protein 
structure prediction, its dependence on alignment quality and 
the existence of good homologue, indicate it is not applicable to 
a large fraction of protein sequences which are not within 
‘structural distance’ in sequence space and only 10% of the 
sequences are modeled [12, 13, 17]. Ab initio method 
encompasses any means of calculating co-ordinates of protein 
structure for a protein sequence from physical principles. 
Despite a few recent successes on small proteins and short 
peptides, this method is still not a practical proposition for 
predicting protein structure due to limitations in computing 
power and poor understanding of the biophysical forces 
driving protein folding. The third category of protein structure 
prediction, falling somewhere between Homology modeling 
and ab initio prediction, is fold recognition.   
 
Methodology: 
Conceptual idea behind fold recognition method came from the 
estimate that there is an ~70% chance that a newly characterized 
protein with no obvious common ancestry to proteins with a 
known structure will in fact turn out to share a common fold 
with at least one protein of known structure in the database[7, 
24]. The objective of fold recognition approach was that given a 
sequence and a library of structure templates; discover which 

fold is best compatible with the given sequence [3, 9, 18, 19, 25-
32]. If the target protein shares significant sequence similarity to 
a protein of known 3D structure, the fold recognition problem is 
trivial – simple sequence comparison will identify the correct 
fold. Threading based approaches could detect structural 
similarities that are not accompanied by any detectable 
sequence similarity, and thus, fold recognition is the protein 
structure prediction method of choice when (1) the sequence 
identity to any sequence with a known structure, and (2) one or 
more structures from the structure library represents the true 
fold of the sequence. Based on the pseudoenergies derived from 
the statistical analysis of observed protein structures 
(knowledge - based approach), existing computational methods 
for fold recognition can be grouped into two major classes: First 
class of methods employ residue local environments and do not 
include residue interaction potentials explicitly [1-3, 8-11, 13, 32-
36].  In this kind of method, the prediction speed is fast, but 
they were not effective in detecting structural similarities 
between divergent proteins, and between proteins sharing a 
common fold through convergent evolution (analogous folds). 
The reason for these limitations is down to the loss of structural 
information due to residue interactions [24]. Second class of 
methods includes pairwise residue interaction potentials [3, 18, 
33, 35, 37]. However, pairwise residue interactions cannot 
capture regularities of protein structure and found statistically 
inadequate to explain the frequency distribution of residue 
interactions, and consideration of cooperative interactions of 
higher order may improve the quality of structure prediction 
[11, 20, 33, 34, 38-40]. In this manuscript, we introduce the 
architecture of a new fold recognition algorithm, 
HORIBALFRE, which employs higher order residue interaction 
potentials and an integrated approach that also include local 
environments of residues. We recently showed that a webserver 
which can compute higher order residue interactions can be 
used for in-depth structure analysis [41]. HORIBALFRE is an 
extension of HORI server and utilize pre-computed amino acid 
interaction data derived using higher order residue interaction 
programs developed for HORI server.. 
 
Description of HORIBALFRE algorithm: 
HORIBALFRE is a multi-step fold recognition algorithm with 5 
major steps. A flow-chart of the algorithm is given in Figure 1.  
The following consecutive steps form the core of HORIBALFRE.   
 
(1) Library of target-template (derived from Fischer’s dataset) 
Target-template library is sourced from Fischer’s benchmark 
dataset [21] comprising of 68 unique probe sequences and 56 
unique target structures (PDB identifiers of proteins in Fischer’s 
dataset is provided in supplementary material)  
 
(2) Alignment of target sequence to the template sequences  
T-Coffee [16] is used for the alignment of the target sequence to 
the template sequence. T-Coffee is used in Global alignment 
mode and global-local alignment method has been employed to 
align one target sequence to one template sequence [19] 
 
(3) Computation of potentials due to mutation, gap penalty, 
secondary structure and solvent accessibility, pairwise 
interactions, triplet-interactions and quadruple interactions 
Core part of the algorithm includes computing set of potentials 
that feed into the final score. The potentials were generated 
using different set of methods. The mutation potential values 
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score for the amino acid sequence similarity between the probe 
sequence and the target fold. The values were computed by 
summing up the scores over the aligned, conserved secondary 
structural regions in the template. This gives a score for the 
substitution of an amino acid residue in the template sequence 
with that in the probe sequence. This score is obtained from the 
BLOSUM62 matrix [42, 43].  
 
Mutation potential incorporated in HORIBALFRE was 
calculated using equations 1 and 2 (see supplementary 
material). The alignment between the sequence and structure 
will have gaps and a gap penalty was assigned after the 
alignment. An empirical gap opening penalty of 11 is chosen 
after examining the scores assigned to amino acid exchanges, 
while a gap extension is given a lesser penalty. The gaps in the 
secondary structure regions were penalized for more than a gap 
introduced in loop regions using equation 3 (see 
supplementary material). 
 
Unlike comparative methods, which compare proteins based on 
sequence similarity and concept of homology, fold recognition 
methods take advantage of the extra information made 
available by 3D structure. A sum over the amino acid structural 
environment preferences over the entire sequence is a good 
indicator for the recognition of native-like folds [36]. The 
secondary structure details were mapped to the template 
sequence that is aligned to the probe sequence. The solvent 
accessibility values were mapped to the template sequence, 
according to the JOY-based structural feature definition [44]. 
The secondary structure and solvent accessibility values were 
paired to give a single score at each residue position. 
Eisenberg’s 3D-1D substitution table [39] is then used to assign 
a score for the occupancy of 20 different amino acid residues at 
all the residue positions in the template. Hence, a score is 
obtained for the occupancy of an amino acid in the probe 
sequence into the corresponding, aligned residue position in the 
template. These values were summed up over the conserved 
and aligned regions between the sequence and the 
template.  Hence, the combination of secondary structure and 
solvent accessibility values at different residue positions gives 
an environment score that is considered as a parameter. The 
results obtained only using environment scoring potential 
proves that subsets of sequence-structure pairs were not 
detected when the total potentials were considered. This 
explains the need for using weight factors for each of the 
parameters that were used for scoring. The potentials obtained 
for interactions between all residues. This interaction score thus 
depends on the observed frequency of interaction between two 
residues in already known protein structures. Pairwise 
potentials of mean force computed for a subset of protein 
structures derived from CAMPASS database is given in the 
additional material URL.  
 
Pairwise, triplet and quadruple interactions were computed 
using HORI programs  explained in our previous study [41]. 
The potentials were derived from a standard library of protein 
structures compiled from CAMPASS database [15]. The SCOP 
identifiers of the structures used to derive the potentials were 
given in supplementary material. Three-dimensional structure 
and amino acid sequence of proteins were related by an 
unknown set of rules that is often referred to as the folding 
code. This code is significantly influenced by non-local 

interactions between the residues [34]. If we approximate each 
residue as a sphere centered on its location, accordingly it is 
possible for three or even four closely packed spheres to make 
mutual contact, thus giving rise to three- or four-way 
interactions. Just as no more than four same-sized spheres can 
be in mutual contact in 3D space, no more than four–way 
interactions generally be expected to occur. We hypothesize 
that an interaction exists between two residues if the spatial 
distance between their Cβ atoms is within 7 Å and residues 
should be ≥4 residue positions apart in the template sequence. It 
is generally believed that the interactions involving loop 
residues can be ignored, as their contribution to fold recognition 
is relatively insignificant. In the current version of 
HORIBALFRE implementation, we consider only interactions 
between residues in the cores. It is observed that the scores 
obtained depend on the possible interactions within 7 Å and 
also all the interactions possible, depending on the residue 
pairs. For example, a positive potential was expected for Pro-
Glu residue pair because the number of interactions possible 
within 7 Å for this pair is limited; only 0.8% of the total Pro-Glu 
interactions in the dataset. Similarly, as the number of possible 
Ala-Ala interactions is high, the potential is expected to be 
negative. In some sequence-structure pairs, no quadruple 
interaction potential value was obtained. But all protein 
structures showed pairwise interactions as expected, as the 
impact of constraints were less. Hence, inclusion of higher order 
interactions can make a distinction between sequence-structure 
pairs in the algorithm. Higher order residue interactions in 
HORIBALFRE algorithm were calculated using equations 4, 5, 6 
and 7 (see supplementary material). 

 
Figure 1: Flowchart of HORIBALFRE algorithm. Algorithm 
derive parameters from multiple features like gap penalty, 
mutation potential, secondary structure and solvent 
accessibility potential, higher order residue interactions. Pre-
computed potentials from CAMPASS dataset and BLOSUM 62 
matrix were also incorporated.  
 
Calculation of potentials of mean force using log-odds ratio: 
Potentials of mean force were defined using pseudopotentials 
calculated from protein structures, pre-computed from a 
database using the inverse Boltzmann principle. Pairwise 
potentials of mean force have been used to study 
conformational ensembles [11, 20] .The potentials were obtained 
from the manually curated structures from the CAMPASS 
database. The formula used to calculate the log odds ratio is 
given in equations 8, 9 and 10 (see supplementary material). 
 
(4) Sum of Potentials (HORIBALFRE score) 
The success of theoretical methods depends on the accuracy of 
the underlying scoring function that should be capable of 
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discriminating between correct (i.e. native) and incorrect 
configurations of the native polypeptide sequence [4, 5]. 
HORIBALFRE score (see equation 11 in supplementary 
material) is derived using the summation of various potentials 
described earlier using the following equation. Additional 
weight factors were incorporated before the calculation of final 
HORIBALFRE score, and the values of the weight factors were 
determined based on the data available on the contribution of 
various potentials in protein structures [38].  
 
(5) Ranking compatibility scores for sequence-fold pairs 
The benchmarking was performed using the Fischer’s dataset 
that consists of 68 sequence-structure pairs [21]. The template-
target pairs were analyzed to find out the considering only the 
mutation potential values. The mutation potential values 
obtained were comparatively lower in the cases where the right 
fold was identified. The mutation potential values showed 
dependence on the length of the sequences. In general, the 
potential values were high for sequences that differ hugely in 
length and with a poor sequence identity. As the difference in 
length increases, the negative values of mutation potentials 
were not observed. Mutation potential for a subset of template-
target pairs is given in additional material URL.  
 
Statistical evaluation of HORIBALFRE algorithm:  
Sensitivity and specificity analyses were performed at class 
level and at the superfamily level, with and without higher 
order residue interactions to illustrate the impact of higher 
order interactions in predicting the correct fold. Sensitivity and 
Specificity were calculated using equations 12 and 13 (see 
supplementary material). 
 
Discussion: 
HORIBALFRE score, an objective-scoring method introduced in 
this manuscript is calculated for 68 template-target members in 
the Fischer’s dataset using a one-against-all method. Potentials 
explained in methods sections (See equations 1-10) were 
computed and used to derive HORIBALFRE score. Following 
the calculation of the HORIBALFRE score, a comparative 
analysis is performed using the scores without and with 
quadruple interactions. Representative template-target pairs 
without and with quadruple interactions are provided in Table 
1 and Table 2. (See supplementary materials) Some of the 
sequence pairs were not observed amongst the top hits when 
quadruple interactions were not included. Here, we illustrate 
that higher order interactions contribute towards discriminating 
the correct fold amongst other folds, which give a similar 
score.  The set of template-target pairs given in Table 3, (See 
supplementary materials) identified to have the corresponding 
fold pair amongst the top ten scores obtained for the sequence. 
From the class-wise distribution of the results, we observed that 
most of the folds that were predicted correctly (true positives) 
were belong to the mixed class of α/β. Further analysis will be 
required to elucidate whether quadruple interactions were 
biased towards specific SCOP classes. We had earlier shown 
that it is possible to discriminate between two folds of similar 
composition of supersecondary structures, the singly wound 
α/β barrels and doubly wound dehydrogenases, using higher 
order interactions [41, also See additional Material URL]. 
 
We used statistical validation that compared sensitivity and 
specificity analyses at the class level and superfamily level and 

analyzed the impact of the presence and absence of higher 
order residue interactions. For the sequence - pairs that were 
amongst the top 10 hits obtained using raw scores we calculated 
sensitivity and specificity. As expected, at the class level, the 
number of sequences that identified other structures that 
belonged to the same class as the native fold was higher than 
that obtained at the superfamily level. Class level with higher 
order interactions included, and superfamily level with higher 
order interactions are provided in Figure 2. As expected, at the 
class level, the number of sequences that identified other 
structures that belonged to the same class as the native fold was 
higher than that obtained at the superfamily level. The same 
data, when analyzed without the inclusion of quadruple and 
triplet interaction scores, it was seen that there were lesser 
number of sequences that identified other structures, belonging 
to the same class as the class of the native fold. The sensitivity at 
the class level also dropped to below 30%, while with the 
inclusion of higher order potentials, a higher sensitivity was 
obtained.  

 
Figure 2: Sensitivity (x-axis) vs. Specificity (y-axis) plots based 
on HORIBALFRE results. 
 
HORIBALFRE utilize three type of higher order residue 
interaction for characterizing correct fold for a given query 
sequence from a database of folds. We introduced various 
parameters incorporated in the algorithm and discussed pilot 
results in this manuscript. In an earlier study we showed that 
higher order residue interactions could delineate between 
closely related folds using two members from α/β folds from 
SCOP database [41, 45, also See additional Material URL]. The 
current results using 68 template-target pairs from Fisher’s 
dataset used in HORIBALFRE indicates that fold recognition is 
being improved by the addition of higher order residue 
interaction potential due to quadruple interaction. The 
performance in the current analysis could be improved by 
inclusion of additional features. We will be applying 
normalization techniques and linear programming based 
function to improve the algorithm. Further, the algorithm will 
be tested on larger benchmark data sets to derive the coverage 
of algorithm and an integrated web server will be developed for 
fold prediction using higher order residue interactions.  
 
Conclusion: 
In this manuscript, we introduced and demonstrated results 
obtained from a novel fold recognition algorithm developed for 
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protein fold recognition from sequence information. Fold 
recognition is an important problem in the current era of 
exponentially increasing sequenced genomes. Function and fold 
level annotation of newly sequenced genomes remains to be a 
priority. We designed a new fold recognition approach 
“HORIBALFRE” that utilize higher order residue interactions. 
The algorithm was tested using Fischer’s dataset and performed 
a statistical evaluation. Preliminary results suggest that 
inclusion of higher order residue interactions, specifically 
quadruple interactions improves fold prediction. 
  
Additional Material: 
Additional datasets (PDB identifiers, Fischer’s dataset, 
CAMPASS database derived structures), HORI-based pairwise, 
triplet and quadruple interaction scores and various parameters 
associated with HORIBALFRE scores and related programs are 
accessible from the URL: 
http://caps.ncbs.res.in/download/horibalfre/.  
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Supplementary material: 
 

Equation Equation 
number 

Parameters 

m
1

 E s[T(i),P(i)]
j

i=

=∑
 

(1) Where j stands for the total number of 
positions in the aligned pair of sequences. 
T(i) stands for the target and P(i) is the probe. 
Position i should be within a regular 
secondary structural region in the template. 

s
1

 E s[S(i),P(i)]
j

i=
=∑

 
(2) Where j stands for the total number of 

positions in the aligned   pair of sequences. 
S(i) gives the environment score for the 
position i and P(i) is the residue at position i 
in the probe sequence. 

gE  =  + nα β×  (3) Where α is the gap opening penalty, n is the 
numbers of gaps and β is the gap extension 
penalty. 

 
Ehori  = Epairwise∑  + E∑ triplet

+ Equadruple  ∑  
(4) Epairise represents pseudoenergy due to 

pairwise interaction, Etriplet represents 
pseudoenergy due to triplet interactions, 
Equadruple indicates pseudoenergy due to 
quadruple interactions. Ex (x, y) indicates 
pseudoenergy imparted by two interacting 
residues.   

j

pairwise
i=1

E  = (T(i),T(i+4))∑
 

(5) 
where T(i) is the

thi   residue in the template 
sequence and j is  the length of the sequence. 
The distance cut-off is 7 Å. 

triplet p p pE (i,j,k) = E (i,j) + E (j,k) + E (k,i) ∑ ∑ ∑  
(6) Where i, j, k were ≥4 residues apart and the 

cut-off distance is 7 Å. 
 

quadruple p p p p p pE (i,j,k,l) = E (i,j) + E (j,k) + E (k,l) + E (l,i) + E (i,k) + E (j,l)∑ ∑ ∑ ∑ ∑ ∑  (7) where i,j,k,l are each 4 residues apart and the 
cut-off distance is 7 Å.  

E(I,J) = -RT ln[F(I,J) / P(I,J)]Δ  (8)  
F(I,J) = f(i,j,d) / f(i,j)  (9) f (i, j,d) =  Occurrence of pair i,j within set 

distance d(here 7 Å) in the dataset; f (i, j) =  
Total occurrences of pair i,j in the dataset; 

i j i j d

P(I,J) = p(i,j,d) / p(i,j)∑∑ ∑∑∑
 

(10) p(i,j,d) = ∑∑  Sum of over all possible pairwise 
interactions within 7 Å; p(i,j) = ∑∑∑  Sum 
over all possible pairwise interactions in the 
dataset without any distance cut-off. The 
temperature was set to 293K, so that RT = 
0.582 kcal/mol. 

HORIBALFRE score =  
P P P P P Pm m g g ss ss p p t t q qw w w w w w+ + + + +  

 
(11) Where, P m is the sum of potentials due to 

mutation; P g is sum of potentials due to gap 
penalty; P ss is sum of potentials due 
secondary structure compatibility and 
solvent accessibility; P p is sum of potentials 
due to pairwise interactions; P t is sum of 
potentials due to triplet interactions; P q is 
sum of potentials due to quadruple 
interactions; and wm = 0.1; wg =0.1; wss = 0.2; 
wp =0.1; wt=0.2;wq = 0.3 

TPSensitivity = 
TP + FN  

(12) Where, TP = True Positives, TN = True 
Negatives, FP = False Positives, FN = False 
Negatives. TNSpecificity = 

TN + FP    

(13) 
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Table 1: HORIBALFRE scores obtained without inclusion of quadruple interactions.   
Sequence-Fold pairs Template length Target length HORIBALFRE Score 
1chra_2mnr 370 357 113.409 
1isua_2hipa 62 72 48.286 
8i1b_4fgf. 152 146 57.152 
1mup_1rbp 166 182 83.570 
1fxia_1ubq 96 76 61.686 
3chy_4fxn 128 138 29.921 
2azaa_1paz 129 123 3.040 
1sim_1nsba 381 390 104.098 
 

Table 2: HORIBALFRE scores obtained with inclusion of quadruple interactions. 
Sequence-Fold pairs Template length Target length HORIBALFRE Score 
1npx_3grs 447 478 264.973 
1bbha_2ccya 131 128 87.648 
1chra_2mnr 370 357 113.409 
1isua_2hipa 62 72 48.430 
8i1b_4fgf 152 146 58.185 
1mup_1rbp 166 182 83.570 
1stfb_1mola 98 87 74.551 
1fxia_1ubq 96 76 63.600 
3chy_4fxn 128 138 29.921 
2azaa_1paz 129 123 8.979 
1sim_1nsba 381 390 105.836 

 
Table 3: Set of template-target pair identified by HORIBALFRE with corresponding folds pair amongst the top ten scores obtained 
for the sequence. 

Sequence 
and Fold 

Potential Class 
ID 

Fold 
ID 

Superfamily 
ID 

Family 
ID 

Class Fold Superfamily 

1npx_3grs 239.816 30441 51349 51904 51905 Alpha and 
beta proteins 
(a/b) 

FAD/NAD(P)-
binding domain 

FAD/NAD(P)-
binding domain 

1bbha_2ccya 73.222 16544 46456 47161 47175 All alpha 
proteins 

Four-helical up-
and-down bundle 

Cytochromes 

1chra_2mnr 28.220 29245 51349 51350 51604 Alpha and 
beta proteins 
(a/b) 

TIM beta/alpha-
barrel 

Enolase C-terminal 
domain-like 

1gky_3adk 96.625 31885 51349 52539 52540 Alpha and 
beta proteins 
(a/b) 

P-loop containing 
nucleoside 
triphosphate 
hydrolases 

P-loop containing 
nucleoside 
triphosphate 
hydrolases 

2hhma_1fbpa 174.581 42916 56572 56654 56655 Multi-
domain 
proteins 
(alpha and 
beta) 

Carbohydrate 
phosphatase 

Carbohydrate 
phosphatase 

1isua_2hipa 43.695 44991 56992 57651 57652 Small 
proteins 

HIPIP (high 
potential iron 
protein) 

HIPIP (high 
potential iron 
protein) 

1gal_3cox 460.067 30332 51349 51904 51905 Alpha and 
beta proteins 
(a/b) 

FAD/NAD(P)-
binding domain 

FAD/NAD(P)-
binding domain 

1mioc_1minb 360.606 35610 51349 53799 53807 Alpha and 
beta proteins 
(a/b) 

Chelatase-like "Helical backbone" 
metal receptor 

8i1b_4fgf 55.457 25486 48724 50352 50353 All beta 
proteins 

beta-Trefoil Cytokine 

1mup_1rbp 79.343 27085 48724 50813 50814 All beta 
proteins 

Lipocalins Lipocalins 

1cpcl_1cola 61.927 43378 56835 56836 56837 Membrane 
and Cell 

Toxins' membrane 
translocation 

Colicin 
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surface 
proteins and 
peptides 

domains 

1atna_1atr 162.765 33421 51349 53066 53067 Alpha and 
beta proteins 
(a/b) 

Ribonuclease H-like 
motif 

Actin-like ATPase 
domain 

1arb_4ptp 119.488 25831 48724 50493 50494 All beta 
proteins 

Trypsin-like serine 
proteases 

Trypsin-like serine 
proteases 

1ltsd_1bova 72.833 25070 48724 50198 50203 All beta 
proteins 

OB-fold Bacterial 
enterotoxins 

1stfi_1mola 76.258 37988 53931 54402 54403 Alpha and 
beta proteins 
(a+b) 

Cystatin-like Paramphistomum 
epiclitum [TaxId: 
54403] 

1fxia_1ubq 50.160 37585 53931 54235 54236 Alpha and 
beta proteins 
(a+b) 

beta-Grasp 
(ubiquitin-like) 

Ubiquitin-like 

3hlab_2rhe 89.066 20523 48724 48725 48726 All beta 
proteins 

Immunoglobulin-
like beta-sandwich 

Immunoglobulin 

3chy_4fxn 17.739 31197 51349 52171 52218 Alpha and 
beta proteins 
(a/b) 

Flavodoxin-like Flavoproteins 

2azaa_1paz 0.656 22878 48724 49502 49503 All beta 
proteins 

Cupredoxin-like Cupredoxins 

1cew_1mola 83.485 37988 53931 54402 54403 Alpha and 
beta proteins 
(a+b) 

Cystatin-like Paramphistomum 
epiclitum [TaxId: 
54403] 

1sim_1nsba 105.284 27597 48724 50938 50939 All beta 
proteins 

6-bladed beta-
propeller 

Sialidases 

1gp1a_2trxa 91.403 32719 51349 52832 52833 Alpha and 
beta proteins 
(a/b) 

Thioredoxin fold Thioredoxin-like 

 
 


