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Abstract: Cellular energy is primarily provided by the oxidative degradation of nutrients coupled
with mitochondrial respiration, in which oxygen participates in the mitochondrial electron transport
chain to enable electron flow through the chain complex (I–IV), leading to ATP production. Therefore,
oxygen supply is an indispensable chapter in intracellular bioenergetics. In mammals, oxygen
is delivered by the bloodstream. Accordingly, the decrease in cellular oxygen level (hypoxia) is
accompanied by nutrient starvation, thereby integrating hypoxic signaling and nutrient signaling at
the cellular level. Importantly, hypoxia profoundly affects cellular metabolism and many relevant
physiological reactions induce cellular adaptations of hypoxia-inducible gene expression, metabolism,
reactive oxygen species, and autophagy. Here, we introduce the current knowledge of hypoxia
signaling with two-well known cellular energy and nutrient sensing pathways, AMP-activated
protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1). Additionally,
the molecular crosstalk between hypoxic signaling and AMPK/mTOR pathways in various hypoxic
cellular adaptions is discussed.
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Oxygen (O2) is a key factor for driving cellular metabolism in mitochondria to maintain
cellular energy homeostasis for cell proliferation and growth. Therefore, under low oxygen
conditions that do not reach the cellular requirement (hypoxia, 0.5–2% oxygen), vertebrates
should reprogram the metabolic pathways and the corresponding regulatory circuits in
response to the stressful conditions caused by hypoxia, thereby promoting cell survival [1,2].
Considering oxygen is delivered by the bloodstream, it should be noted that hypoxia
is accompanied with nutrient starvation in many physiological settings in mammals.
Therefore, it is necessary to consider the crosstalk between hypoxic signaling and nutrient
signaling and the consequent metabolic changes. In the nutrient signaling, AMP-activated
protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) play
an important role in balancing cellular energy homeostasis by sensing cellular ATP and
nutrient (glucose and amino acids) levels. They are also key upstream regulators for
triggering autophagy, an essential cellular homeostasis program that removes harmful
and damaged cellular materials and provides cellular energy sources and building blocks.
The AMPK–mTOR pathway cooperates with autophagy to fine-tune metabolic activity in
response to stressful conditions. In this review, we will introduce and discuss the current
understanding of AMPK–mTOR signaling and cellular adaptations in hypoxia.

1. AMPK as a Cellular Energy Gauge

AMPK structure for directly sensing cellular ATP level. AMPK is primarily regulated
by cellular energy level [3,4]. As its name indicates, AMP activates AMPK. AMP is a
by-product of cellular adenylate kinase reaction, an ATP buffer system catalyzing the
conversion of two ADPs into one ATP and one AMP at close to equilibrium. Therefore, the
AMP/ATP ratio, as the square of the ADP/ATP ratio, varies [5]. This means that changes in
the cellular AMP level are a more sensitive indicator of cellular energy status than changes
in ADP or ATP levels [6]. Once activated in ATP-depleting conditions, AMPK acts to restore
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energy homeostasis by activating catabolic pathways, including glucose uptake, glycolysis,
and fatty acid oxidation, which facilitates ATP generation. Simultaneously, AMPK inhibits
ATP-consuming anabolic pathways such as fatty acid synthesis, gluconeogenesis, and
protein synthesis. AMPK is a heterotrimeric protein kinase complex consisting of a catalytic
subunit (α1, α2) and two regulatory subunits (β1, β2 and γ1, γ2, γ3), of which the γ-
subunit functions as an energy sensor by directly binding to adenosine nucleotides, ATP,
ADP, or AMP (Figure 1) [3,6]. It contains four tandem cystathionine β-synthase (CBS1–4)
motifs [7]. A single tandem pair of CBS modules forms a ‘Bateman domain’ to provide
two adenosine nucleotide-binding sites [8], therefore, there are four potential adenine
nucleotide-binding sites (Site1–4) in AMPK. X-ray crystallographic analyses have shown
that Site1, Site3, and Site4, but not Site2, are capable of binding to ATP, ADP, or AMP in a
competitive manner [7,9]. Mutagenesis further indicates that Site3 and Site4 are important
for AMPK allosteric activation, and it has been proposed that Site3 primarily contributes to
the allosteric activation of AMPK by AMP. AMP binding to Site3 causes conformational
changes in the AMPK complex by rearranging the regulatory subunit interacting motif on
the α-subunit (α-RIM) in close proximity to AMP bound Site3 on γ-subunit [10]. It causes
the release of an intramolecular autoinhibitory domain (α-AID) from a kinase domain
(α-KD) on the α-subunit, allowing AMPK to adopt an active conformation.

Figure 1. Functional domains of AMPK subunits. AMPKα catalytic subunit (α1 and α2) has an N-terminal kinase domain
(α-KD) containing Thr-172 for activation by upstream kinases (LKB1 and CAMKKβ), autoinhibitory domain (α-AID), and
two regulatory-subunit interacting motifs (α-RIM), and a C-terminal domain binding to the β-subunit (α-CTD). The ST-loop
within α-CTD can be highly phosphorylated by PKB/AKT, PKA, S6K, and GSK3β, which leads to the inactivation of AMPK.
The AMPKβ scaffold subunit (β1 and β2) has a carbohydrate-binding module (CBM, a target region for direct AMPK
activators, such as A-769662 and salicylate), a C-terminal domain (β-CTD) containing α-subunit binding site, and a domain
for γ-subunit interaction. The AMPKγ direct energy-sensing subunit (γ1, γ2, and γ3) has four cystathionine-β-synthase
domains (CBS1–4), which form two Bateman domains that create four adenosine nucleotide-binding sites (Site1–4). Site2
always appears to be empty and Site4 has a tightly bound AMP, whereas Site1 and Site3 represent the regulatory sites that
bind AMP, ADP, or ATP competitively.
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Regulation of AMPK activity by phosphorylation. In addition to allosteric regula-
tion, phosphorylation on multiple regions of the α-subunit plays an important role in the
regulation of AMPK activity (Figure 1) [3]. First, the phosphorylation of Thr172 within
the activation loop on α-KD is a key determinant for AMPK activation. It is believed
that the conformational changes upon AMP binding not only makes the AMPK complex
more sensitive to Thr172 phosphorylation on α-subunit by upstream kinases but also
protects this site from dephosphorylation by protein phosphatase PP2A and PP2C [11,12].
Coordination of AMP binding and AMPKα Thr172 phosphorylation causes synergistic ac-
tivation (>1000-fold increase in AMPK activity), conferring the high sensitivity of AMPK in
response to small changes in cellular energy status. Three different kinases have been iden-
tified as upstream kinases phosphorylating AMPKα at Thr172. First, the tumor suppressor
LKB1 (liver kinase B1) is a primary AMPK kinase, especially in response to cellular energy
stress [13–15]. Interestingly, recent studies have shown that Axin, originally discovered as a
component of Wnt signaling whose deficiency leads to the duplication of the body axis [16],
forms a stable complex with LKB1, and AMP allows AMP-bound AMPK complex to bind to
the Axin-LKB1 complex, thus promoting Thr172 phosphorylation [17]. Moreover, it is has
been shown that the Axin-LKB1 complex is translocated into lysosomes in response to ATP
depletion, in which case AMPK is activated [18]. This finding provides an important clue
to resolve the AMPK–mTOR–autophagy molecular network triad in the lysosome, where
the amino acid sensitive mTOR complex I and nutrient-recycling autophagy program are
activated. Second, Ca2+/calmodulin-dependent protein kinase 2 (CaMKKβ) phospho-
rylates Thr172 of AMPKα in response to the elevated intracellular Ca2+ concentration,
independently of any change in cellular AMP/ATP ratio [19,20]. Lastly, Thr172 can be
phosphorylated by TGF-β-activated protein kinase (TAK1), but the physiological condi-
tions under which TAK1 phosphorylates AMPK remain unclear [21]. Accumulating reports
have demonstrated that the phosphorylation of the serine/threonine-rich loop (ST-loop)
on AMPKα also plays a role in the regulation of AMPK, mostly by inhibition [3,22]. The
kinases corresponding to this inhibitory phosphorylation include cyclic AMP-dependent
protein kinase (PKA), PKB/Akt, and p70 S6 kinase 1 (S6K1). PKA has been reported to
inhibit AMPK during gluconeogenic periods by directly phosphorylating AMPKα1 at
Ser485 (equivalent to Ser491 in AMPKα2) [23]. PKB/Akt also phosphorylates the same
site to inhibit AMPK, which was proposed as a mechanism for the inactivation of AMPK
by insulin [24]. Similarly, S6K1 inhibits AMPK by phosphorylating AMPKα2 at Ser491,
accounting for how leptin inhibits AMPK in the hypothalamus [25]. Glycogen synthesis ki-
nase 3 (GSK3) [26], protein kinase D1 (PDK1) [27], and protein kinase C (PKC) [28] are also
reported to phosphorylate various residues in the ST-loop and inhibit AMPK. Although
the underlying mechanism remains to be uncovered, these inhibitory phosphorylations on
the ST-loop may represent a negative regulatory circuit to turn off AMPK signaling when
the proliferative metabolic signaling is forced to work, for example, in cancers harboring a
constitutively active PKB/Akt mutation.

Metabolic regulation by AMPK. The impact of AMPK on the metabolism is largely
observed in the metabolic pathways for glucose and fatty acids, two main cellular en-
ergy sources [29]. AMPK promotes glucose uptake. AMPK phosphorylates TBC domain
family member 1 (TBC1D1) and thioredoxin-interacting protein (TXNIP), which collec-
tively induces the translocation of glucose transporters (GLUT1 and GLUT4) onto the
plasma membrane [30]. AMPK activates glycolysis by phosphorylating 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase (PFKFB) while inhibiting glycogenesis (glycogen
synthesis) by suppressing glycogen synthase (GYS) [29]. AMPK also controls overall
cellular lipid metabolism through direct phosphorylation and concomitant inactivation
of acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme in fatty acid synthesis pro-
ducing malonyl-CoA from acetyl-CoA. In contrast to ACC1, ACC2 has a mitochondrial
targeting sequence in its amino terminus. It makes the inhibition of ACC2 by AMPK an
important mechanism that can accelerate fatty acid oxidation by relieving the inhibition
of carnitine palmitoyltransferase 1 (CPT1) by malonyl-CoA on the mitochondria outer
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membrane [3,22]. Furthermore, AMPK phosphorylates and inhibits 3-hydroxy-3-methyl-
glutaryl-coA reductase (HMGCR), a key enzyme in the mevalonate pathway that produces
cholesterol and other isoprenoids. AMPK also promotes lipid absorption and release by
phosphorylating lipases such as hormone-sensitive lipase (HSL) and adipocyte-triglyceride
lipase (ATGL) [31,32]. In addition, AMPK can regulate metabolism at the transcriptional
level. AMPK inhibits the transcriptional induction of gluconeogenesis via phosphoryla-
tion and nuclear exclusion of cyclic AMP-regulated transcriptional coactivator 2 (CRTC2)
and Class II histone deacetylases (HDACs), which are necessary for the transcription of
gluconeogenic genes [33,34]. Similarly, AMPK phosphorylates and inhibits sterol regu-
latory element binding protein 1 (SREBP1), a master transcription factor for lipogenic
enzymes [35]. Phosphorylation of nuclear factor-4α (HNF4α) and carbohydrate-responsive
element binding protein (ChREBP) by AMPK was also proposed to regulate the transcrip-
tion of key glycolytic and lipogenic enzymes [36,37]. Interestingly, AMPK was reported
to increase mitochondrial biogenesis via the peroxisome proliferator-activated receptor-γ
coactivator 1α (PGC-1α), in which AMPK may directly activate PGC-1α by phosphory-
lation [38] or indirectly by activating an NAD+-dependent protein deacetylase Sirtuin-1
(SIRT1), which deacetylates and activates PGC-1α [39]. These metabolic reprogramming
activities of AMPK are also closely related to the cell cycle progression. Interestingly, AMPK
was reported to be directly involved in cell cycle regulation. It has been extensively reported
that the activation of AMPK with AMP-mimetic 5-aminoimidazole-4-carboxamide ribonu-
cleoside (AICAR) causes cell cycle arrest in various cell types in vitro and in vivo [40–42].
Although it is not clear whether AMPK directly phosphorylates and stabilizes p53, these
studies indicate that the activation of AMPK accumulates p53, followed by an increase in
p21/CIP, a G1 cell cycle inhibitor. Moreover, a report has demonstrated that AMPK activity
is required for proper mitotic progression and cytokinesis, in which the AMPK (especially
AMPKα2)-meditated phosphorylation of protein phosphatase 1 regulatory subunit 12C
(PPP1R12C) plays an important role [43]. Consistent with AMPK, its upstream kinase LKB1
was also shown to be associated with p53 [44] and induce p21/CIP expression for cell cycle
arrest in a p53-dependent manner in G361 melanoma cells [45].

2. mTOR Complex and Its Amino Acid Sensing Modules

Two mTOR complexes. mTOR complex (mTORC) coordinates cell growth and
metabolism by integrating growth factor signaling at the nutrient (mostly amino acids)
level [46,47]. mTORC exists in two distinct protein kinase complexes (mTORC1 and
mTORC2, Figure 2a). mTORC1 is a master regulator of protein synthesis by direct phos-
phorylation to activate p70 ribosomal protein S6 kinase1 (S6K1) and inactivate eukaryotic
translation initiation factor 4E-binding protein 1 (4E-BP1). Additionally, mTORC1 trig-
gers a cellular homeostatic degradation program, autophagy, by regulating autophagy-
initiating protein kinase ULK1 complex. mTORC2 is a key upstream molecule that activates
the phosphoinositide 3-kinase (PI3K)-PKB/AKT pathway by directly phosphorylating
PKB/AKT at Ser473 on its well-conserved hydrophobic motif. mTORC1 and mTORC2 are
defined by their unique subunits, Raptor and Rictor, respectively. Importantly, mTORC1
is sensitive to rapamycin, but mTORC2 is resistant to acute rapamycin treatment. Recent
three-dimensional structural analyses have demonstrated that mTORC2-specific Rictor
blocks the FKBP12–rapamycin complex binding site on mTOR, thereby making mTORC2
insensitive to rapamycin [48,49]. Nonetheless, a long-term rapamycin treatment can inhibit
mTORC2 signaling by disassembling the complex [50,51]. There were also reports showing
that micromolar concentrations of rapamycin inhibit both mTORC1 and mTORC2, while
the lower concentrations of rapamycin in the nanomolar range only target mTORC1 [52].
The physiological significance of mTORC1 and mTORC2 signaling in cancer biology may
explain the underlying mechanism behind the higher dose of rapamycin that is needed
for mTORC1 inhibition in anti-cancer treatment in clinic trials [53]. Interestingly, phospha-
tidic acid (PA), a central metabolite of membrane lipid biosynthesis, has been reported to
participate in mTORC1 activation. PA is a hydrolytic product of phosphatidylcholine (PC)



Int. J. Mol. Sci. 2021, 22, 9765 5 of 23

by phospholipase D (PLD). The inhibition of PA by either pharmacological (1-butanol) or
genetic (PLD knockdown by RNAi) approaches results in a decrease in mTORC1 signaling,
reducing the phosphorylation of both S6K1 and 4E-BP1 [54,55]. However, PA does not
seem to directly stimulate mTORC1 activity [56]. Instead, it may function to relieve the
inhibitory input of rapamycin to mTORC1. PA has been demonstrated to interact with
the FKBP12–rapamycin complex binding site of mTOR (FRB domain), thereby competing
with the FKBP12–rapamycin complex for mTOR binding. In fact, the increase in cellular
PA levels renders cells less sensitive to rapamycin [57]. However, it should be noted that
RNAi screening in flies showed that Drosophila PLD (dPLD) knockdown did not cause any
phenotype change in dTOR-dependent cell growth [58]. Moreover, biochemical analysis
revealed that although the FRB domain is well-conserved in dTOR in flies, the critical
Arg2109 residue in the mTOR FRB domain for PA binding is not conserved in dTOR [54].

mTORC1 and AMPK. Functionally, mTORC1 interacts with AMPK at the level of tuber-
ous sclerosis complex (TSC) and Raptor. TSC is a heterotrimeric complex composed of TSC1,
TSC2, and TBC1D7. It acts as a GTPase-activating protein (GAP) for lysosomal Rheb [59],
which directly binds to and activates mTORC1, although the molecular details are still
unclear [60]. AMPK phosphorylates TSC2 to increase GAP activity toward Rheb, thereby
inhibiting mTORC1. AMPK also directly phosphorylates mTORC1-specific Raptor, leading
to 14-3-3 binding and the allosteric inhibition of mTORC1 [61]. A reciprocal regulation of
AMPK and mTORC1 by PLD and its metabolite, PA, has also been demonstrated [62]. It
has been shown that the inhibition of PLD stimulates AMPK signaling to increase AMPKα

Thr172 phosphorylation and its downstream target ACC1 phosphorylation, while PA was
reported to decrease AMPK signaling in an mTORC1-dependent manner. Interestingly, this
study also revealed that AMPK negatively regulated PLD1 activity. Considering that Rheb
binds to and stimulates PLD activity in a GTP-dependent manner [56], the suppression
of AMPK in response to elevated PLD activity may provide a positive feedback loop by
inhibiting TSC GAP activity, thereby leading to the activation of both PLD and mTORC1
by GTP-bound Rheb. Elevated PLD activity is frequently observed in many cancers [63],
therefore, this regulatory feedback circuit in the PLD–AMPK–mTORC1 axis may reinforce
tumor growth and proliferative signal by inhibiting AMPK and simultaneously activating
mTORC1. Consistent with this notion, there have been many efforts to use AMPK activa-
tors and mTOR inhibitors as anti-cancer drugs (Table 1). Furthermore, there is a report
showing that the AMPK activator, AICAR, can enhance the efficacy of rapamycin in human
cancer cells [64].
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Figure 2. mTORC and its nutrient signaling modules. (A) A schematic representation of mTOR domain structure and
mTORC subunits. mTOR is composed of a huntingtin-elongation factor 3-regulatory subunit A of PP2A-TOR1 (HEAT)
repeat, a FRAP-ATM-TRRAP (FAT) domain, a FKBP12-rapamycin binding (FRB) domain, a catalytic domain (kinase), and a
FAT domain at the C terminus (FATC). mTORC1 includes mTOR, regulatory-associated protein of mammalian target of
rapamycin (Raptor), and mammalian lethal with sec-13 protein 8 (mLST8). Raptor is a phosphorylation target of AMPK,
which leads to mTORC1 inactivation upon AMPK activation. mTORC2 contains mTOR, rapamycin-insensitive companion
of mTOR (Rictor), mammalian stress-activated MAP kinase-interacting protein 1 (mSin1), and mLST8. The binding of
Rictor and mSin1 masks the FRB domain on mTOR to prevent FKBP12–rapamycin binding, thereby rendering mTORC2
insensitive to rapamycin. mTORC2 is shown to be phosphorylated by PKB/AKT, as well as a downstream kinase S6K in
mTORC1 signaling, but it is debated whether their physiological significance entails activation or inhibition. (B) mTORC1
and amino acid signaling network. mTORC1 is activated by Rheb on lysosomes. Therefore, localization of mTORC1 is
required for activation, which is dependent on the intracellular amino acid level. Rag GTPase is a major arm for transmitting
information on intracellular amino acid into mTORC1. In an amino acid-rich condition, the active Rag GTPase (GTP-loaded
RagA/B and GDP-loaded RagC/D) binds to Raptor to recruit mTORC1 onto lysosomes. Many different amino acid-sensing
molecules directly or indirectly regulate GTP/GDP loading status on Rag GTPase complex. Additionally, Rheb is negatively
regulated by the TSC complex, a GAP for Rheb. The TSC complex integrates many different inputs (growth factors, cellular
energy level, and oxygen level) to fine-tune Rheb for the tight regulation of mTORC1 signaling in response to various
extracellular and intracellular cues. The proteins shown in the figure are not drawn to scale.
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Table 1. Trials using AMPK activators and mTOR inhibitors as anti-cancer drugs.

AMPK Inhibitors Status Study Model Reference

AICAR ZMP, AMP
mimetic Preclinical study

Cancer cell lines
(prostate,

glioblastoma, colon)
[65–67]

A769662 a direct activator Preclinical study
Cancer cell lines

(breast, melanoma,
lung)

[68]

MT63-78 a direct activator Preclinical study
Cancer cell lines

(prostate), animal
model

[69]

OSU-53 allosteric activator Preclinical study
Cancer cell lines
(thyroid), animal

model
[70]

Metformin

inhibits
mitochondrial

electron transport
chain complex I

Clinical trials
(phase II)

Breast, prostate,
pancreatic cancers [71]

mTOR Inhibitors Status Study Model Reference

Rapamycin Preclinical Animal model
(Pancreatic cancer) [72]

Everolimus
Temsirolimus

a derivative of
rapamycin

US FDA
approved

Renal cell carcinoma
(RCC)

ICSN3250
targets PA binding
to FRB domain on

mTOR
Preclinical study Cancer cell lines

(colon) [73]

LY3023414
a competitive
ATP-binding

inhibitor

Clinical trials
(phase I)

Solid tumor or
lymphoma [74]

AZD8055
a competitive
ATP-binding

inhibitor
Preclinical study

Animal model
(ovarian clear cell

carcinoma)
[75]

mTORC1 and nutrient sensing modules. Limitation of amino acid supply quickly
turns off mTORC1 signaling. mTORC1 pathway includes many different amino acid sen-
sors for the activation on lysosome (Figure 2b) [47,76]. Rag GTPase complex, consisting of
two different Rag GTPases (RagA/B and RagC/D), plays an essential role in connecting
mTORC1 with amino acid sensing [77,78]. Biochemical studies demonstrate that GTP-
loaded RagA/B in complex with GDP-loaded RagC/D is necessary for mTORC1 activation
and this active Rag GTPase complex preferentially binds to Raptor in mTORC1 [77]. Experi-
ments in mice harboring a constitutively active allele of RagA have shown that the resulting
active Rag GTPase complex kept mTORC1 active, even in nutrient starvation condition [79].
Unlike the Rheb GTPase, Rag GTPases do not directly activate mTORC1 in vitro, but it is
required for lysosomal localization and activation of mTORC1 in response to amino acid
stimulation [77,80]. These studies showed that mTORC1 anchoring on lysosomes is no
longer sensitive to amino acid starvation while under the control of growth factor and Rheb.
Interestingly, Rag GTPases do not have any lipid-targeting motifs, but the Rag GTPase
complex is able to be localized on lysosomes through the pentameric Ragulator complex,
consisting of p18, p14, MP1, HBXIP, and C7orf59 (also known as LAMPTOR1–5) [80,81].
Notably, these studies showed that Ragulator acts as a guanine nucleotide exchange factor
(GEF) for RagA/B, thereby, activating mTORC1 in the presence of amino acids. Many
studies have identified a number of amino acid sensors that integrate the information
about cytosolic and lysosomal amino acid concentrations with mTORC1 signaling [47,76].
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Of the nutrient sensing complexes that transmit cytosolic amino acid signals to the Rag
GTPase complex, GATOR1 complex, a heterotrimeric complex consisting of DEPDC5,
NPRL2, and NPRL3, directly regulates the activity of the Rag GTPase complex [82]. It is
a GTPase-activating protein (GAP) toward the Rag GTPase complex, hydrolyzing GTP-
bound RagA/B and inhibiting mTORC1 signaling. GATOR1 is localized on lysosomes by
the KICSTOR complex (which contains KPTN, ITFG2, C12orf66, and SZT2), which is re-
quired for the nutrient-mediated control of mTORC1 [83,84]. In addition, GATOR1 interacts
with GATOR2, a pentameric complex of WDR59, WDR24, MIOS, SEH1L, and SEC13, which
inhibits GATOR1 to activate mTORC1 [82]. The following studies have demonstrated that
GATOR2 functions as a signaling platform to regulate mTORC1 by interacting with various
amino acid sensors. Upon leucine starvation, the cytosolic leucine sensor Sestrin2 binds and
inhibits GATOR2, preventing lysosomal recruitment of mTORC1 [85,86]. Similarly, in the
absence of arginine, a cytosolic arginine sensor CASTOR also binds to and inhibits GATOR2.
Arginine binding to CASTOR disrupts CASTOR–GATOR2 interaction, thereby activating
mTORC1 [87,88]. In the case of arginine, there is another arginine sensor, SLC38A9. It
monitors amino acid levels inside the lysosomal lumen and defines the lysosomal branch
of the nutrient sensing machinery [89,90]. SLC38A9 functions as an arginine-gated pump
to transport lysosomal amino acids into the cytosol, such as leucine, leading to mTORC1
activation [91]. This efflux activity may represent a mechanism by which the amino acids
from the autophagic degradation inside lysosomes can activate mTORC1 signaling after
prolonged starvation. In parallel, the lysosomal v-ATPase has also been reported to interact
with the Rag–Ragulator complex to regulate the nucleotide-loading state of the Rag–GTPase
complex [92]. It was shown that an increase in the lysosomal amino acid concentration
induces a conformational change in v-ATPase to decrease its interaction with the Ragulator
complex. Interestingly, the GEF activity of the Ragulator complex toward RagA/B has been
shown to be regulated by v-ATPase [81]. In contrast to GATOR1, a GAP for RagA/B, the
folliculin (FLCN)–folliculin interacting protein2 (FNIP2) complex is shown to act as a GAP
for RagC/D, which activates the mTORC1 pathway in the presence of amino acids [93,94].
Finally, an S-adenosylmethionine (SAM) sensor, SAMTOR, inhibits mTORC1 by binding to
GATOR1 and KICSTOR under methionine or SAM deprivation [95]. This finding suggests
that mTORC1 can respond not only to amino acids but also to their metabolic products.
In parallel with the Rag–GTPase complex axis, there are additional amino acid sensors
for mTORC1. First, yeast and mammalian studies have demonstrated that glutamine can
stimulate mTORC1 independently of Rag GTPase complex [96,97]. These reports have
shown that glutamine could promote mTORC1 translocation to the lysosome without
functional Rag GTPase complex (RagA/B knockout), but it was still dependent on the
lysosomal v-ATPase. Instead, it requires ADP ribosylation factor 1 (Arf-1) GTPase, a
key regulator in vesicle trafficking. In addition, the cooperation of two glutamine trans-
porters on the plasma membrane, SLC1A5 and SLC7A5/SLC3A3, is reported to function in
glutamine-dependent mTORC1 activation [98]. SLC1A5 increases intracellular glutamine
by an influx of extracellular glutamine, which drives a bidirectional amino acid transporter,
SLC7A5/SLC3A3, to move intracellular glutamine out and extracellular essential amino
acids, such as leucine, in to activate mTORC1. However, glutamine was also reported to ac-
tivate mTORC1 through a Rag GTPase complex-dependent mechanism [99]. Additionally,
leucyl-tRNA synthetase (LARS) is reported as an intracellular leucine sensor of mTORC1
via both Rag GTPase-dependent and -independent mechanisms. LARS has been shown to
directly interact with Rag GTPase complex and activate mTORC1 by functioning as a GAP
for RagD [100]. Recently, LARS has also been reported to mediate leucylation on Lys 142 of
RagA to activate mTORC1 [101].

Metabolic regulation by mTORC1. mTORC1 signaling plays a fundamental role in
various biosynthetic pathways [47,102]. mTORC1 drives lipid synthesis by activating two
key lipogenic transcription factors, sterol regulatory element binding protein (SREBP) and
peroxisome proliferator-activated receptor-γ (PPARγ). mTORC1 indirectly activates SREBP
by phosphorylating lipin 1, a phosphatidic acid phosphatase [103]. Lipin 1 promotes
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nuclear remodeling and blocks the translocation of SREBP into the nucleus as well as its
transcriptional activity. Once lipin 1 is phosphorylated and inactivated in an mTORC1-
dependent manner, SREBP becomes active to initiate lipogenic programs. In fact, mice with
adipose-specific loss of mTORC1 have been shown to have smaller and fewer adipocytes
and be resistant to high fat diet induced obesity [104]. Additionally, the downstream
effector of mTORC1, S6K1, has been reported to regulate the commitment of embryonic
stem cell to adipogenic progenitors by regulating the adipogenic program [105]. Although
the underlying mechanism is still largely unknown, mTORC1 signaling participates in
the gene expression for lipid homeostasis in a manner dependent on the nuclear receptor
PPARγ [106]. mTORC1 also plays an essential role in one-carbon metabolism for nucleotide
biosynthesis. mTORC1 induces a mitochondrial methylenetetrahydrofolate dehydrogenase
2 (MTHFD2) in tetrahydrofolate (THF) cycle for de novo purine synthesis by activating the
transcription factor ATF4 [107]. Additionally, S6K1 has been shown to phosphorylate and
activate a carbamoyl phosphate synthetase 2-aspartate transcarbamoylase-dihydroorotase
(CAD), a rate-limiting enzyme in pyrimidine biosynthesis [108,109]. mTORC1 can also
feature in glucose metabolism, especially in response to hypoxia and related physiolog-
ical conditions, such as cancers. mTORC1 upregulates the transcription factor hypoxia
inducible factor 1α (HIF1α) to enhance the expression of glycolytic enzymes, which fa-
vors glycolysis over oxidative phosphorylation [110,111]. mTORC1-dependent SREBP
activation also increases metabolic flux through the pentose phosphate pathway, providing
NADPH (a reducing power for lipid synthesis as well as ROS scavenging system) and
ribose-5-phosphate (a precursor for nucleotide synthesis) [110]. Moreover, mTORC1 has
been shown to be involved in ketogenesis in hepatocytes [112]. Mice with liver-specific
loss of TSC1, which leads to a constitutively active mTORC1 signaling, did not produce
ketone bodies on fasting. mTORC1 impairs the activity of PPARα, a master transcriptional
regulator of ketogenic genes, by promoting the nuclear accumulation of nuclear receptor
corepressor 1 (NcoR1). Interestingly, mTORC1 was also shown to stimulate mitochondria
biogenesis by promoting the formation of the yin yang 1 (YY1)-PPARγ coactivator 1α
(PGC1α) active transcriptional complex [113]. This appears to be in line with reports
demonstrating that mTORC1 enhances the translation of nuclear- encoded mitochondrial
transcripts through its downstream effector, 4E-BP1, to increase the capacity of ATP synthe-
sis for cell growth [114].

3. Cellular Adaptions to Hypoxia

AMPK regulation by hypoxia. Activation of AMPK under hypoxia has been reported
in various tissues and cell types via different molecular mechanisms [115]. In general,
AMPK is believed to be activated by accumulating AMP with respect to the decreasing
ATP in hypoxic conditions (Figure 3). In this aspect, the LKB1-AMPK axis is highlighted
as a main route for AMPK activation in hypoxia. The hypomorphic expression of LKB1
is reported to abrogate AMPK activation under hypoxia in smooth muscle cells, while a
knockout of CaMKKβ had no effect on the activation of AMPK under hypoxia in mice [116].
Additionally, LKB1 is shown to be an essential upstream molecule for AMPK activation
by hypoxia in lung epithelial cells [117]. Interestingly, hypoxia can increase intracellular
Ca2+ and concomitantly activate CaMKKβ independently of any significant change in ATP
and AMP level. Indeed, AMPK activation in HeLa and HEK293T cells under hypoxia was
blunted by CaMKKβ inhibitor, STO-609 [118]. Additionally, in contrast to lung epithelial
cells, CaMKKβ seems to be responsible for AMPK activation under hypoxia in alveolar
epithelial cells [119]. Alternatively, although the underlying mechanism remains largely
unknown, AMPK can be activated by reactive oxygen species (ROS) in this low oxygen
condition [120]. ROS are produced in mitochondrial respiration (electron transport) for
oxidative phosphorylation (OXPHOS) [121,122]. Even under normal conditions, it was
estimated that ROS produced by mitochondria are about 1–2% of the total rate of oxygen
consumption [123], therefore, cells have ROS scavenging enzymes such as superoxide dis-
mutases (SODs), catalase (CAT), and glutathione peroxidases (GPX), as well as antioxidant
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agents, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione
(GSH) [124]. Hypoxia is reported to increase cellular ROS levels mainly through targeting
Complex III on the mitochondrial electron transport chain (ETC), accompanied by AMPK
activation [125,126]. Accumulation of ROS by hypoxia damages mitochondria to blunt ATP
synthesis and increase cellular AMP/ATP, which may represent a mechanism for AMPK
activation [126]. In contrast, other reports have demonstrated that AMP concentration
was not increased after hypoxia-induced ROS formation [125,127–129]. It was proposed
that ROS can directly regulate AMPK activity. H2O2 was shown to induce oxidation and
S-glutathionylation of cysteine residues (Cys299 and Cys304) on AMPKα in HEK293 and
lung cells, resulting in the activation of AMPK [128]. However, there was an opposite
result in cardiomyocytes, in which H2O2 and ischemia induced oxidation of other cysteine
residues (Cys130 and Cys174) on α-subunit, which inhibited AMPK through aggregation
of AMPK molecules and blockage of Thr172 phosphorylation by upstream kinases [130].

Figure 3. AMPK, mTORC1, and HIF1 in hypoxia. Hypoxia inhibits the mitochondrial electron transport chain complex to
impair ATP synthesis. It can cause increases in intracellular ROS level, which increases intracellular Ca2+ to activate AMPK,
independent of any AMP/ATP change. When hypoxia lasts hours, intracellular AMP/ATP level is increased, which further
enhances or maintains AMPK activation. AMPK inhibits mTORC1 via TSC, which is also directly activated by hypoxia
through REDD1. In addition, hypoxia-induced BNIP3 disrupts Rheb-mTORC1 interaction, thereby leading to mTORC1
inhibition. Inactivation of mTORC1 in hypoxia causes the deceleration of protein translation at both initiation (by inhibiting
eIF4F mRNA cap-binding complex) and elongation (by activating eEF2 kinase, a negative regulator of elongation factor
eEF2) steps. Additionally, hypoxia stabilizes a heterodimeric transcription factor HIF by inhibiting HIFα proline hydroxylase
PHD, which prevents the interaction between HIFα and E3 ubiquitin ligase pVHL complex. Molecular pathways regulated
by hypoxia are shown in red.
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Hypoxia-inducible transcription factors, HIFs. The life obtaining biological energy
from mitochondrial oxidative phosphorylation largely relies on oxygen for proliferation,
growth, and survival [131]. Additionally, hypoxia arises in many different pathophysio-
logical conditions, such as tumors. Once an initially avascular tumor has grown beyond
the diffusion limits of oxygen, hypoxic microdomains develop. An important milestone
in our understanding of cellular adaptions to hypoxia was the discovery of hypoxia in-
ducible factors (HIF1 and HIF2): a heterodimeric transcription factor complex containing an
oxygen-sensitive HIFα (present in hypoxia) and -insensitive HIFβ (constitutively expressed
regardless of cellular oxygen level) (Figure 3) [132]. HIFs bind to hypoxia response elements
in the promoter of many hypoxia-responsive genes, including those involved in cell sur-
vival, angiogenesis, glycolysis and invasion/metastasis. In normoxia, the HIF1α subunit is
hydroxylated on two proline residues (Pro402 and Pro564) within the oxygen-dependent
degradation (ODD) domain by prolyl hydroxylases (PHD), coupled with the oxidative
decarboxylation of α-ketoglutarate (α-KG). The hydroxylated HIF1α is polyubiquitylated
by the pVHL complex (pVHL-elongin B/elongin C-CUL2) and targeted for proteasomal
degradation [133,134]. Hypoxia prevents the hydroxylation and consequent degradation
of HIF1α subunits, leading to the formation of an active HIF1α-HIF1β transcription factor
complex. The transcriptional activity of HIFs is further regulated by another member of
the Fe2+ and α-ketoglutarate-dependent dioxygenase family, HIF asparaginyl hydroxylase
or factor inhibiting HIF1 (FIH1) [133,134]. In normoxia, FIH1 inhibits HIFs by hydroxy-
lating an asparagine residue within the C-terminal transactivating domain of the HIFα
subunit to prevent recruitment of the transcription co-activators, p300/CBP [135]. Notably,
PHD is under the control of metabolites in the tricarboxylic acid (TCA) cycle. Succinate
and fumarate inhibit PHD by competing with its substrate α-ketoglutarate, causing an
accumulation of the HIFα subunit, even in normoxia [136]. Additionally, hypoxia con-
comitant with acidosis causes the production of L-2-hydroxyglutarate (2-HG), a structural
analog of α-KG, thereby suppressing PHD activity and increasing the protein level of
HIFα subunit [137]. Interestingly, it was reported that AMPK was activated by treatment
with the pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in human colorectal
adenocarcinoma cells, CaCo-2, and neonatal rat cardiomyocytes [138,139]. This activation
appears to rely on Ca2+-CaMKKβ signaling, but not on LKB1 [138]. However, it is not
clear whether the activation of AMPK by DMOG is mediated by PHD because a limited
amount of functional proline-hydroxylation of non-HIF proteins by PHD has been docu-
mented [140–142] and, moreover, they are challenged by a recent in vitro PHD assay [143].
Considering the observation of asparagine hydroxylation in several non-HIF proteins, such
as tankyrase [144], Notch-1 [145], and IκBα [146], FIH1 may be an alternative. Indeed, a
possible link between AMPK and FIH1 was demonstrated in brown adipose tissue [147]
and the human embryonic kidney cell, HEK293 [148]. Notably, there are some reports
expecting crosstalk between AMPK and HIFs in hypoxia, although the molecular details
are still largely unknown. It was reported that pharmacological or genetic inhibition of
AMPK diminished HIF1 activation in hypoxia [149,150]. Additionally, it was proposed
that AMPK may induce activating phosphorylation on HIF1α for its transcriptional ac-
tivity [150,151]. However, there are conflicting reports showing upregulation of HIF1α
under inactive AMPK in some cancer cells [152,153]. Similarly, AMPK has been shown to
promote PHD activity [154]. This appears to be in line with the observation that AMPK
increases α-ketoglutarate levels, an important cofactor for PHD [3].

mTORC1 and REDD1 in hypoxia. Although the activation of AMPK may provide
a primary mechanism to inhibit mTORC1 in hypoxia, hypoxia can also directly regulate
mTORC1 by a protein regulated in development and DNA damage response-1 (REDD1,
also known as DDIT4) (Figure 3) [155,156]. REDD1 activates TSC complex by disrupting the
inhibitory interaction between TSC2 and 14-3-3, thereby inactivating mTORC1. Hypoxia
decreases the expression of microRNA-7 (miR-7), which binds to 3-UTR on REDD1 mRNA
for degradation. Therefore, hypoxia relieves the repression of REDD1 expression by
miR-7 [157]. In parallel, hypoxia induces mitochondrial protein Bcl-2/adenovirus e1B
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19 kDa-interacting protein 3 (BNIP3) expression by HIF1, which can interfere with the
interaction between mTORC1 and Rheb that inactivates downstream signaling [77,158].
In addition, hypoxia results in ataxia telangiectasia mutated (ATM)-dependent HIF1α
phosphorylation, which appears to be required for REDD1 upregulation and mTORC1
downregulation [159].

Protein translation in hypoxia. Along with cellular adaptation at the transcriptional
level via HIFs, down-regulation of energy consuming protein translation minimizes un-
necessary ATP use and prevents the accumulation of unfolded (or misfolded) proteins
by hypoxia, in which protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase
(PERK) and mTORC1 play an important role [131]. Accumulation of unfolded/misfolded
proteins causes ER stress, followed by the unfolded protein response (UPR) [160]. As a
UPR sensor, PERK phosphorylates eIF2α and inhibits translation initiation, relieving the
proteotoxicity [161,162]. In parallel, inhibition of mTORC1 in hypoxia is responsible for
turning off a cap-dependent mRNA translation by regulating the eIF4F complex. The eIF4F
complex binds to 5′-cap of mRNA, which brings it to a ribosome. eIF4E is an essential
component of eIF4F cap-binding complex, as well as a target of 4E-BP1, a direct substrate
of mTORC1. mTORC1 phosphorylates 4E-BP1 to prevent 4E-BP1 binding to eIF4E, which
allows for the formation of a functional eIF4F complex. Upon mTORC1 inactivation by
hypoxia, 4E-BP1 inhibits eIF4F cap-binding complex assembly to decrease global protein
translation [163]. mTORC1 also functions in the elongation step in the translation. Peptide
elongation is mediated by eukaryotic elongation factors (eEFs), of which eEF2 is a target of
hypoxic signaling [164,165]. In normoxia, mTORC1 phosphorylates eEF2 kinase, which is
subject to proteasomal degradation. However, once mTORC1 is inactivated in hypoxia,
the inhibitory phosphorylation on eEF2 kinase is decreased and the eEF2 kinase becomes
stable to phosphorylate and inhibit eEF2 function [164]. In this translation-unfavorable
condition, the hypoxia-responsive mRNA translation can occur by direct binding between
ribosomes and the internal ribosome entry sites within the 5′-untranslated region (UTR) of
the mRNAs, which allows the mRNAs to bypass eIF4F cap-binding complex dependent
translation [166,167]. Notably, the translation of hypoxia-adaptive gene expression can
be upregulated in hypoxia. Typically, the overexpression and activation of activating
transcription factor 4 (ATF4) in hypoxia drives various genes’ expression, such as the genes
involved in protein synthesis, antioxidant response, amino acid transport, metabolism,
and autophagy, as a part of the integrated stress response [168–170]. Up-regulation of
ATF4 translation in hypoxia is known to rely on eIF2α phosphorylation [168,171], which is
resistant to mTORC1 inhibition. However, mTORC1 is also able to activate ATF4 signaling.
It has been shown that mTORC1 induces ATF4-dependent expression of methylenetetrahy-
drofolate dehydrogenase 2 (MTHFD2), a key enzyme in the mitochondrial tetrahydrofolate
(mTHF) cycle, to provide one-carbon units for de novo purine synthesis for cell growth
and proliferation [107].

Mitochondrial respiration and ROS in hypoxia. In hypoxia, mitochondria are first in
line to experience the change in oxygen level because the mitochondrial electron transport
chain (ETC) is the largest single consumer of intracellular oxygen for the generation of
ATP [131]. Although the underlying mechanism has yet to be fully elucidated, Complex
I, II, and III are sensitive to hypoxia, but Complex IV appears to be rather resistant to
it [131]. As a terminal ETC component, Complex IV (cytochrome c oxidase, COX) stops
electron flows by delivering electrons to oxygen, producing two molecules of water in
the process. It has a high affinity for oxygen (Km close to 0.1% oxygen), therefore, the
ETC can function at near anoxic levels (around 0.5% oxygen) and cells can maintain
minimum ATP levels to survive during hypoxia [172]. When hypoxia lasts for hours,
in order to support basal metabolic demands, hypoxia switches the subunit in Complex
IV in a HIF1-dependent manner by degrading COX4I1 and expressing COX4I2, which
allows for the more efficient transfer of electrons to oxygen during hypoxia [173]. By
contrast, hypoxia diminishes the activity of Complex I, II, and III [131]. Hypoxia induces
microRNAs, including miR-210, to repress the expression of two important Fe-S cluster
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assembly factors (ISCU1 and ISCU2), thereby compromising Complexes I, II and III [174].
A benefit of reduced mitochondrial oxidative phosphorylation and ETC activity is to
minimize mitochondrial ROS in response to acute and short hypoxia. In fact, many HIF1-
dependent hypoxia responsive gene products diminish mitochondrial ROS, preventing
cell death [173,175–177]. However, under long-term or severe hypoxic conditions, the
overproduction of ROS results in severe damage on cells, leading to cell death. In response
to acute or mild hypoxia, cells turn on the mechanisms to decrease cellular ATP demand by
suppressing ATP-consuming processes, thereby decelerating oxygen consumption [178].
It has long been believed that the demand for cellular ATP is a major determinant of the
cellular respiratory rate [179]. In fact, sodium/potassium pumps (Na+/K+ ATPase) account
for 20–70% of the oxygen expenditure of mammalian cells [180]. This pump is rapidly
inhibited by AMPK in hypoxia [127,181]. These studies have shown that hypoxia generates
ROS to activate AMPK by CaMKKβ, but not by LKB1. Activated AMPK phosphorylates
PKCζ, followed by a decrease in Na+/K+ ATPase on the plasma membrane via endocytosis
in alveolar epithelial cells. In this condition, hypoxia increases cellular Ca2+ level by
calcium release-activated calcium (CRAC) channels. CARC channels are responsible for
store-operated calcium (SOC) entry, a major route of Ca2+ influx in nonexcitable cells, and
are activated by the depletion of Ca2+ stores in ER [182]. The opening of CRAC channels
refills the Ca2+ stores in ER, leading to long-lasting calcium signaling [183]. The ROS, in
turn, causes the release of Ca2+ from the ER, and the Ca2+ influx through CRAC channels
stimulates CaMKKβ, which is followed by AMPK activation.

Metabolic adaptation in hypoxia. Hypoxia profoundly influences many key metabolic
pathways (Figure 4). Hypoxia decreases pyruvate influx into the TCA cycle in mitochon-
dria by activating lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase kinase 1
(PDK1) in a HIF1-dependent manner [176,184]. LDHA converts pyruvate to lactate. PDK1
phosphorylates and inhibits pyruvate dehydrogenase (PDH), an enzyme that produces
acetyl-CoA from pyruvate to fuel the TCA cycle. The decrease in the metabolic flow into
the TCA cycle eventually diminishes cellular aspartate level, which is largely provided
by oxaloacetate from the TCA cycle [185]. Aspartate is necessary for nucleotide synthe-
sis, suggesting that aspartate can be a limiting metabolite for tumor growth [131]. The
hypoxia-induced metabolic reprogramming is one of the key features of tumors. An imbal-
ance between vascular formation/organization and cell proliferation/growth in tumors
results in both oxygen and nutrient starvation. It makes cancer cells rewire the metabolic
pathways to ensure tumor progression in these unfavorable conditions. First, hypoxic
area in tumors develops glucose uptake and the concomitant increase in glycolytic flux.
HIF1 reprograms the metabolism by inducing the transcription of genes encoding glucose
transporters (GLUT1 and GLUT3), hexokinases (HK1 and HK2), enolase (ENO1), phos-
phoglycerate kinase (PGK1), pyruvate kinase (PKM2), PDK1, and LDHA [127,184,186,187].
This metabolic reprogramming results in the accumulation of lactate and H+ in cytosol,
which is secreted by monocarboxylic transporter (MCT4), sodium-hydrogen (Na+/H+)
exchanger (NEH1), and carbonic anhydrase (CAR9) [131]. Extracellular lactate can then
be taken up by other cancer cells or stromal cells, where it is used as a fuel for the TCA
cycle [188,189]. Additionally, the lactate can be an alternative carbon source, replenish-
ing the intermediates in the TCA cycle, especially in human non-small-cell lung cancers
(NSCLC) [188]. Notably, the resulting lactate and H+ acidifies the tumor microenvironment
to inhibit immune responses around cancers (tumor immune evasion) by suppressing the
infiltrating T cells [190]. Hypoxia also upregulates glutamine uptake by increasing the
gene expression of glutamine transporters (SLC1A5 and SLC38A2) [191,192]. Glutamine
is a key anaplerotic substrate for the TCA cycle to fuel TCA intermediates, of which a
citrate is converted into cytosolic acetyl-CoA to support lipid biosynthesis in hypoxia. In
addition, hypoxia induces E3 ubiquitin-protein ligase SIAH1, which triggers ubiquitination
and degradation of α-ketoglutarate dehydrogenase (α-KGDH, an enzyme catalyzing the
oxidative conversion of α-ketoglutarate into succinyl-CoA in the TCA cycle). It blocks
the flow of glutamine-derived α-ketoglutarate in the TCA cycle and promotes a reductive
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carboxylation of α-ketoglutarate to citrate for lipogenesis [191]. Additionally, hypoxia
stimulates fatty acid synthase (FASN, a key enzyme in fatty acid synthesis) expression
in an HIF1-dependent manner [186]. Hypoxic metabolic reprogramming also regulates
ROS production [131]. Hypoxia decreases the expression of glucose-6-phosphate dehy-
drogenase (G6PD), thereby decreasing the flow into the pentose phosphate pathway [193].
However, at the same time, hypoxia increases phosphoglycerate dehydrogenase (PHGDH)
expression to reinforce the serine biosynthesis for antioxidant responses, promoting stress
resistance [193]. Additionally, glucose is redirected into glycogenesis under hypoxia by
overexpression of phosphoglucomutase 1 (PGM1) and glycogen synthase 1 (GYS1). Build-
ing glucose stores in preparation for glucose deprivation may constitute an auxiliary
mechanism [187].

Figure 4. Metabolic adaptations to hypoxia. Glucose transporter1 (GLUT1), hexokinases1/2 (HK1 and HK2), enolase1
(ENO1), phosphoglycerate kinase1 (PGK1), pyruvate kinase (PKM2), pyruvate dehydrogenase kinase1 (PDK1), lactate
dehydrogenase (LDHA), glutamine transporters (SLC1A5 and SLC38A2), α-ketoglutarate dehydrogenase (α-KGDH),
fatty acid synthase (FASN), glucose-6-phosphate dehydrogenase (G6PD), phosphoglycerate dehydrogenase (PHGDH),
phosphoglucomutase1 (PGM1), glycogen synthase1 (GYS1), LDL receptor (LDLR), and HDL receptor (SCARB1). Glucose-6-
phosphate (G-6-P), glucose-1-phosphate (G-1-P), 3-phosphoglycerate (3-PG), α-ketoglutarate (α-KG), oxaloacetate (OAA),
and glutathione (GSH).

Autophagy and hypoxia. In hypoxia, cells also activate autophagy for survival. Au-
tophagy (i.e., macroautophagy) is a catabolic program to remove harmful cellular contents,
such as damaged organelles and protein aggregates, from lysosomes. Simultaneously, it
provides the energy and new building blocks required to promote cell survival in stressful
environments [194,195]. Hypoxia is often accompanied by nutrient depletion, which acti-
vates AMPK and simultaneously inactivates mTORC1, triggering an autophagy program.
AMPK and mTORC1 cooperatively regulate autophagy at the level of two autophagy-
initiating kinase complexes, ULK1 and PIK3C3/VPS34 [196,197]. mTORC1 phosphorylates
ULK1, which interferes with ULK-AMPK interaction. Once AMPK becomes active in
hypoxia conditions, the inhibitory phosphorylation of ULK1 by mTORC1 is undone, and,
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in turn, AMPK phosphorylates and activates ULK1 to initiate autophagy [196]. Addi-
tionally, AMPK phosphorylates Beclin 1, a component of PIK3C3/VPS34 complex, to
activate ATG14L (or UVRAG)-containing pro-autophagy PIK3C3/VPS34 complex, which
triggers autophagy [197]. Similarly, mTORC1 phosphorylates UVRAG to inhibit the com-
plex by recruiting the inhibitor protein RUBICON into the UVRAG-associated complex.
Upon mTORC1 inactivation, this inhibitory UVRAG phosphorylation is diminished to
release UVRAG from RUBICON, allowing the UVRAG–HOPS complex to interact with
a lysosome to trigger autophagosome maturation [198]. Additionally, hypoxia-induced
BNIP3 and BNIP3-like (BNIP3L/Nix) can induce autophagy, especially mitophagy (a
selective degradation of mitochondria by autophagy) [199]. BNIP3 and BINP3L/Nix
function as adaptors connecting damaged mitochondria to autophagosomes (a double-
membrane structured autophagic vesicle that delivers the destructive cargo into lysosomes)
via their LC3 (an essential autophagosome marker on autophagosome)-interacting region
(LIR) [200]. Although the corresponding kinase is unknown, multiple phosphorylations
on BNIP3/BNIP3L appear to be decisive for the function of those receptors and for mi-
tophagy induction [201]. In parallel, BNIP3/BNIP3L also triggers autophagy by regulating
Beclin 1 [202]. It was demonstrated that Beclin 1 forms a complex with Bcl-2 (or Bcl-xL)
to inhibit autophagy under normoxic conditions. In hypoxia, BNIP3/BNIP3L binds to
Bcl-2, liberating Beclin 1 from the complex to leave a functional PIK3C3/VPS34 complex.
The resulting BNIP3/BNIP3L-Bcl-2/Bcl-xL complex functions to prevent cell death from
hypoxia. Additionally, there are reports showing that BNIP3 can trigger the translocation
of Drp1 into mitochondria, resulting in mitochondrial fragmentation and mitophagy in-
duction in cardiomyocytes [203]. Importantly, Drp1 localization into mitochondria and
subsequent mitochondrial fission seem to be a prerequisite for BNIP3-mediated mitophagy
in cardiomyocytes.

Hypoxia is an important pathophysiological condition that can induce massive cellular
adaptive responses. It is generally accompanied by nutrient starvation, therefore, hypoxic
signaling must be closely linked to nutrient signaling. Indeed, accumulating reports
have shed light on the communication of two important signaling pathways, AMPK and
mTORC1, with hypoxic signaling. Their crosstalk can be found in a variety of cellular
adaptations (mitochondria respiration, ROS production, protein translation, metabolic
reprogramming, and autophagy) to hypoxia. These mechanisms are integral inputs for
fine-tuning responses to hypoxic stress.
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