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Abstract 

Background:  Confounding bias is a common concern in epidemiological research. Its presence is often determined 
by comparing exposure effects between univariable- and multivariable regression models, using an arbitrary thresh-
old of a 10% difference to indicate confounding bias. However, many clinical researchers are not aware that the use of 
this change-in-estimate criterion may lead to wrong conclusions when applied to logistic regression coefficients. This 
is due to a statistical phenomenon called noncollapsibility, which manifests itself in logistic regression models. This 
paper aims to clarify the role of noncollapsibility in logistic regression and to provide guidance in determining the 
presence of confounding bias.

Methods:  A Monte Carlo simulation study was designed to uncover patterns of confounding bias and noncollapsibility 
effects in logistic regression. An empirical data example was used to illustrate the inability of the change-in-estimate 
criterion to distinguish confounding bias from noncollapsibility effects.

Results:  The simulation study showed that, depending on the sign and magnitude of the confounding bias and the 
noncollapsibility effect, the difference between the effect estimates from univariable- and multivariable regression 
models may underestimate or overestimate the magnitude of the confounding bias. Because of the noncollapsibility 
effect, multivariable regression analysis and inverse probability weighting provided different but valid estimates of the 
confounder-adjusted exposure effect. In our data example, confounding bias was underestimated by the change in 
estimate due to the presence of a noncollapsibility effect.

Conclusion:  In logistic regression, the difference between the univariable- and multivariable effect estimate might 
not only reflect confounding bias but also a noncollapsibility effect. Ideally, the set of confounders is determined at 
the study design phase and based on subject matter knowledge. To quantify confounding bias, one could compare 
the unadjusted exposure effect estimate and the estimate from an inverse probability weighted model.
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Background
In observational studies, the exposure levels are often 
influenced by characteristics of the study subjects. As a 
result, differences in background characteristics between 
exposed and unexposed individuals may exist. If these 
characteristics are also associated with the outcome, 
crude comparison of the average outcomes in both 
exposure groups does not yield an unbiased estimate of 
the exposure effect [1–5]. Therefore, to obtain unbiased 
effects, adjustment for this imbalance in background 
characteristics is necessary. This is also called adjustment 
for confounding.

When selecting confounders for adjustment, research-
ers often use statistical methods to quantify the con-
founding bias. That is, oftentimes the confounding bias 
is quantified by comparing the exposure effect between 
a univariable- and a multivariable regression model, also 
called the change-in-estimate criterion [4, 6, 7]. However, 
this method may lead to wrong conclusions about the 
presence and magnitude of confounding bias, as in logis-
tic regression covariates may affect the effect estimate 
through two separate mechanisms: through confounding 
when covariates are associated with both the exposure 
and the outcome, and through noncollapsibility which is 
present when covariates are associated with the outcome 
[8]. The total difference between the effect estimate from 
a univariable- and multivariable regression model may 
therefore be decomposed into an estimate of confound-
ing bias and an estimate of the noncollapsibility effect [7, 
9]. Furthermore, even in the absence of confounding the 
exposure effect coefficients from both models might still 
differ. Thus, the change-in-estimate may misrepresent 
the true confounding bias [4].

Various rescaling methods have been proposed in the 
social sciences literature, which aim to equalize the scales 
of the effect estimates from a univariable and a multivari-
able regression model [10–13]. However, when applied to 
effect estimates from a logistic regression, these rescal-
ing measures are approximate rather than exact [10, 11, 
14]. Janes et al. [9] and Pang et al. [7] proposed an exact 
measure of confounding bias for logistic regression mod-
els. This measure is based on the comparison of the effect 
estimates from a univariable regression model and an 
inverse probability weighted (IPW) model. The latter is 
another popular method to adjust for confounding.

Noncollapsibility may not only affect the differences 
between the effect estimates from a univariable- and 
multivariable regression model, it also causes differences 
between the effect estimates from a multivariable regres-
sion model and an IPW model. Whereas multivariable 
regression and IPW provide the same effect estimates in 
linear regression, this does not necessarily hold for logis-
tic regression [7, 9, 15]. That is, when a noncollapsibility 

effect is present, multivariable regression adjustment 
and IPW both yield valid estimates of the confounder-
adjusted exposure effect, but their magnitude and inter-
pretation differ [7, 16, 17]. Therefore, the difference 
between the effect estimates from a multivariable regres-
sion model and IPW can be used to quantify the magni-
tude of noncollapsibility.

Because noncollapsibility is a relatively unknown 
mechanism among clinical researchers, many are una-
ware that the change-in-estimate criterion may lead to 
wrong conclusions about the presence and magnitude 
of confounding bias. Therefore, this paper aims to clarify 
the role of noncollapsibility in logistic regression and to 
provide guidance in determining the presence of con-
founding bias. First, we review the different confounder-
adjustment methods and provide a detailed explanation 
of the noncollapsibility effect. Then, we use a Monte 
Carlo simulation study to uncover patterns of confound-
ing bias and noncollapsibility effects in logistic regres-
sion. Subsequently, using an empirical data example, we 
demonstrate that the change-in-estimate criterion to 
determine confounding bias may be misleading. Finally, 
we provide guidance in determining the set of confound-
ers and quantifying confounding bias.

Confounder adjustment and noncollapsibility
The presence and magnitude of confounding bias for 
models with a binary outcome is commonly determined 
by comparing the exposure effect estimates from a uni-
variable- (Eq. 1) and multivariable (Eq. 2) logistic regres-
sion model:

where in both equations, Y  and X represent the out-
come and exposure variables and i1 and i2 represent the 
intercept terms, respectively. In Eq. 1, β1 represents the 
unadjusted exposure effect estimate. In Eq. 2, β ′

1
 repre-

sents the multivariable confounder-adjusted exposure 
effect estimate and β ′

2
 to β ′

n+1
 are the coefficients cor-

responding to observed background covariates C1 to Cn . 
When C1 to Cn are truly confounders, then β1 will be a 
biased estimate of the causal exposure-outcome effect. 
Assuming that Eq.  (2) contains all confounders of the 
exposure-outcome effect, β ′

1
 will have a causal interpre-

tation. In practice researchers often determine the mag-
nitude of confounding as the change in estimate, which 
is computed as the difference between β ′

1
 and β1.When 

using the change-in-estimate criterion to determine the 
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presence of confounding bias typically a 10% difference 
between β ′

1
 and β1 is used in practice as an arbitrary 

threshold indicating confounding due to covariates C1 to 
Cn in the association between X and Y  [6, 18, 19].

When based on logistic regression, β ′

1
− β1 may not 

only represent confounding bias but also a noncollaps-
ibility effect. This noncollapsibility effect is sometimes 
also referred to as a form of the Simpson’s paradox [16]. 
The noncollapsibility effect is caused by a difference 
in the scale on which β1 and β ′

1
 are estimated. In linear 

regression, the total variance is the same for nested mod-
els: when the explained variance increases through add-
ing a covariate to the model, the unexplained variance 
decreases by the same amount. As a result, effect esti-
mates from nested linear models are on the same scale 
and thus collapsible. In logistic regression, however, the 
unexplained variance has a fixed value of 3.29 [8]. Add-
ing covariates that are associated with the outcome (e.g., 
confounders) increases the explained variance and forces 
the total variance of Y to increase. When the total vari-
ance of Y increases, the scale of the estimated coefficients 
changes, causing negative exposure effects to become 
more negative and positive exposure effects more posi-
tive. This change in scales is called the noncollapsibil-
ity effect [5, 7, 8]. Thus, to determine confounding bias, 
exposure effect estimates cannot be simply compared 
between nested logistic regression models as the differ-
ence might not only reflect confounding bias but also a 
noncollapsibility effect [8]. The noncollapsibility effect 
also occurs when a covariate is associated with outcome 
Y but not with exposure X (i.e., when the covariate is 
not a confounder). The change in estimate then repre-
sents the noncollapsibility effect only, falsely indicating 
the presence of confounding bias. To preserve space in 
the main text, a hypothetical example illustrating how 
the change in estimate might be affected by the noncol-
lapsibility effect in the absence of confounding is given 
in additional file  A. An explanation of noncollapsibility 
based on a contingency table is provided by for example 
Pang et al. [7].

Recent studies by Janes et al. and Pang et al. presented 
an exact estimate of confounding bias unaffected by non-
collapsibility based on logistic regression [7, 9], using 
the difference between the univariable exposure effect 
estimate and the effect estimate from an IPW model. 
With IPW, confounding bias is eliminated by creating a 
pseudo-population in which each covariate combina-
tion is balanced between both exposure groups [20–22]. 
When there is perfect covariate balance there is no 
longer an association between covariates C1 to Cn and 
exposure status X . This pseudo-population can be cre-
ated by weighting subjects so that for each combination 
of baseline covariates the sums of contributions for both 

exposure groups are equal [1, 20]. These weights are the 
inverse of the probability that a subject was exposed, i.e. 
the inverse of a propensity score [23].

The propensity score is the predicted probability of 
endorsing the exposure, which can be estimated using 
Eq. 3:

where X represents exposure, i3 is the model intercept 
and �1 to �n are regression coefficients corresponding to 
covariates C1 to Cn . The propensity score methodology 
can also be extended to continuous exposure variables 
using the Generalized Propensity Score (GPS), which 
has a similar balancing property to the classic propensity 
score. For more information on how to perform propen-
sity score analysis with a continuous exposure variable, 
see Hirano (2004) and Imai (2004) [24, 25].

For exposed subjects, the weight is calculated as 1PS and 
for unexposed subjects as 1

1−PS [1, 20, 22]. Using these 
calculations, subjects with a propensity score close to 0 
end up with large weights, and subjects with a propen-
sity score close to 1 end up with small weights. Because 
in some situations these weights cause the IPW model to 
be unstable, stabilized weights have been proposed [26]. 
For exposed subjects, the stabilized weight is calculated 
as p

PS and for unexposed subjects as 1−p
1−PS , where p is the 

probability of exposure without considering covariates C1 
to Cn [2, 26]. Subsequently, a weighted regression analysis 
with exposure X as the only independent variable is car-
ried out. We call the confounder-adjusted exposure effect 
estimate from the IPW model β∗

1
.

Difference between IPW‑ and multivariable 
confounder‑adjusted exposure effect estimates
Multivariable regression adjustment and IPW provide 
identical exposure effect estimates when based on lin-
ear regression, but not when based on logistic regression 
[15, 27]. The difference between the IPW confounder-
adjusted exposure effect estimate β∗

1
 and the multivari-

able confounder-adjusted exposure effect estimate β ′

1
 is 

caused by noncollapsibility, and the difference between 
the unadjusted exposure effect estimate β1 and β∗

1
 pro-

vides a measure of confounding bias [7, 9, 14]. This is 
because in an IPW model the total variance remains 
equal to the total variance of the unadjusted model, while 
in a multivariable regression model the addition of vari-
ables to the model leads to higher variance, changing the 
scale of the exposure effect estimate. This means that 
when there is confounding in a logistic regression model, 
multivariable regression analysis and IPW lead to differ-
ent confounder-adjusted estimates of the exposure effect. 

(3)PS = Pr(X = 1|C) =
1

1+ e−(i3+�1C1+···+�nCn)



Page 4 of 9Schuster et al. BMC Med Res Methodol          (2021) 21:136 

Although β ′

1
 and β∗

1
 are both valid estimates, they apply to 

different target populations and have their own respec-
tive interpretation [8, 27].

Simulation study
Simulation methods
A Monte Carlo simulation study was designed to inves-
tigate patterns of confounding bias and noncollapsibility 
effects in logistic regression. The R programming lan-
guage version 4.0.2 [28] and STATA statistical software 
release 14 [29] were used to generate and analyze the 
data, respectively.

Three continuous covariates were generated from a 
standard normal distribution. The dichotomous expo-
sure and outcome were generated from a binomial dis-
tribution conditional on the covariates and the covariates 
and exposure, respectively. Sample sizes were 250, 500, 
750 and 1000. The parameter values for the exposure-
outcome effect, confounder-exposure effect and the 
confounder-outcome effect were set to -1.42, -0.92, -0.38, 
0, 0.38, 0.92 and 1.42. This way, the conditions reflected 
situations with combinations of zero effects, and posi-
tive and negative small (-0.38 and 0.38), medium (-0.92 
and 0.92) and large (-1.42 and 1.42) effect sizes were 
mimicked [30]. The total number of conditions was 
1,372 with 1,000 repetitions per condition, resulting in 
1,372,000 observations. Subsequently, we estimated the 
unadjusted exposure effect estimate β1 , the multivariable 
confounder-adjusted exposure effect estimate β ′

1
 and the 

IPW confounder-adjusted exposure effect estimate β∗
1
 

based on the simulated data. From these effect estimates 
we computed the change in estimate, the confounding 
bias and the noncollapsibility effect. The simulation code 
is available in additional file B.

Simulation scenarios
We expected to observe four scenarios based on the sim-
ulated data. In the first scenario (Fig. 1a), the covariates 
are associated with both the exposure and the outcome. 
In this scenario there will be both confounding bias ( β1 
– β∗

1
 ) and a noncollapsibility effect ( β∗

1
 – β ′

1
 ). Because the 

exposure-outcome effect is simulated to be positive and 
negative, we also expect to see positive and negative non-
collapsibility effect estimates. This means that β ′

1
− β1 

might result in an under- or overestimation of the true 
confounding effect [8]. In the second scenario (Fig.  1b) 
the covariates are associated with both the exposure and 
outcome, but exposure and outcome are not associated 
with each other. In this scenario, any differences between 
β

′

1
 and β1 are fully explained by the covariates, so there 

is confounding bias without a noncollapsibility effect 
[8, 15]. In the third scenario (Fig. 1c), the covariates are 
only associated with the outcome. In this scenario there 
is a noncollapsibility effect but no confounding bias. In 
real-life situations with this structure, using the change-
in-estimate criterion may lead one to conclude that 
the covariates are confounders in the relation between 
the exposure and the outcome although the difference 
between β ′

1
 and β1 is caused entirely by the noncollaps-

ibility effect [7, 8]. In the fourth scenario (Fig.  1d), the 

Fig. 1  Directed acyclic graphs of the four possible scenarios into which each simulated condition can be classified. Panel A: both confounding and 
noncollapsibility. Panel B: confounding without noncollapsibility. Panel C: noncollapsibility without confounding. Panel D: neither confounding nor 
noncollapsibility. C represents three continuous covariates, X represents the dichotomous exposure and Y represents the dichotomous outcome. 
The dotted line in panel D between the covariates and the exposure and between the exposure and the outcome indicate there may or may not 
be an association
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covariates may be associated with the exposure, but not 
with the outcome. In this scenario, there is neither con-
founding bias nor a noncollapsibility effect and β1 , β

′

1
 and 

β∗
1
 are identical. This scenario is also called strict collaps-

ibility [15, 31, 32].

Simulation results
The difference between β ′

1
 and β1 can be negative, zero or 

positive, depending on the magnitude of the confound-
ing bias and the noncollapsibility effect (Table  1). Only 
when there was no noncollapsibility effect (i.e., β∗

1
− 

β
′

1
= 0 ), the change in estimate equaled the estimate of 

confounding bias. The noncollapsibility effect was zero 
when the exposure-outcome effect was zero and the con-
founder-exposure and confounder-outcome effects were 
both non-zero. When the exposure-outcome effect was 
also non-zero, the difference between β ′

1
 and β1 reflected 

both confounding bias and the noncollapsibility effect. In 
those situations, the change-in-estimate criterion could 
both under- and overestimate the true confounding 
bias. When the confounding bias and noncollapsibility 
effect had similar signs, i.e. both were positive or nega-
tive,  β ′

1
− β1 overestimated the true confounding bias. 

When the confounding bias and noncollapsibility effect 
had opposites signs, i.e. one was positive while the other 
was negative, the true confounding bias could be under- 
or overestimated by β ′

1
− β1 , depending on the magni-

tude of the confounding bias and noncollapsibility effect. 

Thus, when the exposure-outcome effect is non-zero, the 
change-in-estimate criterion might falsely indicate the 
presence of confounding or it might under- or overesti-
mate the true confounding bias. Patterns of confounding 
bias and the noncollapsibility effect were similar across 
sample sizes and will be described below.

Confounding bias
Figure  2 plots confounding bias ( β1 − β∗

1
 ) as a function 

of the confounder-outcome effect with the lines in panel 
A representing positive confounder-outcome effects of 
various magnitudes and the lines in panel B represent-
ing negative confounder-outcome effects of various 
magnitudes. Confounding bias was positive when the 
confounder-exposure effect and the confounder-outcome 
effect were both positive (panel A, first quadrant) and 
when they were both negative (panel B, second quad-
rant). When the effects had opposite signs, confounding 
bias was negative. The magnitude of confounding bias 
increased as the confounder-exposure or confounder-
outcome effect increased in magnitude. There was no 
confounding bias when one or both effects equaled zero.

The noncollapsibility effect
Figure  3 plots the noncollapsibility effect ( β∗

1
− β

′

1
 ) as 

a function of the confounder-outcome effect with the 
lines in panel A representing positive exposure-outcome

 

Table 1  Difference between univariable- and multivariable exposure effects as combination of confounding bias and the 
noncollapsibility effect

Difference between multivariable- 
and univariable effect estimate 
(β

′

1 − β1)

Confounding bias
(β1 − β∗

1)
Noncollapsibility effect
(β∗

1 − β
′

1)

Negative Negative value Negative value

Zero Negative value

Negative value Zero

Positive value Greater negative value than the positive confounding 
bias value

Greater negative value than the positive  
noncollapsibility effect value

Positive value

Zero Zero Zero

Equal positive value as the negative noncollapsibility 
effect value

Equal negative value as the positive confounding bias 
value

Equal negative value as the positive noncollapsibility 
effect value

Equal positive value as the negative confounding bias 
value

Positive Positive value Positive value

Zero Positive value

Positive value Zero

Negative value Greater positive value than the negative confounding 
bias value

Greater positive value than the negative  
noncollapsibility effect value

Negative value
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effects of various magnitudes and the lines in panel B 
representing negative exposure-outcome effects of vari-
ous magnitudes. The noncollapsibility effect and the 
exposure-outcome effect were inversely related: when 
the latter effect was positive, the noncollapsibility effect 
was negative, and vice versa. The noncollapsibility effect 
increased in magnitude as both the exposure-outcome 
effect and the confounder-outcome effect increased in 
magnitude. When either effect was zero, there was no 
noncollapsibility effect, regardless of the magnitude of 
the other effect.

Empirical data example
To illustrate how the noncollapsibility effect might affect 
conclusions about confounding bias in practice we use 
an example from the Amsterdam Growth and Health 
Longitudinal Study (AGHLS). The AGHLS started in 
1976 with the aim to examine growth and health among 
teenagers. Over the years, health and lifestyle measures, 
determinants of chronic diseases and parameters for the 
investigation of deterioration in health with age have 
been measured [33]. The data in this example were col-
lected in 2000, when the participants were in their late 
30s. Using data from the AGHLS we investigated the 
association between hypercholesterolemia and hyperten-
sion, potentially confounded by physical activity. Using 

multivariable regression analysis and IPW we estimated 
the confounder-adjusted effect of hypercholesterolemia 
on hypertension in our sample, β ′

1
 and β∗

1
 , respectively. 

To quantify the magnitude of confounding bias and the 
noncollapsibility effect, we also estimated the unadjusted 
exposure effect β1 using univariable regression analy-
sis. Cut-offs for hypercholesterolemia and hypertension 
were based on guidelines from the U.S. National Insti-
tutes of Health (NIH) and NIH’s National Heart, Lung 
and Blood Institute, respectively [34, 35]. Physical activity 
was defined as the total hours per week spent on light, 
moderate or vigorous activities. Only subjects with com-
plete data on the variables were considered in the analy-
sis (n = 349). Figure 4 provides a graphical representation 
of the assumed relations among the variables.

Table  2 shows the effect estimates from univariable- 
and multivariable regression analysis and IPW. The unad-
justed effect estimate β1 was 0.90, corresponding to an 
odds ratio (OR) of 2.46. The multivariable confounder-
adjusted exposure effect estimate β ′

1
 was 0.93, corre-

sponding to an OR of 2.53. The IPW confounder-adjusted 
exposure effect estimate β∗

1
 was 0.99, corresponding to an 

OR of 2.69.
The difference between β ′

1
 and β1 was -0.03, or 3.3%. If 

one would use the change-in-estimate criterion with a 
cut-off of 10% to determine the presence of confounding, 

Fig. 2  True confounding bias ( β1 − β∗

1 ) as a function of the confounder-outcome effect collapsed over all sample sizes. Panel A: each line 
represents a positive confounder-exposure effect. Panel B: each line represents a negative confounder-exposure effect

Fig. 3  The noncollapsibility effect ( β∗

1 − β
′

1 ) as a function of the confounder-outcome effect collapsed over all sample sizes. Panel A: each line 
represents a positive exposure-outcome effect. Panel B: each line represents a negative exposure-outcome effect
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then physical activity would not be considered a con-
founder. Using the difference between β1 and β∗

1
 , the 

estimate of confounding bias was 0.90 – 0.99 = -0.09. 
This corresponds to a 10% change in the exposure effect 
estimate. The noncollapsibility effect estimate was 0.99 – 
0.93 = 0.06. Because of this noncollapsibility effect, the 
estimate of the true confounding bias of physical activity 
was considerably larger than it seemed based on the dif-
ference between β ′

1
 and β1 . Thus, in our data example, the 

conventional method to determine the presence of con-
founding led to an underestimation of the true confound-
ing bias of physical activity.

Discussion
This paper aimed to clarify the role of noncollapsibility 
in determining the magnitude of confounding bias in 
logistic regression. Because the difference between β ′

1
 

and β1 reflects both confounding bias and a noncollaps-
ibility effect, in logistic regression the change-in-estimate 
criterion should not be used to determine the presence 
of confounding. This was illustrated in our data example, 
in which confounding bias was underestimated because 
of the magnitude of the noncollapsibility effect. Our 
simulation study showed that confounding was mainly 
determined by the combination of the magnitude of the 
confounder-exposure and confounder-outcome effects, 
whereas noncollapsibility was mostly determined by the 

magnitude of the combination of the exposure-outcome 
and confounder-outcome effects. In  situations in which 
confounding approached zero and noncollapsibility was 
non-zero, the change-in-estimate criterion wrongly indi-
cated the presence of confounding bias, when in reality 
the difference between β ′

1
 and β1 was caused solely by the 

noncollapsibility effect.

Recommendations for practice
Rather than using an arbitrary statistical rule such as the 
10% cut-off based on the change-in-estimate criterion, it 
is generally recommended to determine the confounder 
set based on subject matter knowledge. Directed acy-
clic graphs (DAGs) are helpful to determine which set 
of confounders should be adjusted for to eliminate con-
founding bias [36, 37]. DAGs are causal diagrams in 
which the arrows represent the causal relations among 
variables. Therefore, DAGs contain information about 
the causal model that cannot be provided by statistical 
methods. For example, assuming the DAG is a correct 
representation of the causal relations among variables, it 
clarifies what the minimally sufficient set of confounders 
is to block any backdoor paths (i.e., confounding paths) 
from the exposure to the outcome. The amount of con-
founding bias could be quantified by looking at the dif-
ference between the unadjusted univariable exposure 
effect estimate β1 and the IPW confounder-adjusted 
exposure effect estimate β∗

1
 as proposed by Pang et al. [7] 

and Janes et al. [9]. Bootstrap confidence intervals can be 
used to determine the statistical significance of the con-
founding bias.

Because of the noncollapsibility effect, multivariable 
regression analysis and IPW provide different estimates 
of the exposure effect. Multivariable regression analy-
sis results in a conditional exposure effect estimate [16, 
38], whereas IPW results in a population-average or 
marginal exposure effect estimate [16, 38–40]. Marginal 
exposure effects can also be estimated with standardiza-
tion using G-computation. A step-by-step demonstra-
tion of G-computation can be found elsewhere [41]. It 
is often suggested that a population-average effect esti-
mate should be reported when the target population is 
the entire study population, while the conditional expo-
sure effect should be reported if the target population is 
a subset of the study population [7, 8, 16, 38, 39, 42, 43]. 
Although this distinction is known from the literature, 
when it comes to the practical application, the exact dif-
ferences between the two exposure effect estimates and 
their respective interpretations remain unclear.

In this study, we assume correct specification of both 
the confounder-exposure and the confounder-outcome 
effect. When these are not correctly specified, bias 
might be introduced and the difference between the 

Fig. 4  The assumed relations between hypercholesterolemia, 
hypertension and physical activity

Table 2  Relationship between hypercholesterolemia and 
hypertension estimated using univariable- and multivariable 
regression analysis and IPW

Abbreviations: SE: standard error; CI: confidence interval

β SE(β) 95%CI P

Univariable exposure effect

Hypercholesterolemia 0.90 0.23 0.47; 1.35  < 0.01

Multivariable confounder-adjusted exposure effect

Hypercholesterolemia 0.93 0.23 0.48; 1.38  < 0.01

Physical activity 0.01 0.01 -0.02; 0.03 0.60

IPW confounder-adjusted exposure effect

Hypercholesterolemia 0.99 0.16 0.69; 1.30  < 0.01
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unadjusted univariable exposure effect estimate and 
the IPW confounder-adjusted exposure effect estimate 
might not only reflect confounding bias but also the 
misspecification of the underlying models. Therefore, 
correct specification of all effects is necessary to esti-
mate unbiased exposure effects and correctly quantify 
confounding bias.

Conclusion
To summarize, in this study we showed that in logistic 
regression the difference between univariable- and multi-
variable effect estimates may reflect both confounding bias 
and a noncollapsibility effect. To avoid wrong conclusions 
with respect to the magnitude and presence of confound-
ing bias, confounders are ideally determined based on sub-
ject matter knowledge. To quantify confounding bias, one 
could look at the difference between the unadjusted uni-
variable exposure effect estimate and the IPW confounder-
adjusted exposure effect estimate.
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