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Abstract
Sepsis, one of the major challenges in the intensive care unit, is characterized by complex host immune status. Improved understandings of 
the phenotypic changes of immune cells during sepsis and the driving molecular mechanisms are critical to the elucidation of sepsis pathogen-
esis. Single-cell RNA sequencing (scRNA-seq), which interprets transcriptome at a single-cell resolution, serves as a useful tool to uncover 
disease-related gene expression signatures of different cell populations in various diseases. It has also been applied to studies on sepsis 
immunopathological mechanisms. Due to the fact that most sepsis-related studies utilizing scRNA-seq have very small sample sizes and 
there is a lack of an scRNA-seq database for sepsis, we developed Sepsis Single-cell Whole Gene Expression Database Website (SC2sep-
sis) (http://www.rjh-sc2sepsis.com/), integrating scRNA-seq datasets of human peripheral blood mononuclear cells from 45 septic patients and 
26 healthy controls, with a total amount of 232 226 cells. SC2sepsis is a comprehensive resource database with two major features: (i) retrieval 
of 1988 differentially expressed genes between pathological and healthy conditions and (ii) automatic cell-type annotation, which is expected to 
facilitate researchers to gain more insights into the immune dysregulation of sepsis.
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Introduction
Sepsis, defined as life-threatening organ dysfunction caused by 
a dysregulated host response to infection, is the leading cause 
of death in critically ill patients (1). Sepsis mortality remains 
high, up to 40% in septic shock patients (2, 3). And the long-
term prognosis of septic patients also remains a serious issue. 
The 1-year mortality rate remains considerably high in sepsis 
survivors, with increased risks of readmission as well as car-
diovascular and cerebrovascular complications (4, 5). Over 
the years, supportive treatment strategies for sepsis, includ-
ing antibiotic administration, fluid resuscitation and organ 
function support, have been optimized. However, specific and 
effective therapeutics for sepsis remain unavailable (6, 7).

Immune dysfunction underlies the pathogenesis of sepsis 
(8). The feasibility of immunomodulation as a treatment for 
sepsis has been examined in a number of clinical trials, includ-
ing early trials focused on inflammation blockade in the initial 
stage of sepsis and later trials focused on immunostimula-
tory agents. Some of those attempts showed efficacy in the 

improvement of certain aspects, such as organ function or 
disease severity score, or improved survival in a small sub-
set of patients. However, none of them had demonstrated 
improvement in survival when applied to all septic patients 
(9–11). This is largely attributed to the complex, dynamic 
and heterogeneous immune status of septic patients and 
calls for a comprehensive and in-depth understanding of the 
immunopathology of sepsis (6, 12, 13). Therefore, elucidating 
the specific changes in phenotypes and signaling pathways of 
various immune and non-immune cell populations that consti-
tute the defense system against invading pathogens is a critical 
question to address.

Loss of coordination of immune cell activities largely 
results in ineffective pathogen elimination and excessive tis-
sue damage and can be detected at a very early stage, as 
shown by previous studies (14). Multiple mechanisms under-
lie the dysregulation of immune cell behaviors, including 
epigenetic regulation and metabolic reprogramming (15, 16). 
To uncover the molecular and genetic basis of the phenotypic 
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alterations of immune cells, transcriptomic profiles need to be 
interpreted at the single-cell level, which requires the appli-
cation of single-cell RNA sequencing (scRNA-seq). scRNA-
seq allows transcriptomic profiling of tissues and organs at 
single-cell resolution, which has been applied to identifying 
disease-specific gene expression patterns through case-control 
studies and to detecting differences between cell populations 
(17, 18). Through scRNA-seq, cell-type specific expression 
patterns have been explored in Alzheimer’s disease, chronic 
myeloid leukemia, type 2 diabetes and other diseases (19–21). 
With the expansion of scRNA-seq data of human diseases, 
some scRNA-seq databases have been developed, such as 
CellMarker, PanglaoDB, scRNASeqDB, SCPortalen, SCDe-
vDB and JingleBells (22–25). Common attributes of those 
databases include a query of gene expression levels across dif-
ferent datasets and clusters, differential expression analysis 
and retrieval of lists of marker genes for cell-type annotation. 
These databases provide researchers with a comprehensive 
view of the transcriptional patterns of individual cells under 
various pathological conditions, which is of great significance 
to the understanding of cellular heterogeneity, cell subpopu-
lations and disease pathogenesis. However, at present, there 
is a lack of a single-cell transcriptomic database for sepsis. To 
address this issue, we developed Sepsis Single-cell Whole Gene 
Expression Database Website (SC2sepsis) (http://www.rjh-
sc2sepsis.com/), a comprehensive database recording 1988 
cell-type-specific differentially expressed genes (DEGs) and 
an automatic cell-type annotation tool dedicated for immune 
cells in septic condition.

Materials and methods
All data analysis processes were performed using R (R Project 
for Statistical Computing, RRID:SCR_001905) version 3.6.1 
and the R package Seurat (SEURAT, RRID:SCR_007322) 
version 3.1.2.

Data preprocessing and cell-type annotation
ScRNA-seq data of each of the samples involved was 
deposited as a dataset in the public repositories. The 45 septic 
sample datasets and the 26 healthy control sample datasets 
were downloaded and merged into a diseased dataset and a 
control dataset, respectively. For basic quality control, cells 
with <200 nonzero genes detected and genes expressed in <3 
cells were filtered out. Then, for each cell, all genes were 
ranked according to their expression levels in that cell. And 
two new matrices were generated by replacing the expression 
values in the expression matrices with rank numbers. For the 
original matrices, Z-score standardization was performed on 
the expression values.

After that, cell-type annotation of the two datasets was 
performed based on the ranked gene expression, which can 
be considered as a relative expression value rather than the 
true gene expression values. A correlation-based K-means for 
the K-nearest neighbors algorithm was utilized to calculate 
the similarity in the ranked gene expression between each cell 
to be annotated with cells in a reference dataset to assign the 
best-matched cell type. To begin with, we defined HumanPri-
maryCellAtlasData from SingleR (26) as the reference dataset 
of the annotation process. Next, each cell was annotated inde-
pendently without clustering. To be specific, for any cell X, 
cosine rank similarity (27) was applied to identify its k most 

relevant cells in the reference dataset. The m cell types those k 
cells belong to were also identified. Then, the SingleR pipeline 
was employed to infer which one of the m cell types the cell X 
belonged to. In brief, Spearman’s rank correlation was calcu-
lated for the ranked expression of a set of pre-defined variable 
genes between cell X and each cell of the m cell types. And the 
process was reiterated as multiple runs. In each run, the cell 
type with the lowest correlation value was removed until only 
two cell types remained, and the cell type with a higher cor-
relation value was assigned to the cell X. In each run, the 
variable genes of one cell type were defined as the top N
genes with higher median expression compared to the other 
cell types. Here, 

N = 500 × 2
3

log2M

where M is the number of cell types left in each run.
The annotation results were manually inspected, and the 

ranges of cell types identified in both datasets were compati-
ble with the major cell types occurring in human peripheral 
blood mononuclear cell (PBMC) samples. In addition, for 
users’ information, the marker genes (P < 0.05) of each cell 
type in the diseased dataset were generated through Seurat’s 
FindAllMarkers function with default parameters.

Differential expression analysis
To identify sepsis-related gene expression signatures of var-
ious cell types, after cell-type annotation, the diseased and 
control dataset underwent log normalization, batch effect 
correction through Seurat’s MultiCCA method. Then, DEGs 
(P < 0.05) of each cell type between the diseased dataset and 
the control dataset [e.g. between diseased natural killer (NK) 
cells and healthy control NK cells] were calculated using 
Seurat’s Wilcoxon rank-sum test with default parameters.

Automatic annotation of query datasets
SC2sepsis offers automatic cell-type annotation of matrix 
data obtained from septic patients uploaded by users. 
Specific scripts will enable the website to employ the 
correlation-based K-means for the K-nearest neighbors algo-
rithm (see the section ‘Data preprocessing and cell-type anno-
tation’) to annotate query datasets uploaded by users. And 
the diseased dataset derived from the four projects, which was 
completely annotated (see the section ‘Data preprocessing and 
cell type annotation’), will be used as the reference dataset.

To test the performance of the automatic annotation func-
tion of SC2sepsis, a 10 × 10-fold cross-validation (28) was 
performed. Each time a new dataset was generated by random 
sampling of the diseased dataset without replacement and was 
divided into 10 segments through stratified sampling: 9 of 
them were merged as the training dataset and the remaining 
1 was regarded as the validation dataset. Stratified sampling 
was used to guarantee that the validation dataset contained as 
much cell types as the training dataset. Then, cell-type anno-
tation of the validation dataset using the training dataset as 
the reference dataset was carried out. For every new dataset 
generated by random sampling, the process was performed for 
10 times as each of the 10 segments was used as the valida-
tion dataset for one time. The average and the 95% confidence 
interval of the prediction accuracy with varying sample sizes 
of the random sampling are shown in Figure 1.
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Figure 1. Result of the cross-validation for the performance of SC2sepsis automatic annotation function.

Results
Data collection and database content
We searched two public databases, the Gene Expres-
sion Omnibus (GEO) Database (https://www.ncbi.nlm.nih.
gov/geo/) and the Single Cell Portal of Broad Institute
(https://singlecell.broadinstitute.org/single_cell) for scRNA-
seq studies on sepsis. ‘Human sepsis & single-cell RNA 
sequencing’ and ‘human sepsis & single-cell transcriptome’ 
were used as the keywords. Considering the fact that there 
are a limited number of scRNA-seq studies on sepsis, no addi-
tional filtering criteria were applied, and the search results 
were manually screened for eligible research projects that 
(1) enrolled patients meeting the Sepsis-2 or Sepsis-3 crite-
ria of sepsis with or without healthy control populations (2); 
clearly specified the sample source and preparation processes 
(3) and have made their raw sequencing data or count matri-
ces available for download. As a result, three projects from 
the GEO database and one project from the Single Cell Por-
tal of Broad Institute (SCP) were included for further analysis. 
Those four projects comprise all the sepsis-related scRNA-seq 
studies conducted on human samples accessible in the GEO 
and SCP databases up to December 2021. All of them were 

conducted on PBMCs (SCP548 also included magnetic beads-
enriched dendritic cells) isolated from patients and controls 
with their detailed information, as demonstrated in Table 1. 

Data of the four projects were reorganized into a diseased 
dataset and a control dataset according to the septic/healthy 
control status annotated in the original projects. After data 
preprocessing, cell-type annotation was performed on the two 
datasets independently, and the cell types identified are sum-
marized in Supplementary File 1. Based on these data handling 
processes, SC2sepsis features two major functionalities (1): 
search and browse of the DEGs per cell type between the sep-
tic and healthy conditions (i.e. DEGs between each cell type 
in the disease dataset and the same cell type in the control 
dataset) (2); automatic cell-type annotation of septic datasets 
uploaded by users. The complete workflow of SC2sepsis is 
summarized in Figure 2.

User interface
DEG search
SC2sepsis provides a search engine for retrieval of DEGs 
per cell type between the septic and healthy conditions. The 
search engine is linked to a standard gene library derived from 
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Table 1. Information of the four datasets analyzed for the database construction

Accession ID  Yeara Sample size Sampling time Cell type

Number of cells from 
septic/healthy samples 
after quality control

GSE175453 2021 Four septic patients and five 
healthy controls

Post-sepsis day 14–21 PBMCs 19 664/21 123

GSE167363 2021 Five septic shock patients and 
two healthy controls

0 and 6 h from sepsis recognition PBMCs 38 214/14 647

GSE151263 2020 Seven septic patients (four 
with sepsis only and three 
with both sepsis and adult 
respiratory distress syndrome)

Within 24 h of initiation of 
mechanical ventilation

PBMCs 16 021/0

SCP548 2020 Twenty-nine septic patients and 
19 healthy controlsb

For the urinary tract infection 
(UTI) patients: within 12 h of 
the presentation to the emer-
gency department; for the other 
patients: 24 h after hospital presen-
tation and intravenous antibiotics 
administration

PBMCs, 
magnetic 
beads-enriched 
dendritic cells

49 547/73 010

aThe year when the project datasets became public on the GEO database or the Single Cell Portal of Broad Institute.
bSCP548 involved 19 healthy controls and subjects from 3 previous disease cohorts (referred to as cohorts a, b and c here): (i) 29 septic patients: 17 UTI 
patients with organ dysfunction from cohort a, 4 hospitalized septic patients from cohort b and 8 septic patients admitted to the medical intensive care 
unit (ICU) from cohort c; (ii) 19 healthy controls (iii) 17 non-septic patients (which were not included in our analysis): 10 patients with UTI but no organ 
dysfunction from cohort a and 7 non-septic ICU patients from cohort c.

Figure 2. Overview of the workflow of SC2sepsis.

the National Center for Biotechnology Information database 
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO) to facil-
itate users to input the official names of the genes they would 
like to search for. As demonstrated in Figure 3A, once a char-
acter is typed into the panel, a drop-down menu of DEGs 
recorded in the database will appear accordingly for users to 
select the genes to be retrieved. The retrieval content feedback 
contains the following information (1): the cell types with sig-
nificant differences in the expression level of the gene between 

the septic and healthy status and the corresponding log2 fold-
change values (septic versus healthy) (2); the expression-level 
distribution of the gene across the septic and healthy control 
cells of each of the four projects.

For example, if the input is ‘lactate dehydrogenase isoform 
B (LDHB)’, the retrieval result will be displayed in two figures. 
The first one is a histogram (Figure 4A). Each column repre-
sents a cell type and indicates that the transcriptional level 
of LDHB is significantly different in macrophages, NK cells, 
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Figure 3. Overview of the search page for DEGs and the analysis page for users’ matrix data. (A) Search term input page. (B) Upload page for users’ 
matrix files.

CD34− pre-B cells, CD34+ pro-B cells, platelets and erythrob-
lasts in septic patients compared to healthy controls. And 
the horizontal axis represents the log2 fold-change values of 
LDHB expression in the septic cells versus healthy cells. The 
second figure is a violin plot (Figure 4B). Each violin represents 
all the septic or healthy cells from a project, and the horizontal 
axis is the standardized expression value. The expression-level 
distribution of LDHB in each single-cell sequencing project 
can be visualized (click the violin to observe the median, min-
imum, maximum, first quartile and third quartile values of the 
expression value).

Automatic annotation
Another major feature of SC2sepsis is automatic cell-type 
annotation of scRNA-seq data uploaded by users. As there 
have already been a number of tools and databases that facili-
tate the annotation of human cells under normal physiological 
conditions, SC2sepsis is dedicated to the annotation of data 
from patients with sepsis. SC2sepsis enables cell-type assign-
ment to each cell independently based on the computation of 

its similarity in transcriptional signatures with each cell type 
in the diseased dataset, which contains disease-specific tran-
scriptional signatures compared to HumanPrimaryCellAtlas 
or other commonly used reference datasets incorporated in 
SingleR. And the performance of the SC2sepsis annotation 
method was verified by cross-validation.

The analysis page for single-cell matrix data can be 
accessed through the ‘Home’ entry point on the front page 
of the database. Researchers can select matrix files or tab-
separated values (TSV) files to upload and fill in the email 
address to receive the cell-type annotation results (Figure 3B). 
The annotation process takes ∼10 min and a demonstration of 
the result users will receive is provided in Supplementary File 
2, where each row represents a single cell in the query dataset. 
For example, a typical row is sepsis1_GGGAATGCA-
GATAATG.5,0.568456758420006,0.557777416715459,
“T_cells”. In this row, “sepsis1_GGGAATGCAGATAATG.5” 
is the barcode of the cell; “0.568456758420006” and 
“0.557777416715459” are the two correlation values com-
puted in the last round of the fine tuning; “T_cells” is the cell 
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Figure 4. Overview of the DEG search result with the gene ‘LDHB’ as an example. (A) Histogram showing the log2 fold-change values of the 
cell-type-specific expression levels of LDHB in the septic versus healthy condition. (B) Violin plot of the expression-level distribution of LDHB across
all the septic and healthy cells of the four projects.

type assigned to the single cell by the automatic annotation 
process.

The marker gene lists of each cell type in the diseased 
dataset (Supplementary File 3) can be found on the ‘Down-
load’ page, which can also serve as input transcriptional 
signature files for other computational tools users would like 
to use for the annotation of their data.

Discussion
According to what we know, SC2sepsis is the only single-
cell transcriptomic database of sepsis to date. On the basis 
of data integration from previous studies of small sam-
ple sizes and the adoption of a unified analysis algorithm 
to improve comparability across multiple datasets, it pro-
vides researchers with a comprehensive resource of DEGs 
between the septic and healthy status of 20 cell popula-
tions identified from human PBMC samples. These DEGs 
can be subjected to bioinformatic processes including clus-
tering, Gene Ontology term enrichment, Kyoto Encyclo-
pedia of Genes and Genomes pathway enrichment and 
protein–protein interaction) network analysis to provide users 
with clues to the interrelationships between these DEGs, 
as well as the biological processes and signaling pathways 
impacted. This information combined with further experi-
mental verification will facilitate researchers to investigate 

key mechanisms underlying phenotypic alterations of immune 
cells during sepsis and other infectious and inflammatory
conditions.

SC2sepsis is also an automatic annotation tool for 
scRNA-seq data collected from septic individuals. It adopts a 
classical machine learning classification algorithm and a well-
recognized computational method for single-cell annotation 
to annotate datasets uploaded by users. It takes into account 
the expression of >2000 variable genes, which were selected 
from the whole genome by the algorithm and are consid-
ered to be more representative of the transcriptional pattern 
of each cell type. This attribute makes SC2sepsis superior to 
annotation based on a limited number of canonical cell mark-
ers manually collected from the literature. Nowadays, many 
comprehensive databases for marker genes of various species, 
tissues and cell types like CellMarker and PanglaoDB have 
also been developed. However, those resources are mainly 
derived from healthy cells. So, in this respect, transcrip-
tional signatures derived from diseased datasets may be better 
applied to the annotation of data collected from septic indi-
viduals. In addition, the fact that every cell will be annotated 
independently avoids the problem of normalization in later 
annotations of new test datasets, which may be of different 
sequencing depth from the reference dataset.

Despite the efforts we put into the collection of datasets, 
the unneglectable fact is that currently available scRNA-seq 



Database, Vol. 00, Article ID baac061 7

datasets of sepsis are still limited in number and size. The 
amount of patients and cell types involved may not fully rep-
resent the heterogeneity of the population with sepsis and 
the diversity of patient immune status. With the development 
and application of scRNA-seq technology, the database will 
continue to be enriched and expanded. The reference datasets 
incorporated in this database not only will grow in num-
ber but also acquire a hierarchical system of cell-type labels, 
which means to enable the identification of cell subtypes 
from the major cell types already contained in the database. 
The recognition of rare cell populations will also be feasi-
ble. In conclusion, SC2sepsis is an easy-to-use platform for 
the exploration of sepsis-related gene expression signatures 
derived from scRNA-seq, which will be actively maintained 
to help researchers to investigate the mechanisms of sepsis 
occurrence, progression and immune dysregulation.

Supplementary data
Supplementary data are available at Database Online.
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