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I 

Vision and Visual Purple 

When an animal, which has been in the light, is placed in the dark, its 
sensitivity to light increases. Measured as the light intensity necessary to 
elicit a minimal visual response, these changes yield the familiar data of dark 
adaptation (Aubert, 1865; Piper, 1903; Hecht, 1937). 

For many years it has been known that during dark adaptation the verte- 
brate retina shows changes in concentration of the photosensitive rod pigment 
visual purple (Kfihne, 1878; Gatti, 1897; Fridericia and Holm, 1925; Tansley, 
1931; Zewi, 1939). More recently the chemical behavior of this substance 
has become associated with certain carotenoids (Wald, 1938). 

The present research was undertaken to discover the course of the concen- 
tration changes shown by visual purple in the intact animal, to relate this 
information to the data of dark adaptation, and to elucidate the behavior of 
the carotenoid pigments. As a working hypothesis it is assumed that dark 
adaptation depends on the accumulation of visual purple in the retina. It is 
proposed, therefore, to use those conditions during regeneration of visual purple 
which are known to modify dark adaptation in specific ways and to see whether 
similar effects are produced on the course of visual purple accumulation. 

H 

Dark Adaptation and Visual Purple 

Due to the work of Hecht (1921) and of Kohlrausch (1922) it is known for 
the human eye that the two receptor systems, rods and cones, both enter into 
normal dark adaptation. Following daylight illuminations, human dark 
adaptation proceeds in two stages. The first is rapid and is practically complete 
in 3 or 4 minutes; it records mainly cone function. The second is delayed, slow, 
and takes about 25 minutes for completion; it records rod function. 

There are many factors which control the extent, speed, and duration of 
the two parts of the course of dark adaptation. The most striking are the 
intensity and duration of the fight preceding the beginning of dark adaptation, 
Following high intensity light adaptation, the threshold falls in two steps. 
Decreasing the intensity of light adaptation diminishes the extent of the first 
section and shortens the time at which the transition from cone to rod function 
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occurs. Following the lowest intensities of light adaptation, cone function 
does not appear at all, and only the secondary rod adaptation is evident 
(Johannsen, 1934; Winsor and Clark, 1936; Hecht, Haig and Chase, 1937). 
In other words, the portion of dark adaptation mediated by the rods is delayed 
when the eye is light adapted to high intensities, and begins without delay 
following low intensity light adaptation. 

A similar effect on the course of dark adaptation is produced by varying the 
duration of light adaptation. Miiller (1931) found that following a short period 
of light adaptation only the secondary rod dark adaptation appears. With 
increasing time of light adaptation, the primary cone adaptation appears and 
increases in duration until it occupies the first 5 minutes of the dark adaptation 
process, while the second, rod portion, is delayed for greater periods. These 
results were later confirmed by Wald and Clark (1937). 

Among the many animals whose dark adaptation has been measured, the 
frog is of particular interest here. I t  too possesses rods and cones and may be 
expected to show a two-stage adaptation. This has been found by Riggs 
(1936-37) who, following the method of Hartline (1930), used as an index the 
B wave of the retinal potential elicited by a brief illumination of the intact 
dark adapting eye. This method is comparable with the procedure used on 
the human eye. In the latter the data represent the light intensity required 
to produce a constant visual effect at various times in the dark. The procedure 
of Hartline and Riggs is to determine the intensity of light which produces a 
constant physiological effect, in this case a given retinal potential, at different 
times in the dark. The course of adaptation divides into two sections, the 
first corresponding to cone function, and the second to rod function. The 
rods do not mediate the function until the cone portion of the data has reached 
completion approximately 10 minutes after the onset of dark adaptation. The 
rod function reaches a threshold about 1 hour after the start of dark adaptation. 

The results of Granit, Holmberg, and Zewi (1938) and of Granit, Munster- 
hjelm, and Zewi (1939) on frog dark adaptation seem at first sight completely 
at variance with the human data and those of Riggs. Instead of a rapid in- 
crease in sensitivity as found by Riggs, Granit and his coworkers report delays 
of as long as 1 hour before a rise in sensitivity begins. Moreover, in spite of 
the fact that the frog retina contains both rods and cones and that the adapting 
light is of sufficient intensity to show their separate effects, the data are con- 
tinuous without any indication of a double function. 

This apparent discrepancy befween the work of Granit and of Riggs is 
probably due to the method used by Granit in which the size of the retinal 
potential evoked by a measuring light of constant intensity is considered the 
measure of sensitivity. This method is not comparable either to the accepted 
practice in direct visual measurements or in retinal potential measurements of 
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visual function (of. Chaffee, Bovie, and Hampson, 1923; HartUne, 1930), in which 
there is always measured the variation in intensity required to produce a con- 
stant physiological or electrical effect. It is quite likely that the reason Granit 
found only a single and very delayed function in frog dark adaptation is that 
the magnitude of the retinal potential does not correspond to visual sensi- 
tivity as measured in the usual ways. 

Considering the relationship of visual purple to vision, it would be desirable 
to know how these changes in the sensitivity of the eye depend upon variations 
in the concentration of visual purple. For conditions at the stationary state, 
a fairly successful description of many visual functions has been made upon the 
basis of simple photochemical theory derived from consideration of the equilib- 
rium concentration of a photosensitive material like visual purple (Hecht, 
1938). For kinetic measurements like dark adaptation, however, there exists 
no adequate description either in terms of theory or in terms of actual measure- 
ments of visual purple concentration. 

Kfihne (1878) showed that both the intact retina and solutions of visual 
purple, when returned to the dark, would regenerate visual purple which had 
been bleached by light. Hecht, Chase, Shlaer, and Haig (1936) confirmed the 
regeneration of visual purple in solution. Gatti (1897), and later Fridericia 
and Holm (1925), by comparisons of the retina with a series of standardized 
color charts, investigated the accumulation of visual purple in the dark adapting 
retina. More quantitative measurements were made by Tansley (1931), who 
studied spectrophotometrically digitonin extracts of dark adapting rat ret- 
inas. She found a gradual increase in visual purple concentration during 
dark adaptation, and the speed of the process was retarded by lack of vitamin 
A in the diet. Zewi's (1939) work on the regeneration of visual purple in the 
intact frog showed among other things that the pigment begins to increase in 
concentration as soon as the animal is placed in the dark except following short 
periods of light adaptation or at low temperature. 

In addition to the changes in visual purple during dark adaptation, there 
are also changes in the carotenoids of the retina. Wald (1935, 1936, 1937, 
1938) demonstrated the r61e of these carotenoids in the visual cycle. Excised 
retinas, when freshly bleached, contain a carotenoid whichWald called retinene. 
If the retinas then remain either in the light or in the dark, the retinene disap- 
pears, and in its place vitamin A appears. This change is independent of light 
and is a thermal process. According to Wald, visualpurple is regenerated along 
two paths. One is directly from the photoproducts acting with other materials 
which are at hand in the retina. The other is through the conversion of ret- 
inene into vitamin A, and the combination of vitamin A with a specific pro- 
tein to form visual purple. 

Much information, however, is still needed to establish the quantitative 
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interrelations among dark adaptation, visual purple regeneration, and carot- 
enoids. I t  is hoped that  the following measurements will supply some of 
this information. 

I I I  

A pparcaus 

The apparatus is essentially a device for illuminating the frog so that the eye will 
become evenly adapted. Two such arrangements were used. 

The first consists of a metal sphere S 12 inches in diameter (Fig. 1). At equal 
intervals on the inside of the sphere, seven automobile headlight lamps of 6-8 volts 

G L- 

FIG. I. First apparatus for light adaptation. The metal sphere S has on its inside a 
series of lights L, which illuminate evenly the opal glass globe. The frogs are in the 
globe which is kept at constant temperature by circulating water through it. 

are mounted, and the whole group is operated at 170 watts through a transformer T. 
The inside of the sphere is painted fiat white to insure a diffuse reflection. A spherical 
opal glass globe G is suspended inside the sphere and so arranged that it is evenly 
illuminated. 

The temperature inside the globe is regulated by a continuous flow of cooling water 
entering on one side of the globe and leaving by suction on the opposite side. 

For light adaptation the frogs are firmly fixed upon a board and placed inside the 
globe in the circulating water. 

High intensifies could not he obtained with this apparatus because the sphere was 
too small to permit mounting a sui~cient number of lamps. Moreover, at high in- 
tensities it was impossible to prevent the temperature of the globe from rising. 

The second apparatus overcame these difficulties. I t  consists of a conical, al- 
uminum-painted reflector R, containing a looo watt lamp L (Fig. 2). The heat gen- 
erated by the lamp is carried off through vents. The frog is placed in a white enamel 
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receptacle A, which is carefully fitted with a cover of opal glass O, over which is a 
pyrex glass H. The receptacle is then securely inserted underneath the conical re- 
flector in such a way that the opal glass plate, as well as the walls of the receptacle, 
are evenly illuminated. The animals are cooled during light adaptation by a con- 
tinuous flow of water which enters at the bottom of the receptacle I and leaves at 
the top X. 

The intensity of the illumination is determined with a Macbeth illuminometer, and 
is checked during the course of the experiments. 

Q 

I ~  × 

FIG. 2. Second apparatus for light adaptation. Light from a 1000 watt lamp L is 
reflected by the metal housing R on to the opal glass O through the heat-absorbing 
glass H. The frogs are in the white enamelled receptacle A and are kept at a fixed 
temperature by water entering at I and leaving at X. 

For dark adaptation, the animals are placed in a water bath kept entirely in the 
dark and maintained at constant temperature. 

IV 

Procedure 

(a) Manipulations.--The frogs were all Rana pipiens, obtained from Vermont and 
stored for only a short period in the laboratory before use. They were fight adapted 
two at a time. The cooling water was started and the fight turned on for periods of 
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5, 10, or 20 minutes. After the light was turned off, the animals were immediately put 
into the constant temperature bath for dark adaptation. The subsequent manipula- 
tions were carried out in dim red light from which the frogs and retinas were shielded 
as much as possible. 

After dark adapting for specific periods, the two frogs were removed from the bath 
and immediately beheaded. The eyes were removed and dropped into water contain- 
ing cracked ice. The eyes were then immediately sectioned behind the iris, and the 
retina and pigment layer removed into buffer solution of pH 9.6 which was kept at 
0°C. The procedure after this depended on the measurements. 

(b) Visual Purple Determination.--As extractive, 4 cc. of a 4 p'er cent solution of 
sodium desoxycholate in Clark and Lubs boric acid-KC1 buffer mixture (Clark, 1928) 
of pH 9.6 were used. This choice of extractive rests on the fact that the regeneration 
of visual purple in solution (Hecht, Chase, Shlaer, and Halg, 1936) occurs neither in 
sodium desoxycholate (Chase and Smith, 1939) nor at  a pH above 9.0. The extractive 
containing the four retinas was kept at 0°C. until the second set of retinas was similarly 
prepared and added to the solution. The suspension was stirred with a glass rod to 
break up the retinas, and then placed in a bath at 25°C. for 1 hour during which it was 
frequently agitated. 

After extraction, the solution was centrifuged for 60 to 90 minutes. This operation 
was carried out at 6°C. in order to prevent an undue temperature rise due to the centrif- 
ugation, since visual purple is decomposed at  high temperature (Kiihne, 1878; 
Lythgoe and Qullliam, 1938). The clear supernatant liquid was carefully removed 
with a pipette, and transferred to small test tubes which were stored at 6°C. 

The concentration of visual purple was determined by measuring the transmission 
of a 1 cm. layer of the solution at  500 m/z with Shlaer's photoelectric spectrophotometer 
(Shlaer, 1938) within 20 hours of extraction. Without removing it from the spectro- 
photometer, the solution was completely bleached by a 10 minute exposure to the light 
of a 250 watt projection lamp placed 6 inches from the solution and separated from it 
by a filter of heat-absorbing glass. The rise in temperature was seldom more than 
1.5°C. After bleaching, the solution was permitted to return to room temperature 
and the transmission at  500 m/~ again determined. The density of visual purple was 
then computed from the difference in transmission between the bleached and un- 
bleached solution. 

(c) Carotenoids.--For carotenoid estimation the retinas were separated from the 
pigment layer. Eight retinas were extracted together three times with petroleum 
ether, each extract employing 2 cc. of petroleum ether. The successive extracts were 
combined and evaporated to dryness at reduced pressure. The residue was then taken 
up in 2 cc. of anhydrous chloroform. To test for the presence of vitamin A and other 
carotenoids, the Carr-Price (1926) reaction with antimony chloride was used. The 
chloroform extract was placed in an absorption cell, and 5 cc. of a saturated antimony 
chloride solution in chloroform were added. The optical density of the resulting blue 
solution was determined through a thickness of 1 cm. of solution at 612 m# and 664 
m~, corresponding to the absorption maxima of the SbCh compounds of vitamin A and 
retinene respectively. Since the blue color fades rapidly, successive measurements 
were made, and from the plot of optical density against time of measurement the 
density at the moment of mixing was determined by extrapolation. 
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v 

Visual _Purple Regeneration 

(a) Adaptation at 25 ° C.--Two series of experiments were performed at 
25 ° C. In one, light adaptation was to 1700 millilamberts, in the other to 9500 
millilamberts, both for 10 minutes, and both followed by dark adaptation 
at 25 ° C. 

The results are presented in Table I, where each density is the average of 
the individual measurements shown in Fig. 3. Each individual point repre- 
sents an extract of eight retinas. The curves are smoothly drawn as close to 
the averages as possible. They are nearly similar in shape and inposition, and 
in both cases the initial concentration of visual purple is not zero, but a finite 
value. 

The significant difference between the data obtained at the two inten- 
sities is that following 1700 millilambert light adaptation, the regeneration of 
visual purple begins immediately, while at the higher intensity the onset of 
regeneration is delayed. This delay at 25 ° C. lasts for about 10 minutes before 
a rapid rise in the concentration of visual purple begins. Mter regeneration 
starts, it proceeds rapidly and reaches a plateau approximately 75 minutes after 
the frogs have been placed in the dark. 

These data may be compared with the behavior of the rods in adaptation. 
Hecht, Haig, and Chase (1937) found for human vision that recovery of rod 
sensitivity in the dark begins without any delay following low intensity light 
adaptation, while at high intensity light adaptations, rod function is increasingly 
delayed. The data in Fig. 3 show a similar difference between low and high 
intensity, though the actual intensities of light adaptation differ. 

The data for the higher intensity light adaptation agree with the results 
of Riggs (1936-37) for the intact eye of Rana pipiens, which show a delay of 
about 10 minutes in the appearance of rod dark adaptation. I t  may thus be 
that this delay in the assumption by the rods of the threshold function in 
frogs during dark adaptation is due to the lag in the formation of visual purple. 

The data of Zewi upon the regeneration of visual purple differ considerably 
from those presented here. At 25 ° C. and at comparable intensities of light 
adaptation, his data show no suggestion of delay in the recovery of visual pur- 
ple. His data do not correspond with those of Riggs, which are typical of all 
dark adaptation data, or with the data of Granit which show very long delays 
in the recovery of sensitivity. 

(b) Adaptation at 15 ° C.--The experiments were repeated at 15 ° C. In this 
way they duplicate the conditions of Riggs' measurements on the intact eye 
so that comparisons of the visual purple regeneration curves with the curve 
describing the recovery of sensitivity in the intact eye can be made. 

The data are given in Table II, where each density is the average of the 
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individual measurements shown in Fig. 4. Each individual point represents 
an extract of eight retinas. The curves are drawn through the averages as 
before. 

The measurements show that  there is little difference between the regenera- 
tion of visual purple at  the two intensities. The concentration of visual purple 
increases more rapidly after lower light adaptation, and reaches the maximum 
slightly earlier. However, it is evident that  a decrease in temperature of 
10 ° C. has delayed the process of regeneration to such an extent that  the accel- 
eration expected by lower light adaptation has been considerably diminished. 

TABLE I 
Changes in concentration of visual purple at 25 ° C. in retinas of frogs after 10 minute light 

adaptation. Series I, light adaptation at 1700 millilamberts; Series I_g, 9500 millilamberts. 

Time in dark 

min. 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
75 
90 

120 

Series I 

0.012 
0.014 
0.016 
0.022 
0.028 
0.037 
0.046 
0.051 
0.054 
0.069 
0.075 
0.086 
0.106 
0.108 
0.110 

Photometric density 

Series II 

0.015 
0.014 
0.016 
0.027 
0.042 
0.057 
0.070 
0.072 
0.079 
0.089 

0 . 1 2 8  
0.135 
0.133 
0.135 

The initial delay in visual purple accumulation appears at  both intensities of 
light adaptation. The limiting factor in this case is apparently the temperature 
of dark adaptation rather than the intensity of light adaptation. 

These data again indicate that  following its decomposition by light of suffi- 
cient intensity, visual purple does not begin to regenerate immediately. There 
is an initial period during which little or no visual purple forms, which lasts 
approximately 10 minutes, and is followed by a rapid rise in concentration. 

The curves are sigmoid in shape, the only differences between them being 
the time elapsing before the rapid upward portion starts. I t  is also to be 
noted that  there is a slight difference in the total period elapsing between the 
cessation of fight adaptation and the time at  which the final level of visual 
purple is reached. 
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FIG. 3. Regeneration of visual purple in the intact eye of the frog at 25°C. The 
concentration is measured as density at 500 m/~. Open cirdes, visual purple concen- 
tration following light adaptation to 9500 minilamberts; dosed circles, following light 
adaptation to 1700 miUilamberts. Each point records the measurement with 8 
retinas. The curve is drawn through the averages. 
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The data in Fig. 4 agree with those of Riggs for the dark adaptation of 
Rana pipiens. The duration of the initial delay in visual purple accumulation 
is the same as the period elapsing before rod function begins. Moreover, the 
time required for complete regeneration is approximately the same as that  
found by Riggs for the attainment of a constant threshold in the frog. 

These data also correspond to human dark adaptation, because the visual 
purple regeneration is delayed just as is the decrease in the rod threshold. 
However, the rod threshold reaches its minimum in about 25 to 30 minutes, 
while the visual purple maximum is reached at about 90 to 100 minutes. This 
difference in time is probably due to the difference in temperature between the 

TABLE II  

Changes in concentration of visual purple at 15 ° C. in retinas of frogs after 10 minute 
light adaptation. Series I, light adaptation at 1700 millilamberts; Series II, 9500 milli- 
lamberts. 

Time in dark 

m/n. 

0 
5 

10 
15 
20 
30 
45 
60 
90 

120 

Series I 

0.025 
0.026 
0.025 
0.031 
0.033 
0.039 
0.060 
0.073 
0.104 
0.113 

Photometric density 

Series II 

0.015 
0.018 
0.017 
0.023 
0.021 
0.034 
0.042 
0.059 
0.102 
o. 120 

human and the frog measurements. The temperature coefficient of regen- 
eration is about 1.8. Computed for 37.5 ° C., regeneration has approximately 
the same time characteristics as the human dark adaptation data. 

Comparison with Zewi's measurements shows little agreement. Zewi re- 
ports no delay in visual purple regeneration following conditions of light adap- 
tation similar to those here used. Thus his data correspond neither to frog 
dark adaptation (Riggs, 1936-37, and Granit, Munsterhjelm, and Zewi, 1939) 
nor to human dark adaptation. The occasional delays found by Zewi occur 
at low temperature, as is to be expected, but only following short periods of 
light adaptation. Computing these data to 37.5 ° C. results in a negligible 
delay. 

(c) Light Adaptation.--The third series of measurements was made at  one 
light intensity but with varying periods of light adaptation. They were under- 
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Fxc. 4. Regeneration of visual purple in the intact eye of the frog at 15oc. The 
concentration is measured as density at 500 m/~. Open circles, visual purple con- 
centration following light adaptation to 9500 millilamberts; closed circles, following 
light adaptation to 1700 minilamberts. Each point is from an extract of 8 retinas. 
The curves are drawn through the averages. 
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taken because of Zewi's failure to find delays in the regeneration of visual 
purple except following short periods of light adaptation. 

TABLE III 
Changes in concentration of visual purple at 15 ° C. in retinas of frogs after light adaptation 

to 9500 miUilamberts. Series I, 5 minute light adaptation; Series II, 20 minute light adapta- 
tion; Series III, 10 minute light adaptation. 

Photometric density 
Time in dark 

Series I Series II  Series III  

m/ . .  

0 
5 

10 
15 
20 
30 

0.029 
0.033 
0.038 
0.041 
0.043 
0.057 

0.011 
0.011 
0.013 
0.025 
0.029 
0.051 

0.015 
0.018 
0.017 
0.023 
0.021 
0.034 

0.08 

0.06 

004 

0.02 

0.00 

1 0 

ooJ 

' 0 . .  0 

0 20  40 0 

• ° o 

20 40 0 20  40 
TIME 1N DA R E -  MINUTES 

FIG. 5. Regeneration of visual purple in the intact eye of the frog at 15°C. following 
light adaptation to 9500 miUilamberts. Left, after 5 minutes of light adaptation; 
center, following 10 minutes light adaptation; right, following 20 minutes light 
adaptation. 

The procedure was as before. Animals were light adapted at  9500 milli- 
lamberts, one group for 5 minutes and another for 20 minutes. Dark  adap- 
tat ion occurred at 15 ° C., and was followed for the first 30 minutes only. 

The  data  are in Table I I I  where each value represents the average of 5 
measurements with 40 retinas. The individual points are in Fig. 5. Included 
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in the table and figure are the data from the previous experiment for light 
adaptation at 9500 millilamberts for 10 minutes at 15 ° C. obtained under the 
same conditions of light and dark adaptation but at a different season. 

The curves in Fig. 5 show that the delay depends on the duration of light 
adaptation. Regeneration after 5 minute light adaptation begins immediately, 
whereas after 10 or 20 minute light adaptation, regeneration is delayed. Both 
delays are approximately the same, the 20 minute data showing a slightly longer 
one than the 10 minute data. 

These experiments do not corroborate Zewi's measurements in which he finds 
that only short periods of light adaptation are followed by a delay in visual 
purple regeneration. The data agree with the work on human dark adap- 
tation by Miiller, by Johannsen, and by Wald and Clark, all of whom found 
that short light adaptation periods produce no delay in rod adaptation, while 
longer periods of light adaptation are followed by a delay before the increase 
in rod sensitivity begins. Only the data of Granit on frog retinal potentials 
show a delay in the recovery of sensitivity under all conditions of light adap- 
tation. 

vI 

Carotenoids 

The changes in the vitamin A and retinene concentrations were followed 
during dark adaptation. Estimation of the carotenoid content of the entire 
optic cup showed no regular changes in vitamin A or retinene. Consequently, 
only those retinas which could be entirely freed of pigment were used. The 
data are presented in Table IV and Fig. 6. Each point represents the average 
of five measurements with 40 retinas. 

The amount of vitamin A and retinene present in retinas dark adapted for 
24 hours is also given in the table and indicated in the figure. We see that 
the amount of free retinene changes very little during dark adaptation at 
25 ° C. following 1700 millilambert light adaptation. The vitamin A content, 
however, is high at the conclusion of light adaptation and rapidly decreases 
until it shows little change after 60 to 90 minutes in the dark. The value 
obtained with completely dark adapted retinas indicates that vitamin A has 
not yet fallen to its final level during the period of the experiment. 

Wald (1935, 1936) found that when isolated retinas are exposed to light, 
the visual purple bleaches and retinene appears. Upon continued illumination, 
the retinene disappears and vitamin A appears in its place. This process 
takes about 1 hour. Our data show that in the eye of the intact animal a some- 
what different series of events takes place. Even after 10 minutes of light 
adaptation, there is little retinene and much vitamin A in the retina. 

The difference between isolated retina and intact animal does not lie merely 
in the possibility of the circulation removing the bleaching products of visual 
purple. If the failure of retinene to accumulate in the intact eye were due to 
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TABLE IV 

Changes in concentration of carotenoids at  25 ° C. in retinas of frogs after light adaptation 
to 1700 millilamberts for 10 minutes. Series I, retinene, 664 m~; Series II ,  vitamin A, 612 m~. 

Time in dark 

min. 

0 
10 
15 
20 
30 
45 
60 
90 

D.A.  

Series I 

0.089 
0.062 
0.068 
0.062 
0.072 
0.062 
0.075 
0.068 
0.059 

Photometric density 

Series II 

0.215 
0.145 
0.150 
0.132 
0.109 
0.106 
0.120 
0.110 
0.086 

0 2 0 0  -- l 

0175 I 
O./50 ' • 

012S 

c~ 612 
01o0 

o o 

0050 [ 
0 2 0  

0 
I o 

40  6O 8O I00 

l IME IN DARK-MINUTES 

FIG. 6. Changes in ret inal  carotenoids of the  in tac t  eye a t  25°C. following l ight  
adap ta t ion  to 1700 miUilamberts.  Open circles represent  retinene,  closed circles 
v i t amin  A. 

I 

I 
o 

I 
DA 

its removal by the blood system, it is to be expected that vitamin A would 
also be removed. I t  is therefore possible that the circulation in the eye permits 
a rapid conversion of retinene to vitamin A, or that vitamin A is formed di- 
rectly from visual purple. 
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vii 

Kinetics of Visual Purple Regeneration 

The course of visual purple regeneration as shown in Figs. 3 and 4 is sigmoid. 
A comparison of these data with those of dark adaptation can be made by 
plotting the dark adaptation data as the reciprocal of the threshold intensity 
against time, much as Piper (1903) did originally. This rests on the obvious 

I 
o,f - 

I 

0 ~ 8 12 /6 20 24 28 
~IME IN DARK- MINUTES 

FIo. 7. Dark adaptation of human eye; data of Hecht, Haig, and Chase (1937). 

supposition that the concentration of sensitive material is inversely propor- 
tional to the intensity required to produce a constant photochemical effect. 
Fig. 7 shows such a curve for human dark adaptation from the data of Hecht, 
Haig, and Chase, while Fig. 8 shows a similar treatment of frog dark adap- 
tation from the data of Riggs. Because of the ordinate scale, the separation of 
rod and cone function is not apparent .  But neglecting the first few minutes 
of cone adaptation, one sees that the data show a slow rise in sensitivity ( =  
concentration), followed by a rapid rise in a typical sigmoid manner. These 
curves are roughly similar to the regeneration curves of Figs. 3 and 4, and 
taken in conjunction with the similarity of effects produced in both cases by 
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temperature, and time and intensity of light adaptation, show that the process 
of dark adaptation depends upon the accumulation of visual purple in the 
retina. 

The curves in Figs. 3 and 4 do not start from zero concentration, and the 
initial concentration following light adaptation to 9500 millilamberts is lower 
than that following adaptation to 1700 millilamberts. This difference be- 
tween the two series, and to some extent the presence of an initial concentra- 
tion following light adaptation is understandable in terms of the stationary 
state (Hecht, 1937). 
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Fzo. 8. Dark adaptation of the frog eye measured by electrical method; data of 
Riggs (1936-1937). 

When the photochemical system in the eye has reached a steady state, the 
concentrations are described by the equation 

K I  =x~/(a -- x) ~ 

where K is the equilibrium constant, I the light intensity, a - x the concen- 
tration of unbleached pigment, x the concentration of bleached products, and 
r~ and n the order of the reactions. I t  follows that the fraction x " / ( a  - -  x) m 

becomes larger as the intensity increases. Thus the higher the intensity, 
the smaller the amount of undecomposed photosensitive material remaining. 

This expression also indicates that even at high intensities we can always 
expect to find a finite amount of photosensitive material in the retina. How- 
ever, this amount is fairly small, and another factor is involved in producing 
residual visual purple in the light adapted retina. This is the fact that even 
with illumination from all sides, the entire surface of the retina is not exposed 
to light. This means that a small amount of visual purple, especially that 
in the region of the ora serrata, will not be bleached. Thus the apparent 
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initial concentration of visual purple is increased over that expected from 
stationary state considerations by a value which depends upon the area of the 
retina which is unbleached. Since the extent of the unbleached area remains 
sensibly constant by the use of identical procedures on all animals used, the 
concentration of visual purple is increased by a constant amount. 

Attempts to fit theoretical equations to the data of visual purple regenera- 
tion have in the past been only partly successful. Tansley found that mono- 
molecular and bimolecular equations described her data, while Zewi was unable 
to obtain a satisfactory theoretical description of his data. In both cases 
the data are too sparse for a critical test of the theoretical curves. 

When visual purple is exposed to light, one or more photoproducts are pro- 
duced. In the dark the decomposition products may recombine, probably 
with additional materials, to form visual purple again (of. Hecht, 1937). 

There are several possibilities which may be considered as the basis for a 
description of the kinetics of visual purple regeneration. The first is that it is 
a direct and simple transformation of one molecular species into another. The 
regeneration should then correspond to a simple monomolecular or bimolecular 
kinetics. The data in Figs. 3 and 4 exclude this possibility because of the 
sigmoid shape of the course of regeneration. 

Two common chemical systems yield sigmoid curves for their kinetics. One 
is a catenary series of reactions in which an intermediate compound is formed 
between the beginning product and the end product. Such chemical reactions 
yield curves which are only slightly retarded at the beginning. Comparison 
of the relevant equations with the present data shows them to be inadequate 
in this respect. The regeneration of visual purple as recorded here has much 
too great an initial lag. 

The other system producing a sigmoid kinetics is one involving autocatalysis. 
If we assume that the formation of visual purple is a direct chemical trans- 
formation which is catalyzed by visual purple itself, we can describe the present 
data adequately by the usual equation for such an autocatalyzed system. The 
general equation describing the process is 

dx/dt = k 2 x " ( a  - x )  '~ 

where k~ is the velocity constant, (a -- x) the concentration of visual purple 
at  moment t, a the final concentration of visual purple, x the concentration of 
photoproduct, also at moment t, and m and n the order in which (a -- x) a n d  
x enter the reaction. Taking m and n as 1, and integrating, the equation 
yields 

k2(l--tl#) ffi l o g  x 

where tt is the time when the reaction is half complete. Other values of m 
and n may be tried, but for the present the value of 1 is sufficient. 
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FIG. 9. Computation of visual purple regeneration in terms of the equation for an 
autocatalyzed chemical reaction. The data are those of Figs. 3 and 4. The three 
upper curves and data are displaced 20, 80, and 100 per cent units upward. 

Fig. 9 shows the application of the integrated equation to the measurements. 
The data  are plotted on the basis of a change in visual purple concentration 
from 0 to 100 per cent. Since the concentration of visual purple is never 
zero after the completion of light adaptation, this residual visual purple con- 
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centration has to be eliminated as a factor in computing the data. The density 
at zero time of dark adaptation is therefore subtracted from every other density 
determination of the series. The per cent of the maximum density is then 
computed for each point, thus giving a series which varies from 0 to 100 
per cent. 

In Fig. 9 the curve of the autocatalyzed monomolecular equation is drawn 
with specific values of the velocity constant k~ for each series of data. I t  is 
apparent that the measurements are adequately described by the equation. 
The slopes are different for the different series. In particular, it is to be noted 
that ks is greater at 25°C. than at 15°C. in accordance with general knowl- 
edge. 

The precise chemical meaning of the autocatalyzed reaction may really be 
that visual purple, or perhaps another material formed in equivalent amount 
as visual purple regenerates, catalyzes the formation of visual purple from the 
material present in the light adapted retina. At present it is too soon to say. 
That the equation is first order merely may mean that the other precursors 
are present in excess, or it may mean that no great chemical change is involved. 
This is in keeping with the work of Hecht and Pickels (1938) which showed that 
the bleaching of visual purple in solution corresponds to only a slight change, 
if any, in the size of the molecule. 

SUMMARY 

1. The accumulation of visual purple in the retina after bleaching by light 
has been studied in the intact eye of the frog. The data show that duration 
and intensity of light adaptation, which influence the course of human dark 
adaptation as measured in terms of visual threshold, have a similar influence 
on the course of visual purple regeneration. 

2. At 25°C. frogs which have been light adapted to 1700 millllamberts and 
then placed in the dark, show an increase in visual purple concentration which 
begins immediately and continues for 70 minutes until a maximum concen- 
tration is attained. The increase, although beginning at once, is slow at first, 
then proceeds rapidly, and finally slows up towards the end. Frogs which 
have been adapted to 9500 millilamberts show essentially the same phenomenon 
except that the initial slow period is strongly delayed so that almost no visual 
purple is formed in the first 10 minutes. 

3. At 15°C. the initial delay in visual purple regeneration occurs following 
light adaptation to both 1700 and 9500 miUilamberts. The delay is about 
10 minutes and is slightly longer following the higher light adaptation. 

4. The entire course of visual purple accumulation in the dark takes longer 
at the lower temperature than at the higher. The temperature coefficient for 
10°C. is about 1.8. 

5. In contrast to the behavior of the isolated retina which has small amounts 
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of vitamin A and large amounts of retinene immediately after exposure to 
light, the intact eye has large amounts of vitamin A and little retinene after 
exposure to light for 10 minutes. In the intact eye during dark adaptation, 
the amount of vitamin A decreases markedly while retinene decreases only 
slightly in amount. If retinene is formed in the intact eye, the change from 
retinene to vitamin A must therefore occur rapidly in contrast to the slow 
change in the isolated retina. 

6. The course of visual purple regeneration may be described by the equa- 
tion for a first order autocatalyzed reaction. This supposes that the regenera- 
tion of visual purple is catalyzed by visual purple itself and accounts for the 
sigmoid shape of the data. 

I t  is with deep appreciation that the author wishes to acknowledge the 
willing and generous guidance of Professor Selig Hecht. 
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