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Involvement of the dopaminergic 
system in the reward‑related 
behavior of pregabalin
Yusuf S. Althobaiti1,2,3*, Farooq M. Almutairi2,4,14, Fahad S. Alshehri5, Ebtehal Altowairqi1, 
Aliyah M. Marghalani2, Amal A. Alghorabi2, Walaa F. Alsanie2,6, Ahmed Gaber2,7, 
Hashem O. Alsaab2,8, Atiah H. Almalki2,9, Alqassem Y. Hakami10,11, Turki Alkhalifa3, 
Ahmad D. Almalki3, Ana M. G. Hardy12 & Zahoor A. Shah13

There has been an increase in cases of drug addiction and prescription drug abuse worldwide. 
Recently, pregabalin abuse has been a focus for many healthcare agencies, as highlighted by 
epidemiological studies. We previously evaluated the possibility of pregabalin abuse using the 
conditioned place preference (CPP) paradigm. We observed that a 60 mg/kg dose could induce CPP in 
mice and that pregabalin-rewarding properties were mediated through glutamate neurotransmission. 
Notably, the dopaminergic reward circuitry is also known to play a crucial role in medication-seeking 
behavior. Therefore, this study aimed to explore the possible involvement of dopaminergic receptor-1 
in pregabalin-induced CPP. Mice were randomly allocated to receive saline or the dopamine-1 receptor 
antagonist SKF-83566 (0.03 mg/kg, intraperitoneal). After 30 min, the mice received either saline 
or pregabalin (60 mg/kg) during the conditioning phase. Among the control groups that received 
saline or SKF-83566, the time spent in the two conditioning chambers was not significantly altered. 
However, among the pregabalin-treated group, there was a marked increase in the time spent in the 
drug-paired chamber compared to the time spent in the vehicle-paired chamber. Notably, blocking 
dopamine-1 receptors with SKF-83566 completely prevented pregabalin-induced place preference, 
thus demonstrating the engagement of the dopaminergic system in pregabalin-induced reward-
related behavior.

Worldwide, the abuse of mind-altering prescription drugs has increased dramatically in recent years1. The intake 
of pregabalin in high doses or in combination with other drugs has a significant addiction risk2,3. Moreover, 
the European Medicines Agency and the European Monitoring Centre for Drugs and Drug Addiction have 
recently reported a list of several drugs with the potential for abuse, including pregabalin, carfentanil, phenibut, 
and zopiclone4. Pregabalin prescriptions have increased by 150% in the UK within the last 5 years5. Moreover, 
the growing black market, including the online availability of pregabalin without a prescription6, indicates the 
importance of understanding the neurochemical effects behind pregabalin addiction.
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Pregabalin is a gamma-aminobutyric acid (GABA) analog that binds strongly to the auxiliary alpha-2 delta 
subunit of the presynaptic voltage-gated calcium channel receptor to reduce the activation of postsynaptic neu-
rotransmitter release7–10. Pregabalin is recommended to treat neuropathic pain, partial epilepsy, and common 
anxiety disorders11–13. Moreover, pregabalin is routinely used off-label for many health conditions, including 
bipolar disorder, trigeminal neuralgia, restless legs syndrome, and alcohol withdrawal states14–17. We previously 
reported that 60 mg/kg pregabalin tends to cause conditioned place preference (CPP) in mice18.

The reinforcing and rewarding properties of a variety of abused drugs are related to the neurotransmission 
of dopamine, a key driver of the neurobiological modifications in drug addiction19. Specifically, most drugs of 
abuse can elevate the extracellular dopamine levels in the nucleus accumbens (NAc), which is involved in the 
reward circuitry, motivational drive, and learning facilitation19. For instance, studies determined that opiate, 
methamphetamine, and cocaine administration are correlated with an increase in dopamine efflux from key brain 
regions in animal models20–23. Notably, pregabalin could produce changes in dopamine level similar to other 
drugs of abuse. Previous findings indicate that the dopamine-1 (D1) receptor is an important factor in dopamin-
ergic neurotransmission24–26. It is involved in strengthening cognitive performance27–30, response control31, and 
reward management32–34. Therefore, this study aimed to explore the potential causes behind pregabalin’s rein-
forcing effects, which we hypothesized could involve dopaminergic system activation through the D1 receptors.

Materials and methods
Animals.  We obtained male BALB/c mice from King Fahad Medical Research Center (Jeddah, SA) with 
a weight range of 25–35 g. Mice had access to food and water ad  libitum at standard conditions, where the 
temperature and relative humidity were adjusted to 21 °C and 30%, respectively, with a 12-h light/dark cycle. 
Moreover, before the experiments began, the mice were habituated for seven days. All experiments were carried 
out in accordance with the Institutional Animal Care and Use Committee of the National Institutes of Health 
and were approved by the Research Ethics Committee at Taif University (42-0112). All methods are reported in 
accordance with ARRIVE guidelines.

Drugs and dosing.  We dissolved pregabalin (Jamjoom Pharmaceuticals, Jeddah, SA) and SKF-83566 (SKF; 
Tocris Bioscience, MO, USA) in 0.9% saline. An SKF dose of 0.03 mg/kg was selected, as several studies have 
indicated that this dose is safe and effective to use in rodents35,36. Moreover, cumulative evidence indicates that 
an SKF dose of 0.03 mg/kg is sufficient for blocking D1 receptors in rodents35,37,38. Finally, a dose of 0.03 mg/kg 
of SKF has been shown to effectively block amphetamine- and scopolamine-induced locomotor stereotypy and 
hyperlocomotion39,40.

Experiments.  Apparatus.  Briefly, the apparatus was constructed using acrylic and had two identically 
sized conditioning chambers separated by a removable wall. These conditioning chambers differed in tactile and 
visual cues as previously reported18.

Conditioned place preference.  We performed the procedure according to the previously reported CPP para-
digm, which consisted of two phases: preconditioning and conditioning18 (Fig. 1A). During the preconditioning 
days (days 1, 2, and 3), each mouse was placed in the CPP apparatus with the chamber partition removed, allow-
ing it to move between the two chambers for 30 min, without restriction, to habituate. At the end of day 3, we 
recorded the time that each mouse spent in each chamber (pretest) using a digital camera, and then analyzed the 

Figure 1.   (A) Timeline of the CPP experiment. (B) The four experimental groups.
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data using ANY-maze software to determine the baseline values. No mouse had a chamber preference exceeding 
67% of the total time of the preconditioning phase.

During the conditioning phase (days 4–11), the mice received pretreatment intraperitoneal injection (i.p.) 
of saline or the D1 receptor antagonist SKF (0.03 mg/kg) 30 min before the administration of saline (10 ml/kg) 
or pregabalin (PGB) (60 mg/kg, i.p.). Each mouse was administered pregabalin or the vehicle four times every 
other day for eight conditioning days. Subsequently, we conducted the postconditioning test on day 12, with 
each mouse being placed in the CPP apparatus without restriction between the chambers for 30 min. Finally, 
the time spent in each chamber was assessed using the same method that was used to investigate the pretreat-
ment behavior.

Procedure.  We randomly assigned the mice to one of four groups, as shown in Fig. 1B. Group 1 (Saline-Saline) 
mice were administered saline (10 ml/kg, i.p.) 30 min before receiving the same dose of saline (10 ml/kg, i.p.) 
for eight sessions (n = 6). Group 2 (SKF-Saline) mice were administrated SKF (0.03 mg/kg, i.p.) 30 min before 
receiving saline (10 ml/kg, i.p.) for four sessions (eight sessions in total), with alternating saline sessions during 
the conditioning phase (n = 8). Group 3 (saline-pregabalin) mice received saline (10 ml/kg, i.p.) 30 min before 
receiving pregabalin (60 mg/kg) for four sessions (eight sessions in total), with alternating saline sessions during 
the conditioning phase (n = 6). We selected this dose based on our previous finding that 60 mg/kg pregabalin can 
induce CPP18. Group 4 (SKF-pregabalin) mice received SKF (0.03 mg/kg, i.p.) 30 min before receiving pregaba-
lin (60 mg/kg) for four sessions (eight sessions in total), with alternating saline sessions during the condition-
ing phase (n = 7). Subsequently, the place preference was assessed after all the conditioning sessions had been 
completed.

Statistical analysis.  For all CPP behavioral studies, the time that each mouse spent in each chamber pretest 
and posttest was analyzed using two-way repeated-measures analysis of variance (RM ANOVA). We performed 
the Newman-Keuls multiple comparisons test using GraphPad Prism. A p-value of < 0.05 was the chosen level 
of significance.

Results
Effects of pretreatment with saline and SKF‑83566 on behavioral preference.  In group 1 
(saline–saline), two-way RM ANOVA identified no significant effect on the phase (F (1, 5) = 1.000, p = 0.3632) or 
chamber (F (1, 5) = 0.07136, p = 0.8000), as well as no significant phase–chamber interactions (F (1, 5) = 0.3981, 
p = 0.5558) (Fig. 2A). Similarly, in the SKF-saline group (group 2), no significant effect was found on the phase 
(F (1, 7) = 2.325, p = 0.1712) or chamber (F (1, 7) = 0.007482, p = 0.9335), as well as no significant phase–chamber 
interactions (F (1, 7) = 0.09655, p = 0.7651) (Fig. 2B).

Effects of pregabalin and SKF‑83566 on pregabalin‑induced place preference.  In the saline-
pregabalin group (group 3), we observed a significant effect on the phase (F (1, 5) = + infinity, p < 0.0001) and 
chamber (F (1, 5) = 24.90, p = 0.0041), as well as a significant interaction between the phase and chamber (F 
(1, 5) = 28.55, p = 0.0031). The post hoc analysis revealed a significant increase in the time spent in the prega-
balin-paired chamber compared to that spent in the saline-paired chamber during the postconditioning test 
(p < 0.0100; Fig. 3A). Moreover, there was an increase in the time spent in the pregabalin-paired chamber during 

Figure 2.   Time spent in the conditioning chambers during the pre and postconditioning tests in the saline-
saline (A) and SKF-saline (B) groups. (A) There were no significant changes in the time spent in chamber 1 and 
2 during all tested phases (n = 6). (B) There were no significant changes in the time spent in the saline-paired 
chamber compared to the SKF-paired chamber during the pre and postconditioning tests (n = 8). Values are 
reported as means ± standard error of the mean.
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the postconditioning test compared to that during the preconditioning test (p < 0.0500). Notably, pretreatment 
with SKF attenuated the pregabalin-induced CPP. We observed a significant effect on the phase (F (1, 6) = 15,210, 
p < 0.0001), no significant effect on the chamber (F (1, 6) = 0.08476, P = 0.7807), and no significant interaction 
between the phase and chamber (F (1, 6) = 1.242, p = 0.3077) (Fig. 3B).

Discussion
There is empirical proof that the dopamine mechanism plays an essential role in substance-related reward and 
motivation41–43. Moreover, the association between the dopaminergic receptors and the reward signals in the 
midbrain has revealed that blocking dopamine receptors could attenuate the reward circuitry involved in dif-
ferent drugs of abuse44–46. The addictive properties of pregabalin remain controversial; however, several reports 
have shown an association of pregabalin administration with euphoric effects and abuse potential3,47. A previ-
ous study demonstrated that pregabalin increased dopamine release in the NAc in a rat model of neuropathic 
pain48. This indicates that exposure to pregabalin could potentiate this connection and subsequently increase 
dopamine levels. Several reports have shown that SKF is able to interfere with cocaine-evoked dopamine release 
in vitro, suggesting that this compound may be a potential candidate in attenuating the effects of cocaine in vivo49. 
Moreover, it was reported that pretreatment with SKF blocked amphetamine-induced locomotor stereotypy and 
hyperlocomotion39. Furthermore, SKF blocked the effect of propofol in inducing glutamate neurotransmission in 
rat midbrain slices via presynaptic D1 receptors50. Therefore, the D1 receptor has been proposed as an important 
target for testing the behavioral effects related to dopaminergic and glutamatergic neurotransmissions51,52. Nota-
bly, in the current study, we found that pretreatment with SKF attenuated the reward effects of pregabalin in CPP.

Accumulating evidence indicates that dopamine transport is important for behavioral reward regulation in 
the NAc53–55. Pavlovian conditioning using the CPP model has been known to assess the rewarding effects of 
drugs56 and be dependent on NAc dopaminergic neurotransmission57. The mesolimbic dopaminergic pathway, 
including the ventral tegmental area (VTA) and the NAc, is considered a critical neural region underlying reward 
and drug-seeking behavior58. Activation of D1 receptors, but not D2 receptors, in the NAc is essential for long-
term potentiation and positive reinforcement behavior59. However, blocking D1 or D2 receptors has shown to 
impair locomotion and rearing effects associated with dopaminergic neuron inhibition in the NAc core and 
shell60. Several reports have investigated the role of substance abuse in the release of dopamine in rewarding 
circuits61. Importantly, repeated morphine treatment for four doses has been shown to induce CPP in mice62. 
The latter study suggested the development of receptor supersensitivity for postsynaptic dopamine in mice. In 
confirming this effect, apomorphine (a dopamine agonist) produced stimulated response in ambulatory activity. 
Moreover, administration of the NMDA antagonist, Mk-801 inhibited the morphine-induced CPP behavior and 
the development of postsynaptic dopamine receptor supersensitivity. In addition, this effect was observed with 
other drugs of abuse including cocaine and methamphetamine in mice63,64. This is consistent with our findings 
that blocking D1 receptors attenuated pregabalin-induced CPP. Therefore, pregabalin might induce rewarding 
effects through the activation of postsynaptic D1 receptors in the NAc. Further studies are needed to examine 
the effects of pregabalin on dopamine release in the NAc.

Additionally, the glutamatergic system is significantly involved in mediating the drug-seeking effects of 
several abuse drugs. Drug-seeking behavior has been linked to glutamatergic imbalance in the NAc and down-
regulation of the glial excitatory amino acid transporter (GLT-1), which is the main regulator of glutamatergic 

Figure 3.   Time spent in the conditioning chambers during the pre and postconditioning tests in the saline-
pregabalin (A) and SKF-pregabalin (B) groups. (A) The mice spent significantly more time in the pregabalin-
paired chamber during the postconditioning test compared to the preconditioning test. Moreover, there was 
a significant increase in the time spent in the pregabalin-paired chamber during the postconditioning test 
compared to that spent in the saline-paired chamber (n = 6). Values are reported as means ± standard error of the 
mean. (B) There was no significant change in the time spent in the conditioning chambers during the pre and 
postconditioning tests in the SKF-pregabalin group (n = 7). Values are reported as means ± standard error of the 
mean (**p < 0.01, & p < 0.05 compared to the preconditioning test).
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homeostasis in the brain65–68. For example, cocaine-seeking behavior has been linked to the downregulation of 
GLT-1 expression69. Furthermore, the disturbance in the glutamatergic system is linked with the spillover of 
glutamate when the uptake of glutamate by a synapse is decreased, which in turn overactivates the postsynaptic 
receptors that mediate drug-seeking behavior70. Moreover, presynaptic glutamate receptors such as metabotropic 
glutamate receptors Type 2 (mGlu2/3) have been shown to regulate glutamate release in the NAc and prefrontal 
cortex and be involved in reward and drug-seeking behavior71.

Interestingly, these two systems of dopamine and glutamate have been shown to be interconnected and to 
influence each other in brain regions. It has been proposed that D1 receptors are located in the presynaptic gluta-
matergic terminal of VTA72. Activating D1 receptors facilitates the release of glutamate in the VTA52. Additionally, 
it has been mentioned that ethanol-induced spontaneous excitatory postsynaptic currents (sEPSCs) via glutamate 
alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors are suppressed by SKF in the 
VTA73,74. Several studies have shown that ceftriaxone, via the upregulation of GLT-1, can attenuate ethanol intake 
and relapse in rats75,76. The involvement of glutamatergic neurotransmission in pregabalin-induced CPP has been 
previously reported18 and could be due to the activation of presynaptic D1 receptors located within glutamatergic 
synapses. Where, activating the D1 dopamine receptor could augment AMPA receptor transmission as shown 
in the NAc cell cultures prepared from rat pups77. Of note, the interaction between dopamine and glutamate is 
complex in the NAc. The glutamatergic activation in the VTA has been shown to increase dopaminergic activ-
ity and release in the NAc78,79. Moreover, glutamate, at presynaptic level in the NAc, can facilitate dopamine 
release80,81. Dopamine can also modulate glutamatergic firings in the NAc that originate from the hippocampus 
amygdala82. Interestingly, this effect has been shown to be mediated through D1 receptors.

Several studies have suggested that repeated dopaminergic activation during behavioral conditioning per-
forms an essential function in the cue stimuli, leading to drug-seeking behavior83–85. Reportedly, dopaminergic 
neurotransmission is associated with glutamate release86. In fact, dopamine terminals within the NAc cross on 
single dendrites with glutamatergic terminals across several key brain regions such as the hippocampus, pre-
frontal cortex, and amygdala87. Furthermore, reports indicate a strong similarity between the activation of the 
glutamate receptor N-methyl-d-aspartate (NMDA) and the D1 receptor in drug reward paradigms88,89. Moreover, 
it has been shown that glutamate is released upon dopaminergic neurotransmission in the midbrain region in 
in vitro and in vivo models90–95. For example, in the NAc shell, dopaminergic terminals were found to release 
glutamate when activated with channelrhodopsin-296. In methamphetamine seeking, both the NAc and dorsome-
dial prefrontal cortex showed high levels of glutamate and dopamine when analyzed by microdialysis97, whereas 
systemic administration of a D1 receptor antagonist (SCH 23390), but not a dopamine receptor-2 antagonist 
(eticlopride), attenuated methamphetamine seeking98. Although standard receptor binding tests have revealed 
that pregabalin is not bound to the D1 receptor99, it might increase dopamine levels and glutamate release with the 
euphoric mental state being achieved. Therefore, the D1 receptor antagonist counteracted the D1 receptor effects 
in glutamate release regulation and inhibited the dopamine effects. This could lead to a decrease in glutamate and 
dopamine release86,100. This is in line with our earlier results which confirmed an association between glutamater-
gic neurotransmission and the rewarding effects of pregabalin18. These interconnections between dopamine and 
glutamate in key brain regions support our previous findings that ceftriaxone, a known regulator of glutamate 
homeostasis, attenuates pregabalin- induced CPP18. Blocking the D1 receptors with SKF in the current study also 
blocked pregabalin induced CPP. Together, dopaminergic and glutamatergic neurotransmissions in key brain 
regions might play a significant role in pregabalin-induced CPP. This is consistent with several known drugs of 
abuse where both dopaminergic and glutamatergic neurotransmissions have been shown to be involved in their 
rewarding effects61–68. Studies are warranted to investigate the neurochemical interactions between dopaminergic 
and glutamatergic systems in pregabalin induced reward.

The fact that there are no biological studies to confirm these findings is one of the limitations of the present 
study. Measuring the level of dopamine and glutamate in key brain regions during the conditioning phases, as 
well as the posttest phase, could provide insights into the mechanisms of pregabalin rewarding properties. A 
recent study revealed that acute administration of pregabalin did not affect the dopamine level in the NAc101. 
However, the study did not investigate other brain areas such as the NAc subregions (core and shell), prefrontal 
cortex, or the VTA. Thus, testing only a single area may not be enough to determine the effects of pregabalin 
on the dopaminergic system as a whole. Another limitation of this study was not assessing the impact of SKF 
on pregabalin-induced CPP in a dose-dependent manner. This should be considered for examination in future 
studies. Moreover, it may be worthwhile to assess whether the effect of SKF in blocking pregabalin-induced CPP 
may also affect other brain neurotransmitters.

A previous in vitro study on human neocortical slices assessed different neurotransmitters and reported 
that pregabalin modulates acetylcholine, serotonin, and norepinephrine release without changing dopamine 
release102. However, acetylcholine-mediated activation of the D1 receptor by SKF-38393 in striatal cells has been 
shown103–105, and this activation was inhibited by SKF103. Similarly, SKF appears to partially act against serotonin 
receptor-1c106. Pregabalin interaction with the alpha-2 delta subunit of the calcium channel remains only partially 
understood. Previous findings regarding pregabalin indicate an essential role of GABAergic neurotransmission 
in the reward and dependence effects of drugs of abuse107. Since pregabalin is a GABA analog, its abuse liability 
might involve GABA-modulating properties. Specifically, pregabalin administration has been found to slightly 
increase the extracellular GABA levels in the brain7,108–110. Therefore, the weak GABAergic activity of pregabalin 
may induce GABA-mimetic activity that influences the euphoria and relaxation described by some patients and 
drug abusers. Thus, future investigations of the effects of SKF on several neurotransmitter systems are needed 
to understand the mechanistic effect of pregabalin-induced CPP.

In conclusion, findings after pretreatment with SKF indicated that the D1 receptors might play a crucial role 
in the ability of pregabalin to induce behavioral sensitization through the dopamine reward system. However, 
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there is a need for further neurochemical studies to identify similarities in the abuse liability mechanism between 
pregabalin and other defined addictive drugs.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 6 November 2020; Accepted: 8 April 2021
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