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Editorial on the Research Topic

Ion Channels: Therapeutic Targets for Neurological Disease

Contributing 11.6% of global DALYs (disability-adjusted life-years) and 16.5% of deaths from all
causes, neurological disorders remain the leading cause of DALYs and the second leading cause
of deaths (following cardiovascular diseases) over the world (Feigin et al., 2019). Neurological
disorders are public health challenges that cause not only a decline in the quality of life for
patients, but also a substantial burden for every family (Feigin et al., 2020). The prevalence of most
neurological disorders increases with age, and the lack of effective treatment options continues to
increase the number of patients (Feigin et al., 2019). Therefore, developing new strategies to prevent
and treat the major neurological disorders is of great importance to improve human health.

Neurons communicate via rapid electrical activities that allow the nervous system to coordinate
sensation, behavior, and emotion. Ion channels in neurons are the main information carrier of
these neuronal electrical activities. They form conduction pores to allow selected ions (Na+, K+,
Ca2+, Cl−, etc.) to pass through the cell membrane and generate electrical signals for establishing
the resting membrane potential (Du et al., 2014), shaping each phase of action potentials, and
controlling the Ca2+ signaling etc. (Hou et al., 2016; Chiamvimonvat et al., 2017; Shi et al., 2021).
Dysfunction of ion channels by inherited mutations, pathological changes, or unwanted drug-
induced side effects can alter ion flux across the membrane and cause neurological disorders. On
the other hand, tremendous pre-clinical and clinical studies suggest that regulating the function of
key ion channels involved in diseases can effectively alleviate the symptoms, supporting that ion
channels are promising targets for treating neurological disorders.

In this topic named “Ion Channels: Therapeutic Targets for Neurological Disease,” we collect and
summarize the most recent studies including four original articles and two reviews focusing on ion
channel modulation mechanisms and ion channels as potential targets for treating hearing loss,
pain, spinal cord injury, ischemia-reperfusion injury, and schizophrenia.

Single nucleotide polymorphisms (SNPs) refers to DNA sequence polymorphisms caused
by mutation of a single nucleotide. It is the most common form of genetic variants
in humans, accounting for more than 90% of all known polymorphisms (International
HapMap et al., 2007). Studies indicate that SNPs are associated with the severity of
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illness, such as Alzheimer’s disease (Burns et al., 2011). SNPs are
also common in ion channels. Plante et al. examined the effects of
several non-synonymous SNPs on the KCNMA1 gene encoding
the large conductance potassium (BK) channel (Atkinson et al.,
1991). It turned out these SNPs can induce gain-of-function
or loss-of-function effects on BK channels. For example, the
SNP R800W slows down the activation rate, right shifts the
conductance–voltage relation, and increases the amplitude of
action potential-evoked currents. These loss-of-function effects
are also conserved in the epilepsy-associated mutation D434G
channel background. Overall, Plante et al. set a clear example
that SNPs can modulate the function of BK channels. More basic
and translational studies (for example the drug sensitivity change
of SNPs) can be done to further understand the phenotypic and
functional consequences of SNPs in ion channels.

The low-voltage activated (LVA) T-type calcium channel
Cav3.2 sets a low threshold for action potential firing in dorsal
root ganglion (DRG) neurons and plays a key role in pain
sensation (White et al., 1989; Cain and Snutch, 2010). CaV3.2
channel is regulated by different proteins (Zhang et al., 2013;
Weiss and Zamponi, 2017), including the neuronal actin-binding
protein Kelch-like 1 (KLHL1; Aromolaran et al., 2009, 2010).
Using KLHL1 knockout (KO) or knock-down mice models,
Martínez-Hernández et al. found that KLHL1 is important for
maintaining the CaV3.2 channel expression in DRG neurons.
The CaV3.2 protein level in KLHL1 KO mice is specifically
decreased, and the T-type current is smaller than the wild type
without significant change in the voltage-dependent activation.
These results clearly demonstrate that by modulating the CaV3.2
channel expression, KLHL1 can regulate the DRG excitability
and pain sensitivity, providing a potential target to treat
peripheral pain.

Unlike voltage-gated ion channels that sense the membrane
voltage change via the voltage sensing domain (Wang et al.,
2017; Hou et al., 2020), the transient receptor potential channels
(TRP channels) are ligand-gated ion channels that are sensitive
to physical (heat, pH, osmolarity, etc.) and chemical (ligands,
Ca2+, etc.) stimuli from the environment, and therefore are
important sensors for perception (Clapham, 2003). TRPV
channels (the vanilloid subtype) are widely expressed and critical
to nociception (Julius, 2013). TRPV3 is highly expressed in the
cochlea hair cells, colocalizing with TRPV4 (Ishibashi et al.,
2008). Studies on TRPV3KO mice model by Wang et al. found
that a significant portion (27.7%) showed impaired hearing
associated with loss of cochlear hear cells, but most TRPV3KO
mice (72.3%) had normal hearing. Interestingly, compensatory
upregulation of TRPV4 was observed in the TRPV3KO mice
with normal hearing, suggesting that both TRPV4 and TRPV3
channels are important for maintaining normal hearing. Overall,
these results offer not only novel insight into the molecular basis
of hearing but also potential target for treating hearing loss.

The Ca2+ ion is also a key player for spinal cord injury (SCI),
a seriously debilitating event that can lead to paralysis and even
death (Ditunno and Formal, 1994). After SCI, damaged neurons
release high concentrations of the neurotransmitter glutamate
(Park et al., 2004), resulting in excessive intracellular Ca2+ and

increasing cell death. To facilitate functional recovery after SCI,
the combination of ion channel inhibitors to block the three
main Ca2+ channels [Lom: for voltage-gated Ca2+ channels
(Sattler et al., 1996), oxATP: for P2X7 receptors (Hollmann
et al., 1991), and YM872: for Ca2+ permeable AMPA receptors
(Hollmann et al., 1991)] has been proven an effective treatment
for neurotrauma (O’Hare Doig et al., 2016, 2017). O’Hare Doig
et al. further investigated this combinational strategy on a
clinically relevant model of SCI and observed significant positive
changes in early functional recovery and pathophysiology. Future
studies on the combination of these ion channel blockers in
chronic models of SCI are required to evaluate its long-term
effect of treatment. Overall, O’Hare Doig et al. showed that
the combination of Ca2+ channel blockers can be a promising
strategy for treating SCI.

Cerebral ischemia-reperfusion injury (CIRI) can cause severe
damage to the brain. During cerebral ischemia-reperfusion,
oxidative stress occurs and a large number of inflammatory
cytokines are present in the ischemic focus (Lin et al., 2016).
Wu et al. summarized current studies about the roles of
oxidative stress and inflammation in CIRI, as well as important
signaling pathways and therapeutic options for CIRI. Similar
to the abovementioned combination strategy works better for
SCI than using individual blockers (Savigni et al., 2013),
single antioxidant therapy can only reduce cerebral ischemic
injury to a certain extent, and so far there is no simple
strategy to control the neuroinflammation due to the complex
mechanisms of inflammation in CIRI. To this point, Wu et al.
proposed that future studies can focus on the development of
a free radical scavenger with multiple mechanisms of action
and the combination of free radical scavengers with anti-
inflammatory drugs.

Schizophrenia is a serious mental illness that affects ∼1%
of the world population and places a major socio-economic
burden (Blot et al., 2013). The World Health Organization
(WHO) estimated that, in Western countries, direct annual costs
of schizophrenia range from 1.6 to 2.6% of total health care
expenditures. In the US alone, the annual economic burden of
schizophrenia is more than US$60 billion (Chong et al., 2016).
The N-methyl-D-aspartate receptor (NMDAR) is important for
the development of the nervous system and the formation of
neuronal circuits (Moghaddam et al., 1997; Fellin et al., 2009),
and accumulating evidence in human and animal studies support
that NMDAR hypofunction is a convergence point of various
symptoms of schizophrenia. Lee and Zhou summarized various
animal models of NMDAR hypofunction generated by both
pharmacological and genetic approaches, and how they relate
to the pathophysiology of schizophrenia. Lee and Zhou also
discussed limitations of these animal models and their potential
utility for therapeutic applications. With the recent breakthrough
on structural and pharmacological studies of NMDAR (Zhang
et al., 2021), these animal models will provide useful platforms
to identify novel therapeutics for schizophrenia.

Taken together, neurological disorder is one of the leading
cause of deaths all over the world. This research topic highlights
exciting new advances in the modulation mechanism of key
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ion channels in the nervous system, and the critical roles
of ion channels in maintaining the physiological function
and alleviating the symptoms of diseases. Further basic
and clinical studies on ion channels will help develop new
therapeutics for treating neurological disorders and improving
human health.
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