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A chromosome is a single long DNA molecule assembled along its length with nucleo-
somes and proteins. During interphase, a mammalian chromosome exists as a highly
organized supramolecular globule in the nucleus. Here, we discuss new insights into how
genomic DNA is packaged and organized within interphase chromosomes. Our emphasis
is on the structural principles that underlie chromosome organization, with a particular
focus on the intrinsic contributions of the 10-nm chromatin fiber, but not the regular
30-nm fiber. We hypothesize that the hierarchical globular organization of an interphase
chromosome is fundamentally established by the self-interacting properties of a 10-nm
zig-zag array of nucleosomes, while histone post-translational modifications, histone
variants, and chromatin-associated proteins serve to mold generic chromatin domains
into specific structural and functional entities.

Introduction
A zig-zag array of the nucleosomes, in which DNA is wrapped around spaced core histone octamers, is
referred to throughout as the 10-nm chromatin fiber (Figure 1, bottom center) [1,2]. An interphase
chromosome at its core is a single very long 10-nm chromatin fiber that is highly organized in the
nucleus. In any given specific region of a chromosome, the 10-nm chromatin fiber is associated with a
specific complement of proteins, e.g. linker histones [3], CCCTC-binding factor (CTCF) [4–6], cohesin
[7,8], heterochromatin protein 1 (HP1) [9,10], and transcription factors. An important outstanding
question is how does a single long 10-nm chromatin fiber and its bound proteins become assembled
and organized into an interphase chromosome? The answer is central to our understanding of how the
information in eukaryotic genomes is organized and accessed, and impacts on the mechanisms of all
nuclear processes that take place in a chromosomal milieu. The paradigm of how an interphase
chromosome is packaged and structured is changing. In its place is emerging a new view in which an
interphase chromosome consists of a hierarchy of globular domains assembled from 10-nm fibers in a
very dynamic manner. How do these chromosomal structures form? What controls their biological
activity? Here, we address these questions, focusing on the intrinsic roles of the 10-nm chromatin fiber.

An evolving paradigm: the emerging importance of the
10-nm fiber and globular chromatin domains in vivo
The long-standing paradigm of chromosome organization — variants of which are found in all text-
books — holds that the 10-nm chromatin fiber continuously folds, twists, and coils into increasingly
more condensed structures until chromosomal-level compaction is achieved [12–15]. Central to this
view is folding of the 10-nm fiber into a helical 30 nm diameter conformation (the 30-nm chromatin
fiber) [12–19]. The 30-nm fiber is thought to be a repressive structure, while the 10-nm fiber is more
open, accessible, and biologically active [20,21]. In the textbook view, the default structural state of the
chromatin is the 30-nm fiber; 10-nm fibers are only thought to be present in localized regions of the
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genome that require enhanced chromatin accessibility. However, this key tenet has been challenged by new
studies. Cryo-electron microscopy (EM) analyses failed to observe 30-nm fibers in interphase chromatin or
mitotic chromosomes in situ [22–26]. Likewise, small-angle X-ray scattering (SAXS) studies found no evidence
for 30-nm fibers in the chromatin of isolated nuclei or mitotic chromosomes [27–29]. The face-to-face and
edge-to-edge nucleosome–nucleosome interactions observed in the SAXS experiments were interpreted to reflect
bulk packaging of 10-nm fibers in a highly disordered and interdigitated state. We call this ‘polymer-melt’
structure, in which the nucleosome fibers may be constantly moving and rearranging at the local level [27,30]
(Figure 1, bottom left). A packaged polymer-melt structure also best explains how chromatin can generate elastic
force in the nucleus [31]. Further support for a key role for 10-nm fibers came from electron spectroscopic
imaging and tomographic analyses of mouse interphase chromosomes, which found that both open and closed
chromatin domains consisted of 10-nm chromatin fibers; 30-nm fibers were not visualized [32]. A recent study
measured the Kuhn length (an index of bendability) of genomic chromatin and found that the chromatin fiber
is much more bendable than would expected if the chromatin was in the 30-nm conformation [33].
Super-resolution microscopy found that the chromatin fiber in situ consists of irregular groups of nucleosome
‘clutches/nanodomains’, not regular 30-nm fibers [34]. More recently, a combination of multitilt EM tomography
and a labeling method (ChromEM) that selectively enhances the contrast of DNA showed that nucleosomes in
the glutaraldehyde-fixed cells assemble into disordered chains that have diameters between 5 and 24 nm, with
different particle arrangements, densities, and structural conformations [35]. These results indicate that the
structure of the 10-nm fiber in the cell is not uniform, but rather is heterogeneous and varies in diameter.
Together, these recent results support a new view in which chromosome organization is achieved without

folding into regular 30-nm fibers [18,30,36,37]. Concomitantly, in the new view, the default conformation of
genomic chromatin is the 10-nm fiber (Figure 1, bottom center), and it is the 30-nm fiber that may exist only
transiently, or for specific regulatory purposes such as terminal differentiation. It should be noted that the
10-nm fiber in vivo is not likely to have a fully extended beads-on-a-string primary structure as is usually
depicted. Rather, the chromatin fiber appears to adopt various secondary structures that are amenable to inter-
digitated packing [38], including a loose zig-zag [39]. We have attempted to portray the zig-zag nature of the
10-nm fiber in our models (Figures 1 and 2)
Does a packaged interphase chromosome have a distinct structure? When sections of nuclei are visualized by

transmission electron microscopy, the chromatin is partitioned into dark electron-dense regions (heterochromatin)

Figure 1. A model for the hierarchical domain organization of an interphase chromosome based on packaging of 10-nm

fibers.

The crystal structure of the nucleosome [11] is shown on the bottom right (figure courtesy of K. Luger). Subsequently, the

nucleosome has been drawn as a disc with protruding histone tails. The compact chromatin domain was built from the

packaged 10-nm fibers. The chromosome was built from compact chromatin domains. Packaged 10-nm fibers in the nucleus

appear to be more heterogeneous than drawn.
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and much lighter and less electron-dense regions (euchromatin) [40]. Analogous results have been obtained using
fluorescence microscopy. At first glance, this might seem like interphase chromosomes lack a discrete morphology.
However, when individual human interphase chromosomes were painted with probes and analyzed by fluores-
cence in situ hybridization microscopy [41,42], the rather striking result was that each chromosome was visualized
as a discrete, largely self-interacting globule that occupied its own three-dimensional space in the nucleus [41,42],
called a chromosome ‘territory’ [43].
What higher-order chromatin structures exist between the 10-nm chromatin fiber and a globular interphase

chromosome? Many structural models have been proposed: for instance, ‘chromonema fibers’ with a diameter
of 100–200 nm based on hierarchical helical folding [15,44] and globular ‘DNA replication foci domains’ with
an average diameter of ∼110–150 nm observed via pulse fluorescent labeling [45–47]. Recently, super-
resolution live-cell imaging found that physically compact globular chromatin domains with an ∼200-nm
diameter and estimated size of ∼0.2 Mb DNA exist within mammalian chromosomes, which we call ‘compact
chromatin domains’ (Figure 1, upper left) [48]. Chromosome conformation capture experiments define
chromosomal regions in which the chromatin fiber has a tendency to self-interact and have provided independ-
ent evidence that agree with the microscopy data. High-resolution in situ Hi-C studies have found that inter-
phase genomes consist of chromatin domains with an average of ∼0.2 Mb DNA, termed contact domains
[33,49]. These domains have distinct features [33,49,50] from the more commonly studied ‘topologically associ-
ating domains’ (TADs) observed by 3C, Hi-C, and related methods [44,50–59]. As with the compact chromatin
domains observed by microscopy [44,48,60,61], contact domains generally are portrayed as a string of globular
domains [33,49,59] (upper panel in Figure 1). Interestingly, TADs identified by the Hi-C method are invisible
during mitosis [62], but the compact chromatin domains revealed by super-resolution imaging persist through-
out the cell cycle [48]. Therefore, we propose that the physically compact chromatin domains composed of an
average of 0.2 Mb DNA are the stable building blocks of chromosomes (Figure 1, upper left), while TADs rep-
resent more transient structures assembled for specific functional purposes during interphase.
The folding of kilobase to megabase genome structures encompassing specific gene loci has been actively

studied. High-resolution modeling of the 0.5 Mb α-globin gene locus in expressed and silenced cells found that
the α-globin chromatin folded into discrete globules in both cell types [63]. More recent modeling of the same
α-globin locus confirmed the folding into discrete structural units [64]. A super-resolution imaging study has
identified discrete domains in flies corresponding to transcriptionally inactive, active, and Polycomb-repressed
chromatin, each with their own specific structural properties [65]. Recent modeling of chromatin looping near

Figure 2. In vitro conformational dynamics of the chromatin fiber.

See the text for details and discussion.
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gene regulatory elements also provides evidence for the formation of specific higher-order chromatin domains
[66]. Taken together, we speculate that the compact chromatin domains observed by microscopy and the
contact domains identified by Hi-C are related to the chromatin globules and structural units that organize the
chromatin of specific genes. In other words, the discrete folded chromatin structures that encompass genes and
gene networks may represent fundamental building blocks used to assemble higher-order compartments (see
below) and ultimately an interphase chromosome partitioned into euchromatin and heterochromatin.
Genome-wide Hi-C studies have identified a level of hierarchy above the compact chromatin domains,

termed compartment [53,67–70]. Two types of compartments were distinguished, as defined by their chroma-
tin and functional states: transcriptionally active compartments composed of ‘open’ chromatin (compartment
A) and inactive compartments formed from ‘closed’ chromatin (compartment B) (upper panel in Figure 1).
Recall that both open and closed mouse chromatin domains consist of packaged 10-nm fibers [32], which will
become important in our discussion below.
Collectively, the data summarized in this section support a new structural model in which an interphase

chromosome in vivo is fundamentally organized as a hierarchy of globular chromatin domains assembled from
packaged 10-nm fibers. Such a hierarchical globular structure would allow for effective functional compartmen-
talization of the genome, while simultaneously compacting the long 10-nm fiber so that it fits in the nucleus.

Advances in chromatin fiber dynamics in vitro:
self-associated structures of chromatin
Is there any support for the new view of interphase chromosome structure based on what is known about the
dynamic behavior of the chromatin fiber in vitro? The classical experiment in chromatin fiber dynamics is to
start with an extended 10-nm array of nucleosomes in low salt (cation) buffer and characterize structural
changes that occur to the fiber as cations (e.g. 50–600 mM Na+ or 0–10 mM Mg2+) are titrated into solution.
This protocol was established in the 1970s [71,72] and has been implemented by the field for 40 years. In most
cases today, the nucleosomal arrays are obtained after reconstitution of recombinant histone octamers onto tan-
demly repeated nucleosome positioning DNA. The number of repeats typically is 12–60. In the presence of
0.5–2 mM Mg2+, an array of nucleosomes folds into more compact structures [12,73–75] (Figure 2). Chromatin
folding is a continuous process that starts with adjacent nucleosome–nucleosome interactions and culminates
with the formation of a helical 30 nm diameter fiber conformation as cation is progressively increased over this
range. Historically, much of the basis for the long-standing paradigm discussed above comes from the folding
of the chromatin fiber into 30-nm structures in vitro. However, in the new view, 30 nm fibers are not involved
in bulk chromatin fiber packaging within a chromosome.
As the cation concentration is increased from 2 to 4 mM Mg2+, a short array of nucleosomes self-associates

to form large chromatin structures, which we call ‘oligomers’ (Figure 2). This phenomenon was originally inter-
preted as formation of insoluble precipitants [72] and still is often referred to as ‘chromatin precipitation’.
However, because cation-dependent formation of chromatin oligomers is reversible and co-operative [28,76],
these chromatin structures are potentially biologically important [12,77]. Until recently, everything that was
known about chromatin oligomers was based on a simple microcentrifuge pelleting assay, which yielded the
fraction of the sample that was self-associated as a function of cation concentration. This assay has revealed
that assembly of chromatin oligomers is dependent on each of the four of the core histone tail domains acting
independently and additively [78], and that certain histone post-translational modifications (PTMs)
[20,21,38,79–82], histone variants [83,84], and specific chromatin-associated proteins [85–87] can influence the
range of cation concentrations at which oligomers assemble. However, because structural analyses of the chro-
matin oligomers had yet to be performed, it was only possible to speculate on the functional significance of
these results [12,77].
To better understand the phenomenon of chromatin fiber self-association, we recently characterized the

assembly, packaging, and morphology of the large chromatin oligomers using fluorescence and transmission
electron microscopy, analytical ultracentrifugation, SAXS, and nuclease digestion [28]. The chromatin oligo-
mers had a globular shape under all conditions examined as revealed by microscopy. The size distribution of
the oligomers was quite broad, generally spanning tens to hundreds of thousand S as judged by sedimentation
velocity. Fluorescence light microscopy also observed a broad distribution of oligomer sizes, ranging in diam-
eter from a 100 to ∼1000 nm. The average amount of DNA/oligomer varied from ∼1 Mb in the early stages of
assembly to greater than ∼500 Mb after self-association was complete. The microscopy and sedimentation data
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suggest that the ∼1000 nm oligomers may be assemblages of the 100 nm diameter particles. Collectively, these
results indicate that an array of nucleosomes possesses all the information necessary to self-assemble into
globular large-scale chromatin structures that spanned the approximate size of the compact chromatin domains
observed in vivo to entire chromosomes. SAXS indicated that the chromatin fibers within the oligomers were
packaged as 10-nm fibers; no regular 30-nm fibers were detected, even in the presence of histone H1.
Micrococcal nuclease (MNase) digestion of the linker DNA within the oligomers produced smaller, more
compact particles. These results indicated that both linker DNA and nucleosome–nucleosome interactions are
involved in structuring oligomers, as would be predicted if the 10-nm fibers were packaged in an interdigitated,
polymer-melt structure (Figure 1). Moreover, the MNase results revealed that the packaged linker DNA seg-
ments within the oligomer structures were readily accessible to a small diffusible protein. Consistent with this
observation, the SAXS data suggested that the individual chromatin fiber subunits may be somewhat loosely
packaged within the oligomers. Collectively, the results summarized above suggest that the chromatin oligomers
are structured and packaged in the same way as the chromatin in an interphase chromosome in vivo. This, in
turn, suggests that the oligomers are good in vitro model systems for investigating interphase chromosome
structure and function.
The relevance of in vitro chromatin self-association to chromosome structure in the nucleus was addressed

by determining the effects of Mg2+ concentration on the chromosomal organization of isolated HeLa nuclei
[28]. Under low Mg2+ conditions that dissociated the chromatin oligomers into monomeric subunits in vitro,
nuclei doubled in size resulting from extensive chromatin decondensation due to repulsion between the nega-
tively charged nucleosomes and lost all resemblance of their internal architecture [28] and chromatin elasticity
[31]. The basic compositions of chromatin-bound proteins, including core histones, linker histones, cohesin,
and CTCF, were not changed before and after chromatin decondensation in low Mg2+ [31]. These results
strongly imply that the fiber–fiber interactions that stabilize chromatin oligomers in vitro are equivalent to
those that organize interphase chromosomes in isolated nuclei. Interestingly, a study using nuclei also showed
that compact chromatin structures are more resistant to radiation damage than when extended, probably
because compact chromatin has a lower potential for reactive radical generation on exposure to ionizing irradi-
ation [88]. This provides biological relevance to the compact chromatin structures observed in vitro and in
vivo. A chromosomal chain of nucleosomes is bendable and flexible [33,89]; therefore, the way it interacts with
itself over long distances in an intact chromosome should be mimicked by the way that short chromatin fibers
interact with themselves in vitro. Altogether, the structural analyses of the chromatin oligomers have provided
strong in vitro support for the emerging view of interphase chromosome structure and organization, while at
the same time suggesting that the intrinsic self-interacting properties of a 10-nm array of nucleosomes play a
more important structural role in assembling and maintaining globular chromosomal domains than is currently
portrayed in most models [44,51–58,69,70,90,91].

Tying it all together: a hypothesis for the role of the 10-nm
chromatin fiber in the assembly, packaging, and
organization of interphase chromosomes
As discussed above, there now is significant in vivo and in vitro data supporting the view that an interphase
chromosome is a hierarchical assemblage of globular chromatin structures formed from packaging of 10-nm
fibers in an interdigitated polymer-melt structure (Figure 1). At the molecular level, the packaged 10-nm chro-
matin fibers interact through a network of nucleosome–nucleosome and nucleosome–linker DNA contacts
mediated by the histone tails [12,28,31,78]. Magic-angle spinning NMR experiments indicate that the H3 and
H4 tails are flexible and dynamic within the packaged chromatin oligomers, not immobilized by high-affinity
interactions [92]. Also, a recent DNA origami device found that nucleosome–nucleosome interactions are quite
weak (approx. −1.6 kcal/mol) [93]. Thus, we believe that the network of tail-dependent nucleosome–nucleo-
some interactions within packaged chromatin is inherently fluctuating. Mechanistically, this could arise if each
tail binds with similar affinity to multiple locations on the chromatin fiber, e.g. linker DNA [28,31], nucleo-
some surface [94], and nucleosomal DNA. The highly dynamic nature of the packaged chromatin fiber is
consistent with the idea that chromatin within chromosomes has liquid-like properties [95]. Based on these
intrinsic characteristics of the chromatin fiber, we hypothesize that the hierarchical globular organization of an
interphase chromosome is fundamentally established by the self-interacting properties of a 10-nm array of
nucleosomes, while histone PTMs, histone variants, and chromatin-associated proteins serve to mold generic
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chromatin domains into specific structural and functional entities. We know that chromatin fiber self-
interactions leading to assembly of large chromatin globules are intrinsic properties of a 10-nm array of nucleo-
somes under physiological ionic conditions [28]. In addition, super-resolution live-cell imaging studies suggest
that nucleosome–nucleosome contact is required for the compact chromatin domain formation [48]. This, in
turn, suggests that the extensive self-interaction of the nucleosome chain is a fundamental organizing principle
in the assembly and maintenance of the hierarchical globular structure of the chromosome. We note that the
assembly of 10-nm fibers into compact chromatin domains, which themselves can partly interdigitate to form
compartments, followed by further interdigitation to eventually form a chromosome (Figure 1) could provide
the molecular basis for a fractal-like genome [67,96,97].
How can the intrinsic packaging of the 10-nm chromatin fiber within compact chromatin domains in vivo

be regulated for functional purposes? Certain histone PTMs and histone variants influence the assembly of
chromatin oligomers in vitro. It is well established that the packaged chromatin environment within the chro-
matin oligomers is very sensitive to modified histone tails [20,21,38,79–82]. A single nucleosome bearing acetyl-
ation mimics, located in the middle of a 25-mer nucleosomal array, is sufficient to enhance linker DNA
accessibility near the modified nucleosome [98]. Importantly, the live-cell super-resolution imaging and micro-
needle studies suggest that compact chromatin domains become decondensed [48] and chromatin elasticity lost
[31,99] in response to global histone tail acetylation in vivo. Extrapolating these observations to a chromosome,
we propose that the polymer-melt structure of a given region of the chromatin fiber within a compact chroma-
tin domain can be regulated by specific PTMs and variants, acting through their influence on histone tail inter-
actions with linker DNA and the surfaces of other nucleosomes. In this manner, the specific patterns and
locations of the modifications and variants will help customize the local structure and function of the packaged
chromatin within the chromatin domain. These factors may act globally as well. Hyperacetylated histone H4 is
located throughout the chromatin encompassing the mouse β-globin gene locus [100] and acetylation correlates
with general DNase I sensitivity [101]. Thus, modification of the chromatin encompassing whole genes may
influence the global structure and function of an entire chromatin domain, consistent with recent in vivo obser-
vations [48].
Chromosomal proteins are seen to play key roles in structuring compact chromatin domains, acting through

several mechanisms. One key way is global folding of 10-nm fiber with the DNA capturing proteins such as
cohesin [7,8,48] and CTCF [5,6]. Interactions between separated sites along the chromatin fiber can ensure for-
mation of stable chromatin loops. Another important way in which proteins can influence fiber–fiber interac-
tions is through screening DNA charge. Sufficient neutralization of DNA’s negative charge by multivalent
cations is necessary to package a 10-nm array of nucleosomes into an interdigitated polymer-melt structure in
vitro [28,76,102]. When the core histone tails are removed individually, in each case more cation is required to
induce assembly of chromatin oligomers [78], suggesting that the tails function, in part, by neutralizing DNA’s
negative charge. When basic proteins such as histone H1 [85], MeCP2 [86], and yeast Sir3p [87] are pre-bound
to a nucleosomal array in vitro, the chromatin oligomers assemble at lower cation concentrations than the
parent nucleosomal arrays. Studies of H1-bound oligomers indicated that they remained globular assemblages
of 10-nm fibers, but the H1-chromatin fibers appeared to be more tightly packaged together, and on the
average, the globules were significantly smaller than those formed by nucleosomal arrays [28]. Thus, protein
binding can influence the both local and global fiber–fiber interactions in the in vitro system. A third mechan-
ism through which proteins may influence chromatin fiber packaging is binding to the histone tails [103,104].
In principle, proteins can locally alter the packaging of the interdigitated fiber by binding to the histone tails,
thereby sequestering and removing them from promoting fiber self-interaction. Finally, it has recently been
shown that the heterochromatin protein HP1 undergoes a phase transition in vitro [105,106]. Thus, proteins
may influence chromosome domain structure by influencing the liquid-like behavior of the chromatin fiber
[95]. In this manner, the sum of all the bound chromosomal proteins in any chromatin domain is proposed to
be a key determinant of the specific local and global structure of that domain, and concomitantly the functions
associated with it.
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CTCF, CCCTC-binding factor; EM, electron microscopy; HP1, heterochromatin protein 1; MNase, micrococcal
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