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as proxies for unmeasured variables:
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Abstract

Background: Within routinely collected health data, missing data for an individual might provide useful information in
itself. This occurs, for example, in the case of electronic health records, where the presence or absence of data is informative.
While the naive use of missing indicators to try to exploit such information can introduce bias, its use in conjunction with
multiple imputation may unlock the potential value of missingness to reduce bias in causal effect estimation, particularly in
missing not at random scenarios and where missingness might be associated with unmeasured confounders.

Methods:We conducted a simulation study to determine when the use of a missing indicator, combined with multiple
imputation, would reduce bias for causal effect estimation, under a range of scenarios including unmeasured variables,
missing not at random, and missing at random mechanisms. We use directed acyclic graphs and structural models to
elucidate a variety of causal structures of interest. We handled missing data using complete case analysis, and multiple
imputation with and without missing indicator terms.

Results:We find that multiple imputation combined with a missing indicator gives minimal bias for causal effect estimation
in most scenarios. In particular the approach: 1) does not introduce bias in missing (completely) at random scenarios; 2)
reduces bias in missing not at random scenarios where the missing mechanism depends on the missing variable itself; and
3) may reduce or increase bias when unmeasured confounding is present.

Conclusion: In the presence of missing data, careful use of missing indicators, combined with multiple imputation, can
improve causal effect estimation when missingness is informative, and is not detrimental when missingness is at random.
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Background
Missing data is a common feature in observational studies.
It is conventional to view missing data as a nuisance, and
as such, methods to handle missing data usually target an
estimand that would be available in the absence of missing
data (completed data estimand). The mechanism for miss-
ingness is conventionally divided into three categories:
missing completely at random (MCAR), missing at ran-
dom (MAR), and missing not at random (MNAR) [1, 2].

In the case of MCAR and MAR, an unbiased estimator of
any completed data estimand exists. Such an estimator is
provided by complete case analysis in MCAR scenarios,
and by multiple imputation in both MAR and MCAR sce-
narios. In contrast, under MNAR, unbiased estimators of
a given completed data estimand may or may not exist,
depending on the nature of the estimand, and the joint
distribution of the missingness mechanism and the other
variables under consideration [2].
Alongside missing data, confounding is a threat to

causal effect estimation in observational studies, espe-
cially where this is caused by unmeasured variables.
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Where unmeasured confounding exists, it is not possible
to construct unbiased estimators of a causal effect, with-
out making strong, unverifiable assumptions [3].
For example, consider a scenario in which we are in-

terested in calculating the causal effect of total choles-
terol (exposure) on cardiovascular disease (outcome),
using electronic health records. Presence (analogous to
missingness) of a cholesterol test result for a particular
patient indicates that a decision was made to run this
test, and the reason for this decision is likely to depend
on characteristics of the patient; for example the pa-
tient’s diet, which may or may not be recorded. Diet
may affect both the result of the laboratory test, and the
outcome of interest, hence confounding. If information
concerning diet is not recorded, we therefore have un-
measured confounding, and unbiased estimators of the
causal estimand may not exist. Moreover, the missing-
ness mechanism for the exposure may depend on un-
measured variables, in which case the exposure is
MNAR, and an unbiased estimator of the completed
data estimand may not exist either.
An emerging hypothesis is that in scenarios such as

this, missing data may be a blessing rather than a curse,
because the missingness mechanism can be used as a
proxy for the unmeasured confounding, through the use
of missing indicators [4]. Suppose one wished to use
missing data approaches to target the causal estimand
directly (rather than the completed data estimand, as is
done conventionally [5]). Then, exploiting the missing-
ness mechanism through the use of missing indicators
may reduce bias even compared with estimation in the
absence of missing data, particularly when the missing
indicator is used in conjunction with multiple imput-
ation (MIMI) [4, 6–8]. This is despite that naïve use of
missing indicators introduces bias in the completed data
estimand under MAR and MCAR [9–12].
In this paper we investigate, through simulation sup-

plemented with analytical findings, the potential for
using the missingness mechanism to partly adjust for
unmeasured confounding and other missing not at
random scenarios, and identify the cases where this can
reduce bias for causal effect estimation.

Methods
Scenarios and data generating mechanisms
Our aim is to identify missing data strategies that re-
cover causal effects of an exposure on an outcome,
with minimal bias in a variety of scenarios, especially
where the causal effects are affected by unmeasured
confounding. The scenarios that we consider in this
paper are given in Fig. 1. We consider a partially ob-
served exposure A, a fully observed outcome Y and a
further variable U, which is either fully unobserved or
fully observed depending on the mechanism for

missingness. The missingness indicator for A is RA

where RA = 0 when A is missing. In the example in
the Introduction, A is total cholesterol, Y is cardiovas-
cular disease, U is diet, and RA denotes whether a
cholesterol test has been performed or not. A∗ is the
observable part of A, i.e. A∗ = A when RA = 1, and
missing when RA = 0. So A∗ is what we observe, while
A includes unobserved values.
We use the counterfactual notation for consideration

of causal effects, e.g. Y(A = a) denotes the value of Y that
would be observed if, possibly contrary to fact, we set
A = a, and we will abbreviate to Y(a) where this does not
lead to ambiguity. See [3] for an introduction to causal
inference with counterfactuals. Our primary aim is to re-
cover the unconditional causal effect of A on Y; for con-
tinuous exposure, A, that is the expected effect on Y for
1-unit increase in A: δA≔ E[Y(A = a + 1) − Y(A = a)]. We
also have a secondary interest in inferring the presence
of unmeasured confounding (i.e. whether an unobserved
U directly affects both A and Y) or missing not at
random mechanisms, or both.
First, we consider scenarios in Fig. 1 where U is

assumed to be unobserved, which we label (i)-(vi).
Scenario (i) corresponds to MCAR, since RA is inde-
pendent of all other variables. All other scenarios,
(ii)-(vi), are MNAR since RA is dependent on U or A
or both. Note here that we follow the graphical defi-
nitions of MCAR, MAR and MNAR as set out in [2].
In scenarios (i) and (iv), complete case analysis can
yield unbiased estimates of the causal effect of A on
Y (see e.g. [13] for scenario (iv)). In scenarios (iii)
and (vi), the unobserved variable U confounds the re-
lationship between A and Y, so an unbiased estimate
of the causal effect of A on Y may not be available
even if there were no missingness.
In scenarios (ii), (iii), (v), and (vi), we could view RA as

a proxy for the unobserved U. It therefore may be bene-
ficial to include RA in the outcome model. This may re-
duce bias in the estimation of the causal effect of A on
Y, by partly adjusting for the confounding effect of U.
Second, we consider each of the six scenarios in Fig. 1

with U assumed fully observed, and label these (i-U)-(vi-
U). Here, we do not expect any benefit in including RA

in the outcome model, but we wish to examine any re-
duction in performance that doing so may introduce.
Scenario (i-U) remains MCAR, while scenarios (ii-U)
and (iii-U) are now MAR. Scenarios (iv-U), (v-U), and
(vi-U) remain MNAR but only through the dependence
of RA on A.
We now specify the structural models that will be as-

sumed for our further derivations and simulations.

� U is binary with P[U = 1] = πU.
� A is continuous, with A∼Nðα0 þ αUU ; σ2AÞ.
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� RA is binary, with either P[RA = 0] =
expit(β0 + βUU + βAA + βUAUA), or simply
RA = 1 −U, depending on the scenario considered.

� Y is continuous, with Y∼Nðγ0 þ γUU þ γAAþ γUA
UA; σ2Y Þ.

The outcome model is linear in A hence the causal ef-
fect of a one-unit change in A does not depend on the
starting value of A, however it does depend on U be-
cause of the interaction term. Specifically, the (true) un-
conditional causal effect of interest, by standardization,
is δA = E[Y(A = a + 1) − Y(A = a)] = γA + πUγUA.

Considered approaches
For notation, we use Greek letters with no superscripts
to denote true parameter values (from the data generat-
ing mechanisms described in the previous section) – e.g.
γA - and use the same Greek letters with bracketed
superscripts to denote the parameters estimated in the

various analysis models – e.g. γð1ÞA . We consider the
following imputation and modelling approaches.
First, a complete case analysis. When U is unobserved,

this fits the model E½Y � ¼ γð0Þ0 þ γð0ÞA A� , restricting to
observations where RA = 1. When U is observed, the

model is E½Y � ¼ γð0UÞ
0 þ γð0UÞ

A A� þ γð0UÞ
U U þ γð0UÞ

UA UA�.
Second, we consider multiple imputation, under a joint

normal model assuming a MAR mechanism. Thus, when

U is unobserved the imputation model is E½A� ¼ ϕðIÞ
0

þϕðIÞ
Y Y , and when U is observed the imputation model

is E½A� ¼ ϕðIUÞ
0 þ ϕðIUÞ

Y Y þ ϕðIUÞ
U U þ ϕðIUÞ

UY UY (including
the interaction term, as recommended in [14]). Missing
A s are imputed by a random draw from the predictive

distribution implied by the imputation model, using
‘proper’ imputation which accounts for both the uncer-
tainty in the imputation model, and the residual variance
[15]. This is repeated multiple times and subsequent re-
sults are pooled over iterations using Rubin’s rules (in
this study we consider five imputations for the sake of
computational time).
Throughout, we denote the imputed A as Aimp. We

then consider the following three outcome/analysis
models, when U is unobserved:

1. ‘MI(A)’: E½Y � ¼ γð1Þ0 þ γð1ÞA Aimp.
2. ‘MI(R + A)’: E½Y � ¼ γð2Þ0 þ γð2ÞA Aimp þ γð2ÞR ð1 − RAÞ.
3. ‘MI(R*A)’: E½Y � ¼ γð3Þ0 þ γð3ÞA Aimp þ γð3ÞR RA þ γð3ÞRA

Aimpð1 − RAÞ.

Model 1 represents a standard multiple imputation
(MI) approach, while models 2 and 3 are variants of the
MIMI approach, without and with interaction (MI(R +
A), MI(R*A)).
When U is observed we consider three outcome

models of the same form:

1. U. ‘MI(A)’: E½Y � ¼ γð1UÞ
0 þ γð1UÞ

A Aimp þ γð1UÞ
U U þþ

γð1UÞ
UA UAimp.

2. U. ‘MI(R + A)’: E½Y � ¼ γð2UÞ
0 þ γð2UÞ

A Aimp þ γð2UÞ
R ð1

− RAÞ þ γð2UÞ
U U þþγð2UÞ

UA UAimp.
3. U. ‘MI(R*A)’: E½Y � ¼ γð3UÞ

0 þ γð3UÞ
A Aimp þ γð3UÞ

R RA

þγð3UÞ
RA Aimpð1 − RAÞ þ γð3UÞ

U U þþγð3UÞ
UA UAimp.

Finally, we also include ‘completed data’ models in
which we use the original variable A in our models. This
serves as a ground-truth for all analyses in the absence

Fig. 1 Causal directed acyclic graphs denoting missingness mechanism for A, RA: six scenarios considered in the paper
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of missing data. In scenarios (i)-(vi), U is not observed

hence the completed data model is E½Y � ¼ γðCÞ0 þ γðCÞA A,

while in scenarios (i-U)-(vi-U) U is observed, hence E½Y �
¼ γðCUÞ

0 þ γðCUÞ
A Aþ γðCUÞ

U U þ γðCUÞ
UA UA.

When U is not observed, by standardisation we would

hope that E½γ̂ð jÞA � ≈ δA ¼ γA þ γUAπU (for j = 0, 1, 2, C),
which represents the unconditional causal effect of A on
Y. In MI(R*A), the (1 − RA) term may act as a partial
proxy for U, therefore inclusion of the interaction means

we expect cE½γð3ÞA � to lie between the unconditional and
marginal causal effects of A on Y.

For the cases where U is observed, we hope that E½γ̂ð jÞA
� ≈ γA for all models (j = 0U, 1U, 2U, 3U, CU), since the
interaction with U is always modelled.
Where present in our models, we hypothesise that the

γ̂ð jÞR and γ̂ð jÞRA terms may indicate MNAR when they are
nonzero.

Analytical comments
It is instructive to consider a special case of scenario (ii)
(see Fig. 1), in which RA = 1 −U. Suppose further that
the true underlying regression model has no interaction,
i.e. E[Y] = γ0 + γAA + γUU. Performing multiple imput-
ation for A and including a missing indicator 1 − RA in
the outcome model – which corresponds to the MI(R +
A) approach described above (model 2) - would be ex-
pected to perform well, as this analysis model matches
the true model. Indeed, the regression coefficient of A

on Y can be estimated without bias, E½γ̂ð2ÞA � = E½γ̂A� = γA.
However, the model produces a biased estimate of the

regression coefficient of Y on U, E½γ̂ð2ÞR � ¼ E½γ̂U � ≈ γU
σ2Y

γ2Aσ
2
Aþσ2Y

. This is because fitting the imputation model in-

troduces regression dilution [16]. A justification is given
in the Appendix. We emphasise that this should not be
viewed as a shortcoming of multiple imputation, since
multiple imputation in this case is targeting the regres-
sion coefficient of Y on A in the absence of missing data
(completed data estimand), γA.
While the case RA = 1 −U may seem extreme, it could

approximately hold in practice: for example, if a particu-
lar test (A) is commonly run if a particular unrecorded
condition (U) is met, and is rarely run otherwise.

Simulation study set-up
The aims, general structure, and models, are described
above. We consider the following specific data generat-
ing mechanisms, which cover all of the scenarios (i)-(vi)
and (i-U)-(vi-U) described in Fig. 1. We closely follow
best practice for the design and reporting of simulation
studies as proposed in [17].

For the RA ≠ 1 −U case:

� We fix the sample size (number of observations
within each simulation run) to be n = 10,000, and fix
πU = 0.5.

� We choose the intercepts as functions of the other
parameters: α0 such that E[A] = 0, γ0 such that
E[Y] = 0, and β0 such that P[RA = 0] varies over the
grid {0.25,0.5,0.75}.

� The main effect parameters, αU, βA, and γU are all
varied over the grid {0,0.1,0.5,1}, the parameter βU
over the grid {−1, 0, 0.1,0.5,1} (a negative βU is
included to study whether the direction of
correlation between U and RA is important), while
we fix γA = 1.

� The interaction effect parameters, βUA and γUA, are
varied between {0,0.5}.

� The standard deviation of Y, σY, is varied over the
grid {0.1,0.5,1}, while we fix σA = 1.

For the RA = 1 −U case, we use the same simulation
settings with the following exceptions:

� We exclude βU, βA and βUA, which are redundant.
� We vary πU over the grid {0.25,0.5,0.75}, as this is

required to vary the proportion of missingness.

All combinations of the parameters are evaluated,
resulting in 11,808 scenarios, of which 288 cover the
case where RA = 1 −U.
For each scenario, we fit the models described in the

previous section, and report estimates of the outcome
coefficients from the various models. Each scenario is re-
peated 200 times and summary statistics over these iter-
ations retained. For all parameters of interest – those of

the form γ̂ð jÞA , γ̂ð jÞR , and γ̂ð jÞRA , we retain the 2.5th, 25th,
50th, 75th and 97.5th percentile parameter estimates.
We also retain the average model-based standard errors
and empirical standard errors for each parameter. For

the parameters γ̂ð jÞA we also report the length and cover-
age of associated confidence intervals.

Results
Here we present a subset of the simulations that capture
the main findings; full results are available – see Avail-
ability of data and materials. Throughout this section
we restrict parameters to γA = 1, γU = 1, and σY = 1, al-
though we consider both γUA = 0 and γUA = 0.5. We also
restrict to cases that result in P[RA = 1] = 0.5. When
γUA = 0, the marginal causal effect of A on Y, and the
conditional causal effect of A on Y (when U = 0 and
when U = 1) are 1. In this case, complete case analysis
agrees closely with the completed data estimates. Most
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of our results focus on this case, for simplicity. When
γUA = 0.5, by standardisation the marginal causal effect
of A on Y, throughout, is 1.25, while the conditional
causal effects of A on Y given U = 0 and U = 1 are 1 and
1.5 respectively. Qualitatively similar results were found
when varying the remaining parameters in the outcome
model and proportion of missing data. Results are sum-
marized in figures and tables. The tables include mean
estimates, average confidence interval width, and cover-
age for a targeted value of 1 in all cases.
Figure 2 and Table S1 show results for Scenarios (i)-

(iii), i.e. where βA = βUA = 0. In addition, for this figure,
we fix P[RA = 1] = 0.5, γA = 1, γU = 1, γUA = 0 and σA = 1.
Scenario (i) is the case where βU = αU = 0. For Scenario
(ii), βU controls the strength of the relationship between
U and RA, with the extreme case RA = 1 −U, with αU = 0.
For Scenario (iii), αU additionally controls the strength
of the relationship between U and A – i.e. introduces
unmeasured confounding.
The causal effect of A on Y is 1 (dotted vertical line in

leftmost panels). For βU = αU = 0 all methods’ estimates
of γA are able to recover this without bias and with ap-
propriate coverage. As βU increases, all methods are still
able to estimate the causal effect well, except that MI(A)

becomes biased when RA = 1 −U. As αU increases, the
completed data model becomes biased because of un-
measured confounding. We see that the MIMI ap-
proaches and complete case analysis are able to mitigate
this to some extent, and successfully when RA = 1 −U.
The estimate of γR becomes nonzero for the MIMI
methods when αU ≠ 0: it is through this that the MIMI
methods are able to partly correct for the unmeasured

confounding. Note that when βU = − 1 then the γ̂ð jÞR s

are negative rather than positive, but the γ̂ð jÞA s are simi-
lar to the βU = 1 case.
Figure 3 and Table S2 present the same scenarios as

Fig. 2 but with γUA = 0.5; hence the marginal and condi-
tional causal effects of A on Y differ, as explained above.
In the RA = 1 −U case, with αU = 0 the completed data
model estimates δA = γA + πUγUA = 1.25, the marginal ef-
fect, while complete case analysis estimates the condi-
tional effect when U = 0 (which is γA = 1); this is of
course not surprising as there is only data when U = 0.
The MI(R*A) estimate agrees with the complete case,
while MI(A) and MI(R + A) tend to interpolate between
the two. However, when βU = − 1 we now see that all
methods have increased bias. This is because the reversal

Fig. 2 Results for scenarios (i)-(iii), with γUA = 0. Mean of estimated coefficients across simulations; error bars represent the 2.5th and 97.5th
percentiles. Columns are different parameter estimates, rows are different values of βU, with the special case RA = 1 − U on the top row. Within
each graph, the y-axis varies αU
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of the correlation between U and RA means that miss-
ingness is more likely when U = 1, when the conditional
causal effect is 1.5.
Figure 4 and Table S3 show results for scenario (i-U)-

(iii-U) with γUA = 0, i.e. the same conditions as Fig. 2 ex-
cept that U is now measured. In this MAR case, the
missing indicator should be redundant, and the concern
is that its inclusion may introduce bias into the esti-
mates. We see that all methods perform well in recover-
ing γA. MI(A) and MI(R + A) are in almost perfect
agreement.
Figure 5 and Table S4 show results for scenarios (iv)

and (v), where we examine the effects of missingness in
A depending on A itself. Here, the scenario dictates that
αU = βUA = 0, and we additionally fix γA = 1, γU = 1, γUA =
0, σY = 1 and σA = 1. The key varying parameters are βA,
which controls the dependence of RA on A, and βU,
which controls the dependence of RA on U.
When βU = 0 (corresponding to scenario (iv)), MI(A) is

biased in estimating γA. However, MI(R + A) and
MI(R*A) are not biased. When βU ≠ 0 things are more
complicated, and there is no clear approach that mini-
mizes the bias. What is consistent, however, is that γR
estimates are nonzero when either βU or βA are not zero.

Figure 6 and Table S5 show results for Scenario (iv-U)
and (v-U), which are the same scenarios as in Fig. 5 ex-
cept that U is measured. In these cases, changing values
of βU do not cause particular problem for any method,
while nonzero βA introduces bias in estimation of γA for
MI(A) only.
Figure 7 and Table S6 show results for Scenario (vi).

This is the most flexible scenario with no constraints on
the parameter values. Here we illustrate the case where
γA = 1, γU = 1, γUA = 0.5, σA = 1, σY = 1 and βUA = 0, and
αU = 0.5.
The results are similar to those for Scenario (v) except

that γA is more commonly overestimated.
Further results are given in the Supplements: Figs. S1-

S3 and corresponding Tables S7-S9.

Discussion
In this paper we have explored, through simulation, the
potential merits of supplementing multiple imputation
with a missing indicator, particularly in circumstances
where missingness is not at random, and the missingness
may moreover act as a proxy for unmeasured confound-
ing. We emphasise that, in contrast to the usual missing
data literature that targets completed data estimands,

Fig. 3 Results for scenarios (i)-(iii), with γUA = 0.5. Mean of estimated coefficients across simulations; error bars represent the 2.5th and 97.5th
percentiles. Columns are different parameter estimates, rows are different values of βU, with the special case RA = 1 − U on the top row. Within
each graph, the y-axis varies αU
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here we target causal estimands that are not available in
general even with completed data (because of unmeas-
ured confounding). In scenarios where missingness of an
exposure depends on an unmeasured confounder, the
missingness indicator can be used as a proxy for the un-
measured confounding, and this may reduce bias in
some situations. Careful consideration of the likely miss-
ingness mechanisms for a given clinical question/ data-
set is key to deciding on the analytical approach.
In the MCAR and MAR scenarios, without unmeas-

ured confounding, adding a missing indicator to multiple
imputation did not introduce bias in estimation of causal
effects. In the MNAR scenarios without unmeasured
confounding, adding a missing indicator generally re-
duced bias compared with multiple imputation alone. In
the presence of unmeasured confounding, bias in esti-
mation was sometimes better and sometimes worse
when including a missing indicator and/or its interaction
with the main effect, depending on the relationships be-
tween the parameters. This reflects the potentially com-
plex relationships, and shows that care should be given,
and decisions based on a study-by-study basis. In all
cases, when unmeasured confounding and/or MNAR

exists, the missing indicator coefficient and/or its inter-
action with the main effect coefficient were estimated to
be non-zero. These non-zero effect estimates of the
missing indicators act as a signal that there may be
MNAR mechanisms present, and hence it would be diffi-
cult or impossible to obtain unbiased causal effects. Any
disagreement between the main effect parameter esti-
mates with and without including a missing indicator
provide a similar indication.
The ‘missing indicator’ approach has a somewhat

negative reputation in the causal inference literature.
This is because it is usually coupled with a weak ap-
proach to impute the missing data itself - such as using
the unconditional mean [8]. With such application,
missing indicator is known to lead to biased estimation
even under MCAR [9–12]. The idea of combining the
missing indicator approach with multiple imputation
was first proposed by [6], and has been further explored
by [4, 7]. In those articles, the focus is on handling miss-
ing data in covariates used in propensity scores, whereas
here we consider missing data in the exposure of inter-
est. Nevertheless, [4] in particular noted that the use of
missing indicators can partly adjust for unmeasured

Fig. 4 Results for scenarios (i-U)-(iii-U), with γUA = 0. Mean of estimated coefficients across simulations; error bars represent the 2.5th and 97.5th
percentiles. Columns are different parameter estimates, rows are different values of βU, with the special case RA = 1 − U on the top row. Within
each graph, the y-axis varies αU
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confounding, similar to our findings. However, we find
that they can also make the situation worse, so consider-
able care is needed, on a study-by-study basis.

Strengths and limitations
We explored a wide range of simulation settings in a
fully factorial design. While we can only present a lim-
ited range of results in the paper, the simulation code
and results are available online for inspection. Neverthe-
less, simulations are necessarily simpler than scenarios
that might be encountered in practice. First, missingness
may affect many covariates. While addition of missing
indicators, and interactions, seems robust, it may break
down in some scenarios with complex multivariate pat-
terns of missingness, and may also lead to unacceptable
model complexity. Second, there may be multiple un-
measured or partially measured confounders. However,
we could consider multiple confounders as being sum-
marized by a propensity score, for example, and thus we
expect the results here to generalize to the multiple con-
founders case. We emphasise that we focused on miss-
ing data in exposure where the causal estimand rather
than the completed data estimand was targeted, and that
results here should not be generalized to different sce-
narios [18]. Finally while we have presented limited ana-
lytical findings in this paper, it is likely that the bias

formulas could be derived for a wide range of the sce-
narios presented, which we leave as a topic for further
research.

Conclusions
We recommend that addition of a missing indicator, and
corresponding interaction terms, can supplement, but
not replace, standard multiple imputation. In particular,
we recommend the use of MIMI (including interactions
between missing indicators and the corresponding vari-
able) as a strategy for handling missing data in causal ef-
fect estimation problems. Non-zero estimates of the
missing indicator then alert to possible occurrence of
MNAR and/or unmeasured confounding, and the need
for further sensitivity analysis. We caveat that the use of
missing indicators should not replace careful consider-
ation of assumed plausible causal structures, and draw-
ing a causal diagram to depict these assumptions
remains the starting point for a well-conducted causal
inference.

Appendix
Bias for estimating γu from imputed data when RA = 1 − U
Here we give an informal justification for the bias result.
In this section we use the superscript ∗ to denote true
values of parameters.

Fig. 5 Results for scenarios (iv) and (v), with γUA = 0. Mean of estimated coefficients across simulations; error bars represent the 2.5th and 97.5th
percentiles. Columns are different parameter estimates, rows are different values of βU. Within each graph, the y-axis varies βA
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First consider the imputation model

ai ¼ ϕ�
0 þ ϕ�

Y yi þ δi;

for J ¼ fi : RA;i ¼ 1g , i.e. non-missing A s, with δi ∼
N(0, τ2). Note that ui does not appear in this model be-
cause ui = 0 for all i∈J .
Now yi∼NðμY ;i ¼ γ�0 þ γ�Aai; σ

2
Y Þ for i∈J . In analogy

with p175 of [16], consider a hypothetical imputation
model based on μY, i instead of yi:

ai ¼ ψ�
0 þ ψ�

YμY ;i þ ξ i;

from which it is apparent that ψ�
Y ¼ 1=γ�A . Additionally,

across all observations, VarðμY Þ ¼ γ�A
2σ�2:A

In analogy with [16] (referencing [19]) we have that

ϕ�
Y ¼ ψ�

Y γ
�2
A σ�2A

γ�2A σ�2A þ σ�2
Y

¼ γ�Aσ
�2
A

γ�2A σ�2A þ σ�2Y
:

Moreover, ϕ�
0 ¼ 0 because A and Y are both centred.

The imputation model is then used to impute values
for the missing ai s; i.e. for i∉J , if we knew the true
imputation model,

ai;imp ¼ ϕ�
0 þ ϕ�

Y yi þ δi

¼ γ�Aσ
�2
A

γ�2A σ�2A þ σ�2Y
γ�Aai þ γ�Uui þ ϵi
� �þ δi:

Now consider again the outcome model,

yi ¼ γ�0 þ γ�Aai þ γ�Uui þ ϵi:

In the absence of missing data, we would of course
simply solve using least squares, and if γ = (γ0, γA, γU)

and ŷiðγÞ ¼ γ0 þ γAai þ γUui , then ~γ ¼ argminðPn
i¼1

ðyi − ŷiÞ2Þ, then of course EY ½~γU � ¼ γ�U .
As we have missing data, rewriting the outcome model

to replace the missing ai s with their imputed versions,
for substitution into the least squares formula we have:

ŷi γð Þ ¼ γ0 þ γA 1 − uið Þai þ uiai;imp
� �þ γUui:

The residual sum of squares can then be written as

γ̂ ¼ argmin
Xn
i¼1

γ�0 − γ0
� �þ γ�A − γA

� �
ai þ

�
γ�U − γAγ

�
Uκ − γUÞui

þð − γAκϵi − γAδiÞui þ γA − γAκγ
�
A

� �
uiaig

2;

8<
:

where κ ¼ γ�Aσ
�2
A

γ�2A σ�2A þσ�2Y
is a constant.

To consider minimising this expression, consider each
bracket in turn. To minimise the first bracket, it is clear

Fig. 6 Results for scenarios (iv-U) and (v-U), with γUA = 0. Mean of estimated coefficients across simulations; error bars represent the 2.5th and
97.5th percentiles. Columns are different parameter estimates, rows are different values of βU. Within each graph, the y-axis varies βA
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that EY ½γ̂0� ¼ γ�0 . It is also apparent that EY ½γ̂A� ¼ γ�A ,
since we must minimise the second bracket, and the
fourth and fifth brackets are additional error contributed
by the imputed data, which cannot be reduced. This
leaves the third bracket, which is minimised at

EY γ�U − γ̂Aγ
�
Uκ − γ̂U

� � ¼ 0:

Rearranging yields,

EY γ̂U
� � ¼ γ�U

σ�2
Y

γ�2A σ�2
A þ σ�2Y

;

as claimed.
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