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Abstract
Artificial intelligence (AI)-based systems applied to histopathology whole-slide images have the potential to improve
patient care through mitigation of challenges posed by diagnostic variability, histopathology caseload, and shortage
of pathologists. We sought to define the performance of an AI-based automated prostate cancer detection system,
Paige Prostate, when applied to independent real-world data. The algorithm was employed to classify slides into two
categories: benign (no further review needed) or suspicious (additional histologic and/or immunohistochemical anal-
ysis required). We assessed the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values
(NPVs) of a local pathologist, two central pathologists, and Paige Prostate in the diagnosis of 600 transrectal
ultrasound-guided prostate needle core biopsy regions (‘part-specimens’) from 100 consecutive patients, and to
ascertain the impact of Paige Prostate on diagnostic accuracy and efficiency. Paige Prostate displayed high sensitivity
(0.99; CI 0.96–1.0), NPV (1.0; CI 0.98–1.0), and specificity (0.93; CI 0.90–0.96) at the part-specimen level. At the
patient level, Paige Prostate displayed optimal sensitivity (1.0; CI 0.93–1.0) and NPV (1.0; CI 0.91–1.0) at a speci-
ficity of 0.78 (CI 0.64–0.89). The 27 part-specimens considered by Paige Prostate as suspicious, whose final diagno-
sis was benign, were found to comprise atrophy (n = 14), atrophy and apical prostate tissue (n = 1), apical/benign
prostate tissue (n = 9), adenosis (n = 2), and post-atrophic hyperplasia (n = 1). Paige Prostate resulted in the iden-
tification of four additional patients whose diagnoses were upgraded from benign/suspicious to malignant. Addi-
tionally, this AI-based test provided an estimated 65.5% reduction of the diagnostic time for the material
analyzed. Given its optimal sensitivity and NPV, Paige Prostate has the potential to be employed for the automated
identification of patients whose histologic slides could forgo full histopathologic review. In addition to providing
incremental improvements in diagnostic accuracy and efficiency, this AI-based system identified patients whose
prostate cancers were not initially diagnosed by three experienced histopathologists.
© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Diagnostic surgical pathology remains the ‘gold standard’
for cancer diagnosis, despite the challenges posed by the
shortage of diagnostic pathologists [1], the difficulty in
detecting small quantities of cancer in biopsy material,
and non-trivial levels of inter-observer variability [2,3].
These problems may be mitigated by applying artificial
intelligence (AI)-based systems on digital whole-slide
images (WSIs) of histopathology sections to provide
greater diagnostic accuracy [4–9], reduce inter-observer
variability, and alleviate the pressure on pathologists
who face increasing caseloads and a decreasing qualified
workforce [4–9].
One of the potential applications of AI is to increase

the accuracy and the efficiency of histopathologic
assessment of transrectal ultrasound-guided (TRUS)
prostate biopsies, where the false-negative diagnosis rate
for prostate needle biopsies is 1–4% [3,10,11]. To
address this unmet need, AI-based algorithms to detect
prostate cancer in diagnostic biopsies have been devel-
oped [7,12–14]. Paige Prostate was developed based
on the system described in Campanella et al [7]. This
clinical-grade deep learning AI test has recently been
granted Breakthrough Designation by the United States
Food and Drug Administration (FDA) for the automated
detection of cancer in prostate biopsies.
To define the impact of this AI-based test on histopa-

thology practice, we applied Paige Prostate to real-world
data from a diagnostic histopathology laboratory located
in a different country, not involved in the original devel-
opment and validation of the system. The aims of this
study were to assess the diagnostic performance of this
AI system in WSIs of TRUS prostate biopsies, to define
its impact on the accuracy of board-certified pathologists
interpreting theseWSIs, and to evaluate its impact on the
diagnostic accuracy and efficiency of experienced diag-
nostic pathologists. We posited that Paige Prostate
would successfully identify the slides where no malig-
nancy was present, thereby optimizing the time patholo-
gists allocate to the analysis of slides containing tumor or
posing diagnostic challenges.

Materials and methods

Patients and histopathology analysis
A total of 600 previously diagnosed unique TRUS prostate
needle core biopsy regions (henceforth referred to as ‘part-
specimens’) from 100 consecutive patients accessioned
between 9 May 2019 and 22 August 2019 were retrieved
from the pathology archives of the Instituto Mario Penna
in Brazil. The clinical details of the patients were not
retrieved prior to anonymization. Table 1 summarizes the
available clinical and pathological characteristics of the
patients. The local ethics committee of the Instituto Mario
Penna approved this study, and patient consents were
obtained according to the approved protocol. Each patient
underwent TRUS prostate needle core biopsies from six

prostate regions (for each region, the biopsy procedure
aimed to needle target the tissue twice, resulting in approx-
imately 12 cores per patient), which amounted to 6–9
slides per patient (total of 682 glass slides). The diagnoses
for these patients were rendered by the local pathologist
(PGOS – board certified in Brazil for 20 years) at the Insti-
tuto Mario Penna. The available hematoxylin and eosin
(H&E)-stained histologic sections were retrieved from
the hospital archives, verified tomeet staining quality stan-
dards for optical microscopy reading, and re-reviewed
independently by two independent pathologists (EMP
and LMS, hereby referred to as central pathologists) board
certified in Brazil for 27 and 16 years, respectively. Their
review was also blinded to the original diagnoses. Next,
the clinical H&E-stained sections mounted on glass slides
were scanned using a Leica AT2 scanner (Leica Biosys-
tems, Division of Leica Microsystems Inc, Buffalo Grove,
IL, USA) at 20× [0.5 μm per pixel (mpp)] and 40× (0.25
mpp) magnifications/resolutions, generating WSIs in the
SVS file format. The central pathologists completed WSI
review using Aperio Imagescope 64-bit digital slide
viewer v12.4.3 (Leica Biosystems) and a Dell
21-in. high-resolution monitor (Dell Inc, Eldorado do Sul
– RS, Brasil). The WSIs scanned at 40× (0.25 mpp) mag-
nification/resolution were employed by the central pathol-
ogists for the re-review. The central pathologists
independently classified the WSIs generated for each
TRUS prostate needle core biopsy region into one of the
following categories: benign, malignant or suspicious
[i.e. not definitively classifiable without additional action
including immunohistochemical (IHC) staining, consen-
sus opinion, second opinion or additional levels]. Discrep-
ancies between diagnoses rendered by each pathologist
were adjudicated by subsequent re-review of the H&E
WSIs at 40× such that in addition to the individual pathol-
ogist’s interpretation, one final diagnostic interpretation
agreed upon by both pathologists was rendered for each
WSI. For WSIs with compromised viewing quality, the
glass slides were reviewed (approximately <5% of all
slides).

Paige Prostate 1.0 is a convolutional neural network
(CNN) based on the multiple instance learning algorithm
presented in Campanella et al [7]. An early version
(‘Paige Prostate Alpha’) was described in Raciti et al
[15], but the system used and described here is a later
version. Paige Prostate 1.0 learns directly from diagnosis
without the need for pixel-wise annotation. Paige Pros-
tate 1.0 runs on WSIs at 20× resolution. For higher res-
olutions, Paige Prostate 1.0 will use the 20× level of
the WSI or it will downsample a higher resolution to
20× if a 20× level is not available (see supplementary
material, Supplementary materials and methods).

Paige Prostate generated binary predictions (benign or
suspicious for cancer), blinded to clinical and pathologic
information. In this classification, benign would prompt
no further action by the pathologist, whereas a classifica-
tion of suspicious would result in further histologic anal-
ysis and/or additional IHC to rule out the presence of
malignancy. For WSIs predicted as suspicious, Paige
Prostate pointed to a region with the highest likelihood
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for harboring cancer, along with a heatmap visualiza-
tion. Paige Prostate results were generated for 661 WSIs
from 579 unique prostate needle core biopsy parts. From
the 682 slides at the original hospital, one could not be
retrieved; one slide was broken and could not be
scanned; one was not scanned by the scanner; 12 images
were not transferred to Paige; and six images were cor-
rupted and could not be analyzed (Figure 1).

Performance analysis was completed at the prostate
needle core biopsy ‘part-specimen level’ to emulate
how pathology reports are rendered in practice. If a
part-specimen consisted of more than one glass slide or
WSI, the diagnosis of the central pathologists was based
on the combined histopathological features seen on all
slides or WSIs available for that specific prostate needle
core biopsy. Similarly, if Paige Prostate considered any
of the available WSIs in a part-specimen as suspicious,
that part-specimen was classified by Paige Prostate as
suspicious, and if all available WSIs in a part-specimen
were benign, that part-specimen was classified by Paige
Prostate as benign. All data were de-identified prior to
conducting the analysis using Paige Prostate.

One hundred concordant part-specimens (classifica-
tion by Paige and that of the consensus diagnosis of the

central pathologists were concordant) were re-reviewed
by an independent general pathologist (PR). In addition,
discordant part-specimens between Paige Prostate or the
consensus of the central pathologists and the final
ground truth were digitally re-reviewed by an expert
GU pathologist (VR).
The WSIs included in this study and the consensus

diagnoses of two central pathologists are available using
Microsoft Teams (Microsoft Inc, Redmond, WA, USA).
Those interested in accessing the images can complete
the request form https://bit.ly/36cPf6k.

Statistical analysis
For statistical analysis, a negative was defined as benign
and a positive as malignant or suspicious. For a part-
specimen (i.e. specific region targeted by a TRUS pros-
tate needle core biopsy) to be negative, all WSIs in the
part-specimen must be negative.
The following procedure was used to assign the ground

truth labels to each part-specimen. If the consensus of the
central pathologists and Paige Prostate agreed, then this
classification was assigned as the ground truth for the
part-specimen; otherwise, additional histologic sections

Table 1. Clinicopathologic characteristics of the patients included in the study.
Patients without cancer Patients with cancer All patients

Total patients, n 50 50 100

Patient age (years)
n 50 50 100
Mean (SD) 64.9 (7.23) 68.6 (7.65) 66.8 (7.63)
Median 65 69 67
Min–max 48–77 47–84 47–84

Patient age (years) category
n 50 50 100
≤49 1 (2.0%) 1 (2.0%) 2 (2.0%)
50–54 2 (4.0%) 0 (0.0%) 2 (2.0%)
55–59 10 (20.0%) 4 (8.0%) 14 (14.0%)
60–64 10 (20.0%) 11 (22.0%) 21 (21.0%)
65–69 13 (26.0%) 10 (20.0%) 23 (23.0%)
≥70 14 (28.0%) 24 (48.0%) 38 (38.0%)

Patient ISUP GG category
n 50 50 100
Benign 50 (100.0%) 0 (0.0%) 50 (50.0%)
ISUP GG 1 (3 + 3) 0 (0.0%) 7 (14.0%) 7 (7.0%)
ISUP GG 2 (3 + 4) 0 (0.0%) 18 (36.0%) 18 (18.0%)
ISUP GG 3 (4 + 3) 0 (0.0%) 12 (24.0%) 12 (12.0%)
ISUP GG 4 (4 + 4, 3 + 5, 5 + 3) 0 (0.0%) 6 (12.0%) 6 (6.0%)
ISUP GG 5 (4 + 5, 5 + 4, 5 + 5) 0 (0.0%) 7 (14.0%) 7 (7.0%)

Patient PSA (ng/ml)
n 44 43 87
Mean (SD) 8.0 (4.84) 214.9 (924.8) 110.2 (654.6)
Median 7 9 8
Min–max 1–31 3–5635 1–5635

Patient PSA (ng/ml) category
n 44 43 87
<3 3 (6.8%) 0 (0.0%) 3 (3.4%)
3≤5 7 (15.9%) 8 (18.6%) 15 (17.2%)
5≤10 26 (59.1%) 17 (39.5%) 43 (49.4%)
≥10 8 (18.2%) 18 (41.9%) 26 (29.9%)

NA – Gleason grade and tumor size are not applicable to negative patients/slides.
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of the corresponding part-specimenwere cut and subjected
to IHC analysis and reinterpretation by the pathologists to
assign the final ground truth (Figure 1). IHC analysis is
regularly performed for prostate biopsies when a definitive

diagnosis cannot be made from H&E alone [3] and was
also performed in 113 randomly selected slides related to
20 patients where the diagnoses were concordant between
the local pathologist, central pathologists, and Paige

Figure 1. Study flow chart detailing the cases, slides and parts analyzed, and the definition of ground truth utilized in the study.
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Prostate to ensure the accuracy of the ground truth diagno-
ses (supplementary material, Supplementary materials and
methods). IHC was performed utilizing ready-to-use
antibodies against high-molecular-weight cytokeratin
(ready-to-use, clone 34βE12; DAKO, Glostrup, Den-
mark), p63 (ready-to-use, clone 4A4; DAKO), and
P504S (ready-to-use, clone 13H4; DAKO) on an Agilent
Autostainer Link 48 system (DAKO) following DAKO
PT link (DAKO) antigen retrieval using Tris–EDTA
buffer (pH 9.0). A total of 200 μl of ready-to-use primary
antibody was used per slide. External controls (basal
cells on normal prostate and prostate cancer tissues)
were used, and internal controls were also checked.

Statistical analysis was performed (by GD) following
the pre-specified definitions agreed upon by the study
team, with one of the authors acting as the honest broker
(JSR-F). Paige did not have any direct access to the final
integrated data prior to the ‘data freeze’ for the statistical
analysis. The analyses were completed (i) by treating each
part-specimen (i.e. specific region targeted by a TRUS
prostate needle core biopsy) as independent (i.e. part-
specimen level) and (ii) by treating the diagnosis for a
patient based on all parts for a given patient (i.e. patient
level). P values less than or equal to 0.05 on a two-sided
exact binomial test were considered significant and two-
sided 95% confidence intervals (CIs) were calculated.
This study is compliant with the REMARK guidelines
(supplementary material, Table S1).

Results

A ground truth diagnosis, based on the histological anal-
ysis by the local pathologist, the two central pathologists,
Paige Prostate, and additional histologic review and IHC
analysis of all parts where there was a disagreement
between diagnosis rendered by Paige Prostate and the
consensus of central pathologists, could be rendered for
579 of the original 600 parts (Figure 1). In addition,
IHC analysis of the 113 randomly selected slides with
concordant diagnoses between the local pathologist, cen-
tral pathologists, and Paige Prostate confirmed the
ground truth diagnoses in all cases (data not shown).
Paige Prostate classified 200/579 (34.60%) of the

parts as suspicious for cancer and 379/579 (65.46%)
as benign. Based on the ground truth diagnoses, com-
pared with the local pathologist, the individual central
pathologists, and the consensus diagnoses of the cen-
tral pathologists (Figure 2 and supplementary mate-
rial, Table S2), Paige Prostate displayed a favorable
sensitivity (0.99; CI 0.96–1.0) and NPV (1.0; CI 0.98–
1.0) at the part-specimen level, while maintaining an
acceptable level of specificity (0.93; CI 0.90–0.96).
These findings are consistent with our hypothesis that
Paige Prostate could accurately identify the parts con-
taining cancer as suspicious (i.e. needing additional
review), without flagging a disproportionately high
number of parts as suspicious.

Figure 2. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) at the part-specimen level of the local
pathologist, individual central pathologists, the consensus of central pathologists, and Paige Prostate.
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Of the 579 part-specimens analyzed, 42 discordant
results were observed between the consensus diagnosis
by the central pathologists and Paige Prostate. For three
part-specimens (3/579, 0.52%), Paige Prostate rendered
a diagnosis of benign, whereas the original consensus
diagnosis of the central pathologists was ‘suspicious’
or ‘malignant’. Upon re-review with IHC, two of them
were indeed prostate cancer; one contained only extra-

prostatic extension of prostatic adenocarcinoma har-
boring a focus of perineural invasion (Figure 3A–C)
and another had prostatic adenocarcinoma with an
atrophic appearance (Figure 3D,E). In the former false
negative, the remaining part-specimens from that
patient were correctly found to be suspicious for carci-
noma by Paige Prostate. In the second false negative,
one other part-specimen from that patient was correctly

Figure 3. Histologic features of prostate biopsies where Paige Prostate rendered a diagnosis of benign where the ground truth diagnosis was
malignant. (A) Representative areas of an ultrasound-guided transrectal prostate biopsy which Paige Prostate considered benign, yet the
ground truth diagnosis was malignant. There is adenocarcinoma with extra-prostatic extension and perineural invasion (WSI 1002529).
(B) Expression of P504S in areas of adenocarcinoma shown in A. (C) Lack of expression of HMWC – 34βE12 in areas of adenocarcinoma shown
in A. (D) Representative area of a TRUS prostate biopsy which Paige Prostate considered benign, yet the ground truth diagnosis was malignant
(WSI 1002523). (E) Lack of expression of HMWC – 34βE12 in areas of adenocarcinoma shown in D. (F) Invasive prostatic adenocarcinoma in a
different biopsy region (i.e. part-specimen) of the same patient depicted in D (WSI 1002522).
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identified by Paige Prostate as suspicious (Figure 3F).
In the third case where Paige Prostate rendered a diag-
nosis of benign whereas the original consensus diagno-
sis of the pathologists was ‘suspicious’, the findings of

IHC confirmed that Paige Prostate was correct in clas-
sifying it as ‘benign’.
Paige Prostate rendered a diagnosis of suspicious,

whereas the original consensus diagnosis of the central

Figure 4. Histologic features of prostate biopsies where Paige Prostate rendered a diagnosis of suspicious when the ground truth was benign.
Representative areas of 27 slides classified as suspicious by Paige Prostate and the ground truth was benign. (A–M) Prostate tissue with foci of
atrophy. (N) Post-atrophic hyperplasia. (O–T) Benign prostate tissue. (U) Atrophy and apical benign prostate tissue. (V–X) Apical benign pros-
tate tissue. (Y–Za) Benign adenosis.
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pathologists was ‘benign’ for 39 (39/579, 6.74%) part-
specimens. Of these, 11 (28.21%) in fact contained
either cancer (Figure 5A–5J) or lesions that would
require further clinical intervention (e.g. atypical small
acinar proliferation). Nine of these 11 slides had lesions
that were International Society of Urological Pathology
Grade Group (ISUP GG) 1 and ranged in size from 0.2
to 0.4 mm, and two of these 11 slides were ISUP GG
2 and ranged in size from 0.4 to 0.7 mm. Conversely,
27 (27/39, 69.2%) were found to have a ground truth
diagnosis of benign. Detailed characterization of these

part-specimens following histologic review and IHC
analysis revealed that 14 were classified as atrophy, six
as benign prostate tissue, one as atrophy and apical pros-
tate tissue, three as apical prostate tissue, two as adenosis,
and one as post-atrophic hyperplasia (Figure 4A–Za).
One of the discordances was found to stem from a coding
error, resulting from a transcription error of the original
consensus diagnosis into the database. Thus, of the orig-
inal 42 discordant reads, the final discordant number of
reads was 41 as depicted in Figure 1. Furthermore, as a
result of the above investigations, the discordance

Figure 5. Histologic features of prostate biopsies where Paige Prostate rendered a diagnosis of malignant and the local and central pathol-
ogists rendered a diagnosis of benign or suspicious. (A, C, E, G, I) Histologic features of samples identified as suspicious by Paige Prostate but
not diagnosed by the local pathologist, independent central pathologists individually, or the consensus diagnosis of the central pathologists
(WSI numbers: 1002423, 1002559, 1002612, 1002603, and 1002210). (B) Expression of P504S in areas of adenocarcinoma shown in
A. (D) Lack of expression of HMWC – 34βE12 in areas of adenocarcinoma shown in C. (F) Expression of P504S in areas of adenocarcinoma
shown in E. (H) Lack of expression of HMWC – 34βE12 in areas of adenocarcinoma shown in G. (J) Lack of expression of HMWC – 34βE12
in areas of adenocarcinoma shown in I.
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between Paige Prostate and final ground truth was 29. At
the slide level, the area under the receiver operating char-
acteristic curve (AUC) of Paige Prostate 1.0 was 0.996 on
the final ground truth.

At the patient level, Paige Prostate displayed an opti-
mal sensitivity (1.0; CI 0.93–1.0) and NPV (1.0; CI
0.91–1.0), with only a limited number of patients being
flagged as suspicious when the patient had a final ground
truth benign diagnosis, resulting in a specificity of 0.78
(CI 0.64–0.89). Importantly, Paige Prostate did not fail
to identify any of the patients with prostate cancer. There
were, however, four significant findings at the patient
level: namely, patients with only one part-specimen con-
taining foci of malignancy correctly identified by Paige
Prostate but not diagnosed by the local or central pathol-
ogists. Of these four patients, three (Figure 5A–F from
patients 7, 14, and 35) would have undergone a funda-
mental change in the diagnosis, as the part-specimen
diagnosed as suspicious by Paige Prostate was the sole
part-specimen containing prostate cancer or a suspicious
diagnosis. Despite the change from a benign to a malig-
nant diagnosis, it should be noted that the cancers not
detected by the two central pathologists and correctly
classified as suspicious by Paige Prostate were ISUP
GG 1/Gleason 6 (3 + 3) prostate adenocarcinomas. In
the fourth patient (Figure 5G,H from patient 42), another
part-specimen was found to harbor atypical small acinar
proliferation (ASAP), which was originally detected by
Paige Prostate and by the pathologists for this patient.
Based on this additional finding stemming from Paige
Prostate, the patient would be recommended for an addi-
tional biopsy for a confirmatory diagnosis. Paige Pros-
tate identified correctly a focus of malignancy not
diagnosed by the local or central pathologists in a fifth
patient (Figure 5I,J from patient 84); however, this
patient had another part-specimen found to harbor can-
cer, which was originally detected by both Paige Prostate
and the pathologists. Therefore, at patient level, this
would not result in clinical impact. Hence, at patient
level, none of the patients would have had a false-
negative diagnosis; four additional patients would have
been correctly upgraded from a benign to a malignant
diagnosis; and a transcription error would have been
captured.

The final discordant 41 part-specimens were re-
reviewed by an expert GU pathologist (VR). In brief,
for 39 part-specimens that Paige Prostate classified as
suspicious, the expert GU pathologist rendered the diag-
nosis of malignant in seven; benign in 18; and deferred
due to a combination of either small size of the suspi-
cious area, need for resorting to IHC, and/or suboptimal
image resolution in 14. For two part-specimens which
Paige Prostate classified as benign, the GU pathologist
classified one part-specimen as malignant and the other
part-specimen as suspicious with need of IHC. These
two part-specimens were also annotated as malignant
by the central pathologists. Considering the consensus
diagnosis of the central pathologists, for 28 part-
specimens where the consensus diagnosis of the central
pathologists was benign, the GU pathologist rendered

the diagnosis of malignant in three; benign in 16; and
deferred due to a combination of either small size of
the suspicious area, need of resorting to IHC, and/or sub-
optimal image resolution in nine. For the 13 part-
specimens where the consensus was malignant, the GU
pathologist rendered the diagnosis of malignant in five
WSIs; benign in two; and deferred due to a combination
of either small size of the suspicious area, need of resort-
ing to IHC, and/or suboptimal image resolution in six. It
is noteworthy to mention that the central pathologists
were aided by the use of IHC for the final consensus on
the discordant WSIs. The expert GU pathologist classi-
fied the four patients with only one part-specimen con-
taining foci of malignancy correctly identified by Paige
Prostate but not diagnosed by the local or central pathol-
ogists as malignant in one part-specimen and suspicious
requiring IHC for final diagnosis in the other three part-
specimens.
An exploratory assessment of the impact of Paige

Prostate on the diagnostic performance of the patholo-
gists was performed (supplementary material,
Table S3). Compared with the original consensus diag-
nosis of two central pathologists, the consensus diagno-
sis based on a reanalysis in conjunction with Paige
Prostate resulted in a numerical but not significant
increase of 2.9% in sensitivity from 0.94 (CI 0.89–
0.97) to 0.97 (CI 0.93–0.99, p = 0.307), and a non-sig-
nificant decrease of 2.0% in specificity from 1.0
(CI 0.99–1.0) to 0.98 (CI 0.96–0.99, p = 0.173; Figure 6)
at a part-specimen level. None of the patients, however,
would have had an incorrect malignant diagnosis ren-
dered; the decreased specificity stemmed from addi-
tional cases being subjected to IHC and supplementary
histopathology evaluation. This was also the first time
that the pathologists had used Paige Prostate.
Finally, we sought to define the potential impact of

Paige Prostate on the average time spent by each of the
two pathologists to review and render a diagnosis for
each of the glass slides and WSI. The median time spent
per glass slide and WSI was 1 min 38 s and 2 min 2 s,
respectively, including completion of the report. This

Figure 6. Sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) at the part-specimen level of the
consensus of central pathologists without and with Paige Prostate.
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would result in 15.76 h per pathologist looking at all the
glass slides and 19.6 h looking at all WSIs, assuming
579 WSIs to be analyzed. Given the optimal NPV of
Paige Prostate at the patient level, we simulated a sce-
nario where only theWSIs from parts classified as suspi-
cious for cancer by Paige Prostate were histologically
assessed by the pathologists (200/579 WSIs). This
would result in an average diagnostic time of 6.77 h, a
reduction of 65.50% of the diagnostic time for the full
set of 579 WSIs.

Discussion

Anatomic pathology is a core specialty for the multidisci-
plinary management of oncology patients. As such, there
are enormous pressures on pathologists for not only accu-
rate but also timely diagnoses. This pressure is com-
pounded by the increasing number of oncology patients
and the unchanged or decreased number of qualified
pathologists in certain settings [1]. AI-based approaches
to address these unmet needs in the context of diagnostic
prostate cancer diagnosis have showed initial promise
[7–10,12–15]. Here, we provide evidence supporting
the notion that Paige Prostate may safely decrease pathol-
ogy workload without compromising diagnostic quality.
The quality of histopathology preparations across

healthcare providers varies [16], and in some cases, AI
systems have failed to generalize across hospitals [7].
This study, however, was performed with materials
(i.e. WSIs) obtained from the original diagnostic slides
cut and stained in a laboratory not involved in the devel-
opment of the AI-based system and located in a separate
country, indicating that Paige Prostate is capable of gen-
eralizing effectively across institutions. When tested
against ground truth diagnoses in this real-world dataset,
Paige Prostate was found to have high sensitivity and
NPV for the detection of prostate cancer in TRUS biop-
sies, supporting the notion that this AI-based assay
might be useful to define which TRUS biopsy slides
may not require detailed histologic review, given that
their probability of containing cancer would be negligi-
ble. In addition, Paige Prostate might be employed in
the context of quality assurance schemes, whereby only
TRUS biopsy slides with a suspicious diagnosis would
be subsequently reviewed.
When assessed against the ground truth, Paige Prostate

resulted in the identification of 13 instances where three
experienced pathologists rendered an incorrect diagnosis
(2.25% of 579 parts). The use of this AI-based test
resulted in the identification of 11 new suspicious part-
specimens (two of these with ISUP GG 2 cancers) that
were initially diagnosed as benign by three pathologists
with over 15 years’ post-board certification, one benign
part-specimen that was initially diagnosed as malignant
by the pathologists, and one transcription error. Data on
the true rate of false-negative prostate biopsies are scant;
however, it is estimated to range from 1% to 4% based on
routine assessment of H&Es [3,10,11]. Consistent with

these findings, in the current study and using the ground
truth adopted combining H&E and IHC assessment, the
false-negative rate of the consensus diagnosis by two
central pathologists with over 15 years’ post-board certi-
fication that was mitigated by Paige Prostate was 1.90%
(11 of 579 WSIs). It should be noted, however, that orig-
inal H&E assessment by Paige Prostate prompted the
additional IHC analysis to define the ground truth. Given
the high sensitivity and NPV of Paige Prostate (supple-
mentary material, Table S3), and its specificity of 0.78
(without a disproportionate number of patients whose
biopsies proved to be benign), Paige Prostate would
result in a substantial reduction of theworkload of pathol-
ogists without compromising diagnostic quality. At a
12.1% prevalence of prostate cancer [17], the use of this
automated AI-based test as an ancillary diagnostic
approach (e.g. pre-screening of the WSIs that need to
be reviewed) would result in at least 60 of 100 patients
being triaged without full histologic review.

This study has several limitations. First, the ground
truth defined for this study was based on the use of addi-
tional ancillary tests. Albeit not infallible, this approach
follows the current best practices for prostate cancer
diagnosis [3,10,11]. Second, additional optimization of
Paige Prostate 1.0 was not allowed, so we cannot rule
out that higher specificity and PPV could be attained if
further refinements of the system were made. Third,
not all part-specimens were analyzed for a small set of
patients, due to technical issues with scanning or image
transfer: one of six part-specimens was not analyzed
for 11 patients; two of six part-specimens were not
reviewed for two patients; and three of six part-
specimens were not reviewed for two patients. Given
that some protocols require 18 prostate needle core biop-
sies per patient, our results at the patient level may con-
stitute only a conservative estimate of the sensitivity and
NPV of this AI-based test. Fourth, the version of Paige
Prostate employed in this study was designed to provide
a binary classification of TRUS prostate biopsies into
benign or suspicious; it was neither trained to provide
more specific descriptive diagnoses (e.g. benign prostate
tissue, high-grade prostatic intra-epithelial neoplasia,
atypical small acinar proliferation) nor trained to grade
the prostate cancers detected. Future studies reporting
on the development and subsequent validation of Paige
Prostate in these diagnostic contexts are warranted.
Fifth, the reduction of diagnostic time reported in this
study was inferred on the basis of average times for the
histologic review of a given TRUS prostate biopsy and
may have overestimated the reduction in time provided
by Paige Prostate, given the time needed for slide scan-
ning, WSI transferring, and Paige Prostate processing.
We acknowledge that the deployment of Paige Prostate
for screening in a pathology laboratory may increase
the turnaround time for reporting of benign prostate
biopsies, albeit reducing the total workload volume for
the pathologists to report. This scenario will allow extra
time for pathologists not only to focus on the reporting of
the malignant cases but also to perform other laboratory
activities. We are confident, however, that the steps
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necessary for Paige Prostate deployment can be opti-
mized in a way that their impact on the diagnostic activ-
ities would be limited. Finally, the implementation of
AI-based ancillary assays, such as Paige Prostate,
requires the availability of a digital pathology infrastruc-
ture and a distribution system that is cost-effective.
Given the increasing adoption of digital pathology in
the diagnostic arena, future studies are warranted to
define the feasibility of and the ideal paths for the imple-
mentation of Paige Prostate in both academic diagnostic
pathology departments and private laboratories.

Based on an independent, real-world cohort of 100
patients subjected to TRUS prostate biopsies, this study
confirms the optimal sensitivity and NPV of Paige Pros-
tate for the automated identification of patients whose his-
tologic sections or WSIs would not need to be reviewed
by pathologists. The deployment of Paige Prostate would
have prompted a re-review by the central pathologists of
WSIs of four patients (4%), whose diagnoses would have
been upgraded to a malignant category. Although these
were ISUP GG 1/Gleason 6 (3 + 3) cancers with small
tumor size, such patients would likely be referred to fur-
ther clinical investigation with imaging studies such as
imaging and/or engagement in an active surveillance pro-
gram. Other aspects to take into consideration in this sce-
nario are the legal liability of missing small cancer foci
and the lack of widespread availability of expert GU
pathologists for community laboratories. Given its opti-
mal sensitivity and NPV, Paige Prostate may be consid-
ered as an ancillary test for the diagnosis of prostate
cancer in TRUS core needle prostate biopsies. Whilst
appropriate regulation for AI-based systems in pathology
is evolving, it is becoming evident that accreditation agen-
cies, government bodies, and additional healthcare stake-
holders need to engage in discussions with the clinical and
scientific community to enable the deployment of safe
and effective automated AI-based systems for cancer
screening that have the potential to improve patient care
[18,19]. Our findings may provide the basis for the future
development of AI systems that could be employed in
automated quality control schemes and automated screen-
ing of TRUS prostate biopsies, whereby only those
flagged by the system as suspicious would require review
by a diagnostic pathologist, helping to mitigate the short-
age of qualified pathologists and optimize the allocation
of diagnostic time and effort.
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