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Aims: To investigate the relationship between the miR-130a polymorphism rs731384 and
coronary artery disease (CAD) and to further explore the molecular mechanism of the patho-
genesis of CAD, an observational single-center study was conducted. Method: A total of
876 subjects were recruited in the present study. Four milliliters of venous blood was drawn
after 12 h of fasting to perform biochemical assays. CAD patients and controls were dis-
tinguished by coronary angiography. Rs731384 was genotyped on the Agena MassARRAY
system according to the manufacturer’s user guide. Statistical analysis was conducted using
SPSS 16.0 software. Results: The study found that the plasma levels of total cholesterol (TC)
(P=0.006), low-density lipoprotein cholesterol (LDL-C) (P=0.030), apolipoprotein A (ApoA)
(P=0.038), and apolipoprotein B (ApoB) (P=0.022) distributed differently in patients with var-
ious alleles. Additionally, the AA genotype of rs731384 was found to be a protective factor
against CAD in a recessive model (AA:AG+GG, odds ratio (OR) = 0.408, 95% confidence
interval (95% CI) = 0.171–0.973, P=0.043). A significant association was found between
the gene–environment interaction and CAD risk. The AA genotype along with high-density
lipoprotein cholesterol (HDL-C) level ≥ 1.325 mmol/l significantly decreased the CAD risk
(AA:AG+GG, OR = 0.117, 95% CI = 0.023–0.588, P=0.009). Conclusion: The mutant AA
genotype of rs731384 seems to be a protective factor against CAD, and rs731384 plays an
important role in the human metabolism of plasma lipids.

Introduction
Cardiovascular diseases (CVDs), particularly coronary heart disease, lead to major human morbidities
and mortalities worldwide [1]. In 2015, data indicated that 422.7 (95% confidence interval (95% CI:
415.53–427.87) million people were suffering from CVDs and 17.92 (95% CI: 17.59–18.28) million people
died from coronary artery disease (CAD) [2]. The pathological foundation of CAD is generally considered
to be coronary atherosclerosis, an inflammatory disorder caused by the formation of plaque and subse-
quent obstruction of the coronary arteries. However, the exact mechanism of this disease is still unclear.
In recent years, genetic predisposition has been widely studied and was found to be closely associated with
CAD [3,4].

miRNAs are short (20–24 nts) noncoding RNAs involved in the post-transcriptional regulation of
gene expression in multicellular organisms by affecting both the stability and translation of mRNAs.
The encoding gene of miR-130a is located in chromosome 11 and has a length of 89 nts. The sequence
of miR-130a (Chr11: 57641198-57641286) is as follows: TGCTG CTGGC CAGAG CTCTT TTCAC
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ATTGT GCTAC TGTCT GCACC TGTCA CTAGC AGTGC AATGT TAAAA GGGCA TTGGC CGTGT AGTG.
The mature products of miR-130a are segments with a length of 22 nts (miR-130a-3p and miR-130a-5p). Although
only one exon is included, miR-130a has been identified to be significantly associated with familial hypercholes-
terolemia (FH), coronary atherosclerosis [5], CAD, and diabetes mellitus (DM) [6] in recent years.

In our previous studies, miR-221, miR-155, and miR-130a levels were found to be decreased in patients with CAD,
and miR-130a may be an independent predictor for CAD [7]. Thus, in this study, a functional variant, rs731384,
located in the promoter region of miR-130a, was selected to further investigate the molecular mechanism of CAD.

Materials and methods
Study subjects
To evaluate the genetic predisposition of CAD, 876 consecutive patients (641 males and 235 females) aged 32–84 years,
who underwent coronary angiography for suspected or known coronary atherosclerosis at the Friendship Hospital of
Ili Kazakh Autonomous Prefecture in China from 1 March 2010 to 31 April 2015 were recruited for the present study.
The exclusion criteria of the study were as follows: subjects with spastic angina pectoris, infectious processes within 2
weeks, heart failure, adrenal dysfunction, and thyroid dysfunction. The diagnosis of CAD was according to the results
of coronary angiography, which was performed by at least two experienced doctors simultaneously. Coronary arteries
were cannulated using either the Judkins technique [8] or through a radial artery approach with 6F catheters. CAD
subjects were defined as having at least one major epicardial vessel with >50% stenosis; control subjects were defined
as having all of the major epicardial vessels with <50% stenosis [9]. The study was approved by the Ethics Committee
of the First Affiliated Hospital of Nanjing Medical University and the Friendship Hospital of Ili Kazakh Autonomous
Prefecture in China. All subjects provided written informed consents.

Laboratory measurements
Four milliliters of venous blood was drawn after 12 h of fasting to perform biochemical assays on the second day of
hospitalization. Laboratory measurements included the clinical parameters that have been reported to be associated
with CAD [10–16]: total cholesterol (TC, mmol/l), triglyceride (TG, mmol/l), fasting blood glucose (FBG, mmol/l),
creatine phosphokinase myoglobin isoenzyme (CKMB, U/l), fasting high-density lipoprotein cholesterol (HDL-C,
mmol/l), fasting low-density lipoprotein cholesterol (LDL-C, mmol/l), apolipoprotein A (ApoA, g/l), and apolipopro-
tein B (ApoB, g/l) were determined by enzymatic procedures on an automated autoanalyzer (AU 2700 Olympus, 1st
Chemical Ltd, Japan). The plasma preparation and RNA isolation were conducted according to previously reported
protocols [17], and miR-130a was quantitated by RT-qPCR analysis [7].

SNP selection
In our previous study, miR-130a was identified to be significantly associated with CAD [7]. The basic information,
including the target gene sequence and gene loci (Chr11:57641198-57641286), of miR-130a was obtained from the
NCBI website (www.ncbi.nlm.nih.gov). The Ensembl genome browser (www.ensembl.org) was used to screen the
SNP sites in the promoter of miR-130a. The minor allele frequency (MAF) values were accessed on the website www.
internationalgenome.org, and the SNP sites with MAF values <0.05 were excluded. The rs731384 SNP that resides
in the promoter of miR-130a was selected in the study, and its MAF was 0.141 (>0.05). The primer design, PCR
protocol, and the single base extension of the primers were designed using AssayDesigner 3.1 software (Sequenom
Inc., San Diego, CA, U.S.A.). The primers were synthesized by a professional biotechnology company. All the primers
were diluted according to the manufacturer’s user guide.

Polymorphism genotyping
Genotypic polymorphisms were identified on the Agena MassARRAY system (Agena/Sequenom Inc., San Diego, CA,
U.S.A.) according to manufacturer’s user guide.

The genomic DNA was extracted using a blood DNA extraction kit [Axygene Biotechnology (Hangzhou) Limited,
Hangzhou City, China]. Quality control measures were conducted by 1.25% agarose gel electrophoresis (AGE), and
the optical density (OD) values were detected using a Nanodrop 2000 spectrophotometer (Thermo, Wilmington, DE,
U.S.A.). All the samples were stored at −20◦C until use.

DNA samples were amplified via standard PCR. The primers of the target gene were designed using AssayDe-
signer 3.1 software (Sequenom Inc., San Diego, CA, U.S.A.) and were synthesized by a professional biotech company.
Four microliters of PCR master mix was allocated into each well of 384-well plates and was mixed uniformly with
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Table 1 Demographics of the study population

CADs (n=600) Controls (n=276) P-value

Age (years) 61 (53-70) 58 (50-66) <0.001

Gender (male/female) 465/135 176/100 <0.001

Smoking status (Yes/No) 286/314 111/165 0.040

Drinking status (Yes/No) 98/502 41/235 0.578

CKMB (U/l) 17 (13.40–23) 16 (13–20) 0.001

TC (mmol/l) 4.66 (3.88–5.51) 4.60 (3.91–5.33) 0.318

TG (mmol/l) 1.79 (1.24–2.48) 1.71 (1.17–2.39) 0.168

HDL-C (mmol/l) 1.32 (1.10–1.62) 1.40 (1.18–1.68) 0.013

LDL-C (mmol/l) 2.79 (2.20–3.48) 2.70 (2.14–3.36) 0.067

ApoA (g/l) 1.28 (1.14–1.45) 1.30 (1.18–1.49) 0.060

ApoB (g/l) 0.92 +− 0.23 0.90 +− 0.20 0.220

FBG (mmol/l) 5.21 (4.65–6.17) 4.87 (4.54–5.33) <0.001

MiR-130a 2.98 (1.47–5.24) 3.56 (1.74–11.16) 0.001

Skewed data are presented as the medians (interquartile ranges), normal data are presented as the means +− S.D., and categorical data are presented
as the absolute values. Smoking status, drinking status, and gender were examined by Chi-Square tests, the plasma level of ApoB was examined by
Independent Samples t tests and the rest of the baseline characteristics were examined by Mann–Whitney tests. The value of miR-130a means the
relative amount of miR-130a calculated by the 2−�ct method. Values in bold represent P-values of less than 0.05.

1 μl of template DNA (20 ng/μl). Microplate sealers were used to prevent evaporation during the reaction. The re-
action environment and procedures were set as 94◦C, 5 min; 94◦C, 20 s; 56◦C, 30 s; 72◦C, 1 min; and 72◦C, 3 min.
A total of 45 cycles of repeating steps were conducted, and the completed reactions were stored at 4◦C until use.
The PCR products were treated with shrimp alkaline phosphatase (SAP) to remove the dNTPs. Two microliters of
SAP mix and 5 μl of PCR products were mixed uniformly in each well of 384-well plates. Microplate sealers were
used to prevent evaporation. The reaction environment and procedures were set as: 37◦C, 20 min; 85◦C, 5 min af-
ter centrifugation, and the products were stored at 4◦C until use. Sequential single base extension (SBE) was then
conducted. Two microliters of extending mix and 7 μl of PCR+SAP reaction reagent were mixed uniformly in each
well of 384-well plates. Microplate sealers were used to prevent evaporation. The single base extension reaction was
conducted after centrifugation. Resin purification was conducted, and the products were transferred into a 384-well
spectroCHIP bioarray with a MassARRAY Nanodispenser RS 1000 (Agena, Inc). The genechip was analyzed with
MALDI-TOF-MS (MassARRAY Analyzer 4.0, Agena, Inc). The original data and genotyping figures were obtained
using MassARRAY TYPER4.0 software (Agena, Inc). The integrity and validity of the output were examined and
submitted to the professional statisticians for further analysis.

Statistical analysis
Statistical analysis was conducted using the Statistics Package for Social Sciences (ver. 16.0, SPSS Incorporated,
Chicago, IL, U.S.A.). Skewed data are presented as the medians (interquartile ranges), normal data are presented
as the means +− S.D. and categorical data are presented as the absolute values. The Chi-square tests, independent
samples t tests, Mann–Whitney tests, Kruskal–Wallis tests, one-way ANOVA, and logistic regression analysis were
conducted for data analysis. P<0.05 was considered significant in the two-tailed tests.

Results
Description of the study population
A total of 876 patients (641 males and 235 females) aged 32–84 years were recruited for the present study. The CAD
cases (600) and controls (276) were distinguished by the results of coronary angiography. The plasma levels of CKMB
and FBG were higher in the CAD group than in the control group, while the levels of HDL-C and miR-130a were
significantly lower (P<0.05) in the CAD group than those in the control group (Table 1).

Clinical parameter distributions in different genotypes and alleles
For further study, the subjects were divided into three groups according to different genotypes. AA represented the
homozygote of minor alleles, AG represented the heterozygote, and GG represented the homozygote of major alleles.
The plasma levels of TC (P=0.006), LDL-C (P=0.030), ApoA (P=0.038), and ApoB (P=0.022) distributed differently
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Table 2 Clinical parameters distributed in different genotypes and alleles

AA (n=21) AG (n=264) GG (n=591) P-value

Age (years) 58 (49.5–71.5) 60 (51–68) 61 (52–69) 0.282

Gender (male/female) 17/4 199/65 425/166 0.411

Smoking status (Yes/No) 8/13 131/133 258/333 0.215

Drinking status (Yes/No) 3/18 43/221 93/498 0.960

CKMB (U/l) 16 (13–20) 16 (13–21) 17 (13.4–22) 0.114

TC (mmol/l) 4.52 (3.53–5.43) 4.42 (3.62–5.30) 4.72 (4.03–5.53) 0.006

TG (mmol/l) 1.92 (1.18–2.87) 1.71 (1.15–2.28) 1.78 (1.24–2.49) 0.197

HDL-C (mmol/l) 1.26 (1.04–1.50) 1.34 (1.13–1.60) 1.38 (1.14–1.68) 0.087

LDL-C (mmol/l) 2.43 (1.99–2.96) 2.65 (2.05–3.35) 2.80 (2.22–3.47) 0.030

ApoA (g/l) 1.23 (1.08–1.35) 1.30 (1.18–1.50) 1.29 (1.14–1.44) 0.038

ApoB (g/l) 0.92 +− 0.19 0.88 +− 0.24 0.93 +− 0.22 0.022

FBG (mmol/l) 5.2 (4.59–6.23) 5.08 (4.65–5.87) 5.08 (4.60–6.04) 0.987

MiR-130a 27.81 (26.53–28.74) 27.52 (26.65–28.24) 27.57 (26.63–28.62) 0.652

P-value for HWE 0.180

Skewed data are presented as the medians (interquartile ranges), normal data are presented as the means +− S.D., and categorical data are presented
as the absolute values. The plasma level of ApoB was examined by one-way ANOVA, and the rest of the baseline characteristics were examined by
Kruskal–Wallis tests. Abbreviation: MiR-130a, the relative amount of miR-130a calculated by the 2−�ct method. Values in bold represent P-values of
less than 0.05.

Table 3 Distributions of genotypes and alleles in the case and control populations

Genotypes CADs (n=600) Controls (n=276) P-value

GG 403 (67.2%) 188 (68.1%) 0.781

GA 187 (31.2%) 77 (27.9%) 0.327

AA 10 (1.7%) 11 (4.0%) 0.037

P-value for HWE 0.025 0.385

Alleles CADs (n=600) Controls (n=276) P-value

G 207 (17.25%) 99 (17.93%) 0.726

A 993 (82.75%) 453 (82.07%)

AA, the homozygote of minor alleles; AG, the heterozygote; GG, the homozygote of major alleles. Genotypes and alleles are presented as the frequencies
(%).

in various alleles (Table 2), suggesting that the SNP site rs731384 plays an important role in the human metabolism
of plasma lipids. However, the miR-130a levels showed no differences between various alleles (P=0.652). The allele
frequency in participants was consistent with Hardy–Weinberg equilibrium (HWE) (P=0.180).

Genotype and allele distributions in the case and control populations
The genotype distribution of rs731384 is shown in Table 3. The frequency of the AA genotype in the case group
was significantly lower than that in the control group (P=0.039). However, the allele distribution in the case group
was not in HWE (P=0.025). A logistic regression analysis was conducted to investigate the relationship between the
genotypes of rs731384 and CAD risk. The polymorphism frequencies were consistent with HWE in the control group.
As is shown in Table 4, the allele distributions in the study populations were consistent with a recessive model, and
the AA genotype was a protective factor against CAD risk (AA:AG+GG, adjusted odds ratio (AOR) = 0.374, 95% CI
= 0.154–0.906, *P=0.029).

The interactions of environmental and genetic factors in CAD prevalence
A receiver operating characteristic curve analysis was conducted to predict the prevalence of CAD. The areas under
curve (AUCs) were 0.587 for age ≥ 59.5 years (95% CI: 0.547–0.628, P<0.001); 0.570 for CKMB ≥ 25.9 U/l (95%
CI: 0.531–0.609, P=0.010); 0.552 for HDL-C < 1.325 mmol/l (95% CI: 0.512–0.592, P=0.013); 0.617 for FBG ≥
5.445 mmol/l (95% CI: 0.579–0.656, P=<0.001); and 0.567 for the relative amount of miR-130a ≥ 6.521 (95% CI:
0.526–0.608, P=0.001) (Table 5). A crossover analysis was conducted to analyze the relationship between CAD risk
and the interactions of environmental and genetic factors in a recessive model. As shown in Tables 6 and 7, the AA
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Table 4 Logistic analysis on the association between SNP rs731384 and CAD risk

Rs731384 (G>A) CAD (n=600) Control (n=276) OR (95% CI) P-value AOR* (95% CI) *P-value

GG 403 188 1.000 (reference) 0.097 1.000 (reference) 0.114

AG 187 77 0.424 (0.177–1.016) 0.054 0.392 (0.161–0.956) 0.039

AA 10 11 1.133 (0.825–1.555) 0.440 1.170 (0.845–1.622) 0.345

Dominant model (GG
compared with
GA+AA)

403/197 188/88 0.958 (0.706–1.299) 0.781 0.936 (0.684–1.282) 0.682

Recessive model (AA
compared with
GA+GG)

10/590 11/265 0.408 (0.171–0.973) 0.043 0.374 (0.154–0.906) 0.029

AA represents the homozygote of minor alleles, AG represents the heterozygote, GG represents the homozygote of major alleles. Abbreviations: OR,
odds ratio; HWE, P-value for the HWE test.
*Adjusted for age, gender.

Table 5 Receiver operating characteristic curve analyses, including the optimal cut-off value and the Youden index for
predicting CAD prevalence

Variables AUC (95% CI) P-value Cut-off Sensitivity Specificity Youden index

Age (years) 0.587 (0.547–0.628) <0.001 59.5 0.572 0.562 0.134

Gender (male/female) 0.431 (0.390–0.473) 0.001 - - - -

Smoking status
(Yes/No)

0.538 (0.497–0.580) 0.070 - - - -

Drinking status
(Yes/No)

0.508 (0.466–0.549) 0.722 - - - -

CKMB (U/l) 0.570 (0.531–0.609) 0.010 25.9 0.210 0.938 0.148

TC (mmol/l) 0.521 (0.481–0.561) 0.318 - - - -

TG (mmol/l) 0.529 (0.487–0.570) 0.168 - - - -

HDL-C (mmol/l) 0.552 (0.512–0.592) 0.013 1.325 0.609 0.503 0.112

LDL-C (mmol/l) 0.538 (0.498–0.579) 0.067 - - - -

ApoA (g/l) 0.540 (0.499–0.580) 0.060 - - - -

ApoB (g/l) 0.521 (0.480–0.561) 0.325 - - - -

FBG (mmol/l) 0.617 (0.579–0.656) <0.001 5.445 0.430 0.793 0.223

MiR-130a 0.567 (0.526–0.608) 0.001 6.521 0.304 0.817 0.121

The value of miR-130a means the relative amount calculated by the 2−�c
t method. AUC, the closer the value is to 0.5, the less predictive it is.

genotype was a protective factor for CAD in subjects with a status of HDL-C level ≥ 1.325 mmol/L (odds ratio (OR)
= 0.117, 95% CI = 0.023–0.588, P=0.009, S = 1.105, AP = −0.718, AP* = 0.095, RERI = −0.084) compared with
the reference population.

Conclusion
In the present study, the results revealed that rs731384 plays an important role in the human metabolism of plasma
lipids. The AA genotype was a protective factor against CAD compared with the AG+GG genotypes (AOR = 0.374,
95% CI = 0.154–0.906, *P=0.029), and the protective effect was significantly enhanced when the AA genotype was
present with an HDL-C level ≥1.325 mmol/l (OR = 0.117, 95% CI = 0.023–0.588, P=0.009). The results suggested
that both environmental and genetic factors work together in the occurrence and development of CAD.

Discussion
The association between miR-130a and CAD has been widely investigated. In previous studies, miR-130a was found
to be an important angiogenic miRNA, and its dysregulation might contribute to endothelial progenitor cell (EPC)
dysfunction in CAD patients [18,19]. Endothelial cells comprise the continuous monolayer of cells covering the in-
ner surfaces of vessels and have significant biological functions, including regulation of thrombosis and coagulation,
dilation of vascular smooth muscle, suppression of platelet adhesion and aggregation [20,21], secretion of vasoac-
tive substances and regulation of angiostasis [22]. Studies have found that normal endothelial cells help prevent lipid
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Table 6 CAD incidence by interactions with environmental factors such as age, gender, smoking status, drinking status, the
plasma level of CKMB, HDL-C, FBG, and miR-130a

Characteristics Recessive model of rs731384
GG+AG AA

Age (years) OR (95% CI) P-value OR (95% CI) P-value

<59.5 1.000 (Reference) 0.000 0.840 (0.262–2.694) 0.769

≥59.5 1.774 (1.324–2.377) 0.000 0.300 (0.074–1.217) 0.092

Gender

Male 1.000 (Reference) 0.000 0.414 (0.157–1.092) 0.075

Female 0.509 (0.371–0.698) 0.000 0.123 (0.013–1.189) 0.070

CKMB (U/l)

<25.9 1.000 (Reference) 0.000 0.537 (0.220–1.307) 0.170

≥25.9 4.226 (2.457–7.270) 0.000 - -

HDL-C (mmol/l)

<1.325 1.000 (Reference) 0.002 0.561 (0.179–1.752) 0.320

≥1.325 0.640 (0.477–0.860) 0.003 0.117 (0.023–0.588) 0.009

FBG (mmol/l)

<5.445 1.000 (Reference) 0.000 0.346 (0.114–1.047) 0.060

≥5.445 2.866 (2.043–4.022) 0.000 1.558 (0.300–8.102) 0.598

miR-130a

<6.521 1.000 (Reference) 0.000 0.439 (0.157–1.227) 0.116

≥6.521 0.518 (0.371–0.724) 0.000 0.192 (0.035–1.057) 0.058

miR-130a, the relative amount calculated by the 2−�c
t method. Values in bold represent P-values of less than 0.05.

Table 7 The indexes of the synergistic effects between the recessive model of rs731384 and risk factors

Variables S AP AP* RERI

HDL-C 1.105 −0.718 0.095 −0.084

Abbreviations: AP, attributable proportion of interaction; AP*, the attributable proportion of interaction caused only by gene and environment; RERI,
relative excess risk of interaction; S, Rothman’s synergy index for an interaction.

metabolism disorders, which are the leading risk factors of CAD. The low-density lipoprotein permeability of en-
dothelial cells increases abnormally in hyperlipidemia subjects, which contributes to vessel intima lipidosis and the
development of CAD [23]. Additionally, miR-130a was found to alleviate human coronary artery endothelial cell
injury, inflammatory responses, cardiac dysfunction, and myocardial infarction by down-regulating PTEN and ac-
tivating the PI3K/Akt/eNOS signaling pathway [24,25]. Last year, an hsa-miR-130a-3p-mediated circRNA–mRNA
ceRNA network showed that nine circRNAs promote transient receptor potential cation channel subfamily M mem-
ber 3 (TRPM3) expression by inhibiting hsa-miR-130a-3p in CAD patients [26].

In our previous study, it was shown that miR-130a was decreased in patients with CAD and may be an independent
predictor of CAD. To further investigate the genetic mechanism by which miR-130a was distributed differently be-
tween CAD patients and non-CAD subjects, we selected the SNP site rs731384, located in the promoter of miR-130a,
and a case–control study was conducted.

In the present study, the AA genotype was a protective factor against CAD compared with the AG+GG genotype,
and the protective effect was significantly enhanced when the AA genotype was present with an HDL-C level ≥
1.325 mmol/l. Furthermore, direct evidence from the present study showed that SNP rs731384 plays a significant
role in determining the plasma lipid levels in CAD patients. The plasma levels of TC, LDL-C, ApoA, and ApoB were
determined to be different due to alleles.

SNP function prediction in the National Institutes of Health database showed that a transcription factor binding site
YY1-Q6 (core match score = 1, matrix match score = 0.989, sequence: GCCATtttc) is highly likely to be a potential
target of rs731384. YY1, also called Yin-Yang1, is a ubiquitous transcription factor with abundant cellular functions.
Animal experiments have shown that YY1 promotes liver steatosis and lipotoxicity by the suppression of Farnesoid X
receptorin (FXR) [27,28]. FXR plays a key role in maintaining lipid metabolic homeostasis, regeneration of liver cells
and prevention of liver fibrosis, while YY1 regulates lipid metabolism via the FXR-SHP signaling axis by targetting
intron 1 of the FXR gene [29].
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Figure 1. Transcription factor prediction by the PROMO database

Additionally, another transcription factor prediction by the PROMO database showed that Forkhead Box P3
(FOXP3) is also a possible target of rs731384 (Figure 1). FOXP3 is closely related to the function of regulatory T
cells (Tregs), and reduced expression of FOXP3 and decreased Treg levels have been observed in CAD patients in
recent studies [30–33]. A study implied that the FOXP3 gene may exert an influence on immune responses and result
in unstable plaques in CAD patients [34].

We hypothesize that the SNP rs731384 may have the potential to reduce the occurrence and development of CAD
by regulating human lipid metabolism via binding the YY1 transcription factor. However, an individual SNP site is not
strong enough to make a difference between CAD patients and healthy people. More studies covering novel SNP sites
need to be conducted. Our study first investigated the relationship between rs731384 and CAD and the role rs731384
plays in lipid metabolism amongst Chinese populations. It confirms a previous study that found that lipometabolism
regulated by gene expression may be a potential risk factor and predictor of CAD [35,36].

Limitations
Several limitations existed in the present study. First, the sample size of subjects with the AA genotype was small, and
the genotype distribution was not in HWE in the case group. More specimens are needed for further investigation.
Second, only one SNP site was focussed on in the present study, meaning that the range of study was relatively narrow.
Third, the absence of further functional validation made the results less convincing.
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