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Introduction

Hypertension affects more than 60% of individuals aged 
65 years old or older and more than 80% of people aged 
older than 85 years old.[1] Of note, the brain and its functions 
are early targets of hypertension‑induced organ damage. 
By 2050, 135.5 million people are predicted to be living 
with dementia worldwide.[2] This will place a substantial 
burden on the society, economy, and family happiness. 
In addition, cerebral small vessel disease  (CSVD) can 
manifest as hypertensive vascular lesions and is a major 
contributor to cognitive impairment and dementia.[3,4] 
Despite its devastating effects, the pathogenesis of CSVD 
and the association between CSVD and cognitive impairment 
remain incompletely understood. Developing a method to 

identify cognitive decline early in patients with hypertension 
may provide a unique opportunity to implement preventive 
therapies before overt dementia develops. Moreover, 
silent CSVD, which is usually ignored, is characterized 
by white matter lesions  (WMLs), enlarged perivascular 
spaces  (EPVSs), lacunar infarcts  (LIs), and cerebral 
microbleeds  (CMBs). The ability to observe these signs 
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on magnetic resonance imaging (MRI) has improved over 
the past decade with advances in neuroimaging. Therefore, 
in this review, we aimed to evaluate the pathological 
mechanisms in CSVD that are affected by hypertension 
and to further explore the relationship between CSVD and 
cognitive impairment.

White Matter Lesion

WML or WM hyperintensities are usually located around the 
ventricles, especially close to the ventricular horns. WML 
is defined as hyperintensities on fluid‑attenuated inversion 
recovery (FLAIR) and proton density/T2‑weighted images, 
without prominent hypointensity on T1‑weighted images.[5] 
WML refers to the entire spectrum of such lesions from mild 
perivascular tissue damage surrounding the lipohyalinotic 
arterioles which result in minimal axonal loss, to more severe 
ischemic damage, which can cause extensive myelin and 
axonal loss.[6]

It is generally thought that the most important risk factors 
for WML progression are age and hypertension.[7] On the 
one hand, long‑term hypertension results in lipohyalinosis of 
the media and thickening of the vessel walls, and narrowing 
of the lumen of the arterioles and small perforating arteries 
that are derived from cortical and leptomeningeal arteries 
and nourish the deep WM.[8] On the other hand, hypertension 
increases blood vessel fibrosis, altering the distribution of 
Type 4 collagen and other extracellular matrix and resulting 
in stiffening of the vessel walls and a reduction in cerebral 
blood flow (CBF), especially at times of increased need.[9] It 
has previously been reported that hypertension modifies the 
relationship between amyloid and WML, in that patients with 
either current or past evidence of hypertension have more 
WML for a given burden of amyloid.[10] High systolic blood 
pressure (SBP) stiffens aortic roots, favoring upstream left 
ventricular hypertrophy and downstream WML as a result 
of an increase in the intensity of the propagation of pulse 
waves to the smallest cerebral vessels.[11] Furthermore, the 
deep WM has a watershed‑like blood supply and is therefore 
more vulnerable than other regions’ impairment in CBF. 
This suggests that hypoperfusion and hypoxia may be early 
features of the development of WML.[12,13] Interestingly, 
hypertension influences the autoregulation of CBF by 
narrowing the range of the autoregulatory process instead 
of its speed, resulting in a steeper CBF–BP curve.[14]

Both the occurrence and the progression of WML are 
associated with cognitive decline, dementia, stroke, 
and mortality.[15] A longitudinal cohort study conducted 
over  4  years by Uiterwijk et  al.[16] suggested that, in 
hyperintensive patients, the progression of periventricular 
WML was related to cognitive impairment (especially 
executive function), whereas there was no association 
between baseline periventricular WML and cognitive 
dysfunction. Thus, preventing the progression of WML 
should be emphasized as a therapeutic goal in hypertensive 
patients. Moreover, WML‑associated reductions in gray 
matter volume were significantly more substantial and 

executive function, and memory was worse in uncontrolled 
hypertensives than in normotensives.[6] In addition, 
cognitive decline was more associated with the degree 
of periventricular WML than that of subcortical WML. 
Intriguingly, the former may disrupt the long associative 
tracts that connect more distant cortical areas, whereas the 
latter may cause more limited damage to short cortico‑cortical 
connections.[16] A recent study based on a three‑dimensional 
FLAIR showed that performance on the Mini Mental State 
Examination (MMSE) was associated with an increase in the 
total WML volume. However, only parietal WML volumes 
were independently correlated with Montreal Cognitive 
Assessment scores.[17] The effects of WML on memory 
are fully mediated by acetylcholinesterase activity. Data 
suggest that the effect of WML on the dysfunction of the 
cholinergic system in Alzheimer’s disease  (AD) patients 
with mild cognitive impairment  (MCI) depends on the 
WML distribution.[18] The results of this study suggest that 
further pharmacological studies are warranted to explore 
whether WML influences responses to cholinergic treatment. 
For example, Blume et  al.[19] found that, in Parkinson’s 
disease, a higher WML volume was associated with the 
rapid onset of dementia within the 1st  year of treatment 
with deep brain stimulation. In contrast, a previous study 
failed to find a relationship between total WML volume and 
MMSE performance.[20] Future studies should be performed 
to validate the relationship between WML volume and 
cognitive impairment, and these studies should extend their 
follow‑up periods as long as possible.

Enlarged Perivascular Spaces

Perivascular spaces surround perforating arterioles and 
venules as they course from the subarachnoid space through 
the brain parenchyma and serve as an important drainage 
system for interstitial fluids and solutes in the brain. EPVS, 
also known as Virchow–Robin spaces, are most likely to 
be identified in T2‑weighted MRI and are characterized by 
punctate or linear signal intensities similar to cerebrospinal 
fluids.[21,22]

Long‑term hypertension damages the blood vessels 
and initiates the expression of hypoxia‑sensitive genes 
(HIF‑1α, etc.) and molecular cascades during its hypoxic 
phase. Inflammation is ultimately induced by the release 
of cytokines, inflammatory matrix metalloproteinases, and 
cyclooxygenase‑2, and these, in turn, open the blood-brain 
barrier (BBB) resulting in the induction of the expression 
of adhesion molecules in endothelial cells and thereby 
contributing to leukocyte and platelet adhesion and 
microvascular occlusion.[13,23,24] The disarrangement of the 
BBB leads to the leakage of plasma components through 
the BBB into the vessel wall and perivascular space, and 
this is thought to cause EPVS.[25,26] Although Yao et al.[27] 
previously suggested that hypertension may promote the 
development of EPVS throughout the brain including the 
basal ganglia (BG) and WM in addition to the hippocampus. 
Multiple recent studies that have focused on the association 
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between ambulatory BP levels and EPVS have found that 
higher SBP levels are independently associated with EPVS 
in the BG but not the WM. These results support the notion 
that EPVS in the BG may be a marker of CSVD.[22,28] The 
results of a prospective cohort study showed that WM‑EPVS 
was associated with cerebral amyloid angiopathy  (CAA) 
and superficial siderosis.[29] Conversely, a prospective, 
multicenter, hospital‑based study published by Zhang et al.[30] 
showed that hypertension was an independent risk factor for 
EPVS in WM but not in BG or hippocampus. Future studies 
should further explore the relationship between BP levels 
and EPVS progression.

Patients with a high degree of EPVS at baseline experience 
greater declines in processing speed and have an increased 
likelihood of developing vascular dementia.[31] Huijts 
et  al.[32] conducted a 5‑year study of 189  patients with a 
high risk of CSVD and found that an increase in BG‑EPVS 
was associated with a decrease in information processing 
speed and that this relationship was independent of age 
and WML. In addition, a study conducted by Arba et al.[33] 
revealed that the total EPVS number was not associated 
with cognitive impairment. While a case report published 
in 2017 suggested that widespread enlarged PVS could 
potentially cause neurological deficits and that the effect of 
EPVS on perivascular circulation could lead to focal brain 
dysfunction.[34] However, in patients with different degrees 
of CSVD, BG‑EPVS seemed to depend on the presence 
of other markers of CSVD.[35] In addition, Yao et  al.[27] 
surprisingly failed to find any significant association between 
the load of hippocampal load of EPVS and baseline cognitive 
performance or incident dementia over an 8‑year follow‑up 
period, although functional and structural changes in the 
hippocampus have long been demonstrated to play critical 
roles in memory, learning, and cognitive impairments.[36] 
Hence, the presence of EPVS in different anatomic sites 
indicates different levels of clinical significance.

Lacunar Infarct

LI is defined as infarction lesions of 3–15 mm in diameter 
that are located in the internal capsule, BG, corona radiata, 
thalamus, or brainstem and are caused by the occlusion of 
a perforating artery.[37]

These LIs are rarely fatal during the acute phase, and there 
is, therefore, a paucity of pathological data regarding this 
condition. While hypertension is the principal risk factor 
for stroke, it may be even more important in LI than large 
artery atherosclerosis and non‑LIs with the same clinical 
severity.[38,39] A growing amount of evidence suggests that 
the anatomical location of LI is important to its etiology. 
Hypertension and an increasing WML volume independent 
of other vascular risk factors are significant risk factors for 
new LI in the deep WM. However, hyperhomocysteinemia 
has been associated an increased risk of LI in the BG, and 
hyperlipidemia always leads to isolated LI in the deep gray 
nuclei/internal capsule.[40,41] In patients with diabetes, LI 
is more frequently caused by branch orifice atheromatous 

disease than hypertensive arteriopathy, the latter of which 
is the predominant vascular pathology underlying strictly 
deep/mixed CMB.[42]

LI is usually considered benign and appropriate secondary 
preventive measures are, therefore, often neglected 
despite the fact that LI is associated with a higher risk of 
subsequent stroke and dementia.[37] Indeed, the impact of 
CSVD on dementia could be much more substantial than 
the impact of cerebral large vessel disease. A prospective 
cohort study conducted by Kitagawa et al.[43] revealed that 
the incidence of dementia was more substantially affected 
by the presence of LI than carotid stenosis. One key 
complication associated with this condition might be diffuse 
cerebrovascular endothelial failure, which leads to BBB 
damage, local inflammation, and reduced CBF as a result of 
the loss of autoregulation. A study that focusing on BP and 
poststroke cognitive impairment found that high home BP 
and multiple LI were significantly independent predictors 
for the progression of both cognitive impairment and stroke 
recurrence.[44] Finally, the Ohasama study revealed that, at 
a 7‑year follow‑up appointment, LI was a better indicator 
than WML of declines in motivation, interest, and reaction 
to the environment.[45]

Cerebral Microbleed

CMB, cerebral microhemorrhages, refers to homogeneous, 
small   (<10  mm in diameter) ,  round,  or  ovoid 
hypointensities evident on susceptibility‑weighted imaging 
or   T2*  Gradient‑Recall Echo MRI sequences. These 
signs correspond to areas of hemosiderin deposits that are 
themselves caused by the prior leakage of blood from small 
arteries, arterioles, and/or capillaries.[46]

Kwon et al.[47] focused on hypertensive stroke patients and 
found that exposure of the vascular endothelium to sustained 
hypertensive stress, particularly during reverse dipping at 
night, could be a rational explanation for the higher prevalence 
of CMB. Previous data showed that hypertension increases the 
expression of the cytokine tumor necrosis factor‑α (TNF‑α),[48] 
which is a pivotal regulatory cytokine that is secreted 
primarily by macrophages/microglia, the main cell types 
found to underlie CMB in pathologic/autopsy samples. In 
addition, a higher level of TNF receptor 2 promotes the 
pathogenesis of CMB.[49] The results of The Atherosclerosis 
Risk in Communities Study indicated that hypertensive 
disease (indicated by LI and WML) may contribute to deep 
or mixed‑deep and lobar CMB, whereas CAA may drive the 
development of lobar‑only CMB.[50] Indeed, hypertension may 
also be a causative factor for future CAA‑related hemorrhages, 
which act synergistically on recurrent stroke in patients with 
strictly lobar CMB.[51] Alternatively, Jia et al.[52] found that 
hypertension increased the risk of CMB in the territory near 
the posterior cerebral artery  (in the temporal, parietal, and 
occipital lobe) and deep and infratentorial locations.

The results of the population‑based AGES–Reykjavik 
Study suggested that hypertensive vasculopathy and the 
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combined effects of hypertensive and CAA play roles in the 
pathogenesis of cognitive deterioration.[53] They also found 
that patients with ≥3 CMB exhibited steeper declines in a 
composite measure of global cognitive function, memory, 
and speed than did those without CMB. In addition, deep and 
mixed CMB was associated with memory, whereas strictly 
lobar CMB was associated with speed and visuospatial 
executive functions.[53,54] Nevertheless, Heringa et  al.[55] 
reported that there was no difference in cognitive functions 
between patients without CMB and those with  ≥1 or  ≥3 
CMB. Furthermore, Rabelo et al.[56] also reported that, in 
mild AD patients, those with amnestic MCI, and cognitively 
normal elderly subjects, there was no significant difference 
between groups with and without CMB, indicating that 
CMB is not a good candidate neuroimaging biomarker for 
these diseases, especially in their early phases. Longitudinal 
studies may provide more robust information about CMB 
progression and its prognostic clinical significance. Multiple 
CMB (≥3) may disrupt connections between functionally 
important cortical and subcortical tracts that are critical 
for cognitive processes, ultimately damaging these neural 
networks and interfering with cognition. However, the 
direct impact of CMB on cognitive functions appears to be 
limited.[55]

Conclusion

Studies in the literature have confirmed that multiple 
hypertensive vasculopathies and changes in inflammatory 
status play pivotal roles in the pathological mechanisms 
underlying CSVD. The neuroimaging markers for CSVD, 
including WML, EPVS, LI, and CMB, have independent 
or combined effects on cognitive impairment. Therefore, 
in patients with CSVD, carefully monitoring and treating 
hypertension may provide a benefit by preventing cognitive 
impairment. More attention should be paid to this issue, and 
targeted efforts are needed to increase our understanding of 
the relationship between BP levels and CSVD progression 
and between the numbers, volumes, and anatomical locations 
of CSVD and cognitive impairment.
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高血压相关性脑小血管病引起认知障碍

摘要

目的：80%痴呆为阿尔茨海默病和/或血管性痴呆，两者的共同危险因素包括高血压。脑小血管病（cerebral small vessel 
disease，CSVD）与高血压和认知功能障碍均密切相关。本文对高血压引起CSVD的病理机制及CSVD与认知功能障碍的额关
系进行综述，以期更好的了解CSVD与高血压、认知障碍的关系。
方法：通过使用高血压、脑小血管病、白质病变、扩大的血管周围间隙、腔隙性脑梗塞、脑微出血和认知障碍等关键词检索
PubMed数据库最新文献。对相关文章进行回顾分析，整理并分析高血压引起CSVD的病理生理变化及CSVD与认知障碍的关系。
结果：近年研究表明，高血压相关性病理改变：小血管病变、炎症反应、氧化应激、低灌注，自身调节障碍，血脑屏障破坏
及脑淀粉样血管病等可致CSVD，进而引起认知功能障碍。血压控制欠佳时，单一或多种CSVD可致认知功能下降，这种作用
可能是由于胆碱能系统功能障碍或皮质与皮质下传导束功能紊乱所致。
结论：高血压相关性血管病变和炎症反应可引起CSVD。两者均是认知功能障碍发展的重要预后指标。不同解剖部位
CSVD，CSVD数量等对认知功能领域的影响尚存在争议。血压水平与EPVS的发生发展，CSVD数量、体积及解剖位置的变
化与认知功能障碍的关系需进一步探索。


