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MSstatsTMT: Statistical Detection of
Differentially Abundant Proteins in Experiments
with Isobaric Labeling andMultiple Mixtures
Ting Huang1,‡ , Meena Choi1,‡ , Manuel Tzouros2, Sabrina Golling2,
Nikhil Janak Pandya2 , Balazs Banfai2 , Tom Dunkley2, and Olga Vitek1,*

Tandem mass tag (TMT) is a multiplexing technology
widely-used in proteomic research. It enables relative
quantification of proteins from multiple biological samples
in a singleMS runwith high efficiency and high throughput.
However, experiments often require more biological repli-
cates or conditions than can be accommodated by a single
run, and involve multiple TMT mixtures and multiple runs.
Such larger-scale experiments combine sources of biolog-
ical and technical variation in patterns that are complex,
unique to TMT-based workflows, and challenging for the
downstream statistical analysis. These patterns cannot be
adequately characterized by statistical methods designed
for other technologies, such as label-free proteomics or
transcriptomics. This manuscript proposes a general sta-
tistical approach for relative protein quantification in MS-
based experiments with TMT labeling. It is applicable to
experiments with multiple conditions, multiple biological
replicate runs and multiple technical replicate runs, and
unbalanced designs. It is based on a flexible family of linear
mixed-effects models that handle complex patterns of
technical artifacts and missing values. The approach is
implemented in MSstatsTMT, a freely available open-
source R/Bioconductor package compatible with data
processing tools such as ProteomeDiscoverer,MaxQuant,
OpenMS, andSpectroMine. Evaluation on a controlledmix-
ture, simulated datasets, and three biological investiga-
tions with diverse designs demonstrated thatMSstatsTMT
balanced the sensitivity and the specificity of detecting dif-
ferentially abundant proteins, in large-scale experiments
withmultiple biologicalmixtures.

Isobaric labeling of biological samples, combined with
shotgun MS, is a popular strategy for quantitative proteomics
(1–3). Two most used isobaric labeling methods are Tandem
Mass Tags (TMT) (4) and isobaric Tags for Relative and

Absolute Quantitation (iTRAQ) (5). In these experiments, pep-
tides from different samples are labeled with isobaric variants
of a mass tag (also called channels) and combined to produce
a single biological mixture. Commercial TMT reagents now
routinely combine up to 16 samples in a mixture (6) and lately
new 16-plex reagents (TMTpro) have been released. Because
all the variants of the reagent tag have equal molecular mass,
the peptides from all the samples form a single peak in the
MS1 spectrum. Upon fragmentation, the reporter ions from dif-
ferent variants become distinguishable in the tandem (MS/MS,
MS2) mass spectra. Recent developments of Synchronous
Precursor Selection (SPS) methods allow us to isolate multiple
fragment ions from the MS2 scans and perform accurate
quantitative analysis of the reporter ions in the MS3 spectra (7).
Intensities of the reporter ions in the MS2 or MS3 spectra are
related to the relative abundance of the peptides (8, 9). Both
are subject to interferences, and MS2 spectra suffering from
higher ratio compression (10). The peptides and proteins are
identified by a database search (11, 12), and the intensities are
quantified by computational approaches implemented in data
processing tools such as Proteome Discoverer, MaxQuant,
OpenMS, or SpectroMine.

This multiplexed approach to quantification increases the
sample throughput and decreases the experiment time. Impor-
tantly, it also reduces the between-run technical variation that
is unavoidable during label-free sequential sample processing
and data acquisition (13, 14). The quantitative accuracy can be
further improved by acquiring technical replicate MS runs from
one mixture. However, in many investigations the number of bi-
ological samples and conditions exceeds the number of chan-
nels. These investigations require multiple MS runs with distinct
biological replicates, and possibly also multiple technical MS
runs. Investigations with such nontrivial designs may be
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unbalanced (i.e., they may have an unequal number of repli-
cates from each condition in each mixture).

In addition to the complexities of the designs, larger-scale
experiments introduce challenges in the downstream statistical
analysis. The stochastic selection of peptide ions for fragmen-
tation implies that the same ions are not consistently observed
even between technical replicate MS runs. The problem is exa-
cerbated when the experiment profiles multiple biological mix-
tures. Therefore, the resulting data have many missing inten-
sities between MS runs (15, 16). Moreover, multiple spectra
of the same peptide ion, and multiple peptides of the same
protein, may have varying quantitative patterns within and
between MS runs, and require normalization (16). The inten-
sities can be further compromised by ion interference, because
of co-isolating and co-fragmenting isobaric ions within the iso-
lation window. This causes underestimation of changes in pro-
tein abundance (10, 17). In some channels, the intensities can
be missing if the analyte is below the limit of detection. Addi-
tional technical variation may come from sample preparation
(e.g. protein extraction, digestion, and isobaric labeling), run-
to-run instrumental response fluctuation, etc (18). A combina-
tion of complex experimental designs, missing values, biologi-
cal and technical variation, and interferences complicates
protein-level conclusions, and the detection of differentially
abundant proteins between conditions. Although strategies for
addressing these challenges have been proposed, analysis of
these experiments remains challenging.

This manuscript proposes a general statistical approach
for relative protein quantification in MS-based experiments
with TMT labeling, and is specifically designed for experi-
ments with multiple conditions, multiple biological replicate
runs, multiple technical replicate runs, and unbalanced
designs. It is based on a flexible family of linear mixed-effects
models that handle complex patterns of technical artifacts and
missing values. The approach is implemented in MSstatsTMT,
a freely available open-source R/Bioconductor package com-
patible with Proteome Discoverer, MaxQuant, OpenMS, and
SpectroMine. Below we present the details of the approach, as
well as its evaluation on a controlled mixture, simulated data
sets, and three biological investigations.

EXPERIMENTAL PROCEDURES

This section summarizes the data sets in this manuscript. Addi-
tional details, including graphical representations of the experimental
designs, are in supplemental Section 1.

SpikeIn-5mix-MS2 and SpikeIn-5mix-MS3: Controlled Mixtures—
The controlled mixtures were used to evaluate MSstatsTMT in situa-
tions with known ground truth. However, they lack biological varia-
tion, and therefore imperfectly represent real-life investigations.

Experimental design: The controlled mixtures aimed to evaluate
the ability of MSstatsTMT to deal with nontrivial designs with multiple
TMT mixtures and multiple technical replicates. 500, 333, 250, and
62.5 fmol peptides from 48 UPS1 proteins were spiked into 50mg
SILAC HeLa peptides in duplicate. This produced a dilution series
corresponding to 1, 0.667, 0.5, and 0.125 times of the highest UPS1
peptide amount (500 fmol). In addition, a reference sample was gen-

erated by pooling all four diluted UPS1 peptide samples (286.5 fmol)
and combined with 50mg of SILAC HeLa in duplicate. These ten rep-
licates were labeled with TMT 10-plex reagents, mixed and analyzed
by LC–MS/MS. The procedure was repeated five times, to generate
a total of five such controlled mixtures. Each mixture was profiled in
three MS runs, producing 15 MS runs from 5 TMT mixtures in total.
The overall experimental design is shown in supplemental Fig. S1.2.

Data acquisition and processing: Raw data for SpikeIn-5mix-MS2
were acquired from the TMT mixtures using MS2-only strategies.
Raw data for SpikeIn-5mix-MS3 were acquired using SPS (7). The
data were processed with Proteome Discoverer 2.2.0.388 (Thermo
Fisher Scientific) and Mascot Server 2.6.1 (Matrix Science, London,
UK). Statistical analyses with Proteome Discoverer were done within
the software, using proteins marked as “Master” in the protein report.
For all the other statistical analyses, reports from Proteome Discov-
erer 2.2 containing peptide-spectrum matches (PSM) and reporter
ion quantifications was exported to R. The PSM reports contained
6767 proteins for the MS2 data set and 5903 proteins for the MS3
data set. Because protein groups containing both spiked-in and
background proteins complicated the calculation of the ground truth
fold change, all protein groups with multiple proteins were filtered
out. 1207 protein groups were removed from the MS2 data set, and
1000 from the MS3 data set. For the same reason, we also removed
spiked-in UPS1 proteins sharing sequence with endogenous SILAC-
HeLa proteins (20 were removed from the MS2 data set, and 19 from
the MS3 data set). The final data set consisted of 5519 proteins
(including 20 UPS proteins) in the MS2 data set, and 4812 proteins
(including 21 UPS proteins) in the MS3 data set.

Pairwise comparisons: We evaluated the statistical approaches by
their ability to detect changes in the abundance of UPS1 proteins
between pairs of conditions. Each condition was labeled with the con-
centration of the UPS1 proteins, i.e. 1, 0.667, 0.5, and 0.125. The pair-
wise comparisons were labeled as the ratios of the concentrations of
the UPS1 proteins, i.e., 0.667/0.5, 1/0.667, 1/0.5, 0.667/0.125, 0.5/
0.125, and 1/0.125. Therefore, the true fold changes of the UPS1 pro-
teins in these comparisons were 1.33, 1.5, 2, 5.328, 4, and 8.

Simulated Datasets Derived from SpikeIn-5mix-MS3—To evalu-
ate MSstatsTMT in situations with both biological variation and
known ground truth, we created two synthetic data sets by adding
biological variation to SpikeIn-5mix-MS3.

SpikeIn-5mix-3TechRep-MS3-Sim: We simulated a data set with
the same design as SpikeIn-5mix-MS3. The data set consisted of
five mixtures, each profiled with three technical replicate MS runs.
The data set was simulated by, first, summarizing all the spectra of a
protein in SpikeIn-5mix-MS3 with MSstatsTMT as described below,
and then adding to the protein summaries in each mixture a simu-
lated random biological variation. Specifically, denote Ymtcb the pro-
tein abundance in mixture m and technical MS run t, in the channel
containing biological replicate b of condition c. The simulated pro-
tein abundance Zmtcb was generated as Zmtcb ¼ Ymtcb1emcb, where
emcb;

iid
N 0;s2

S

� �
The same random term was added to all the technical

replicates of a subject. We generated datasets with five values ss ¼
f0:05; 0:1; 0:15; 0:2; 0:4g motivated by the biological investigations
in this manuscript.

SpikeIn-15mix-MS3-Sim: We simulated another data set with the
same number of runs (15 MS runs total), but now including a larger
number of biological replicates and no technical replicates. The
simulated random biological variation was added to the protein sum-
maries in SpikeIn-5mix-MS3 as described above.

TKO-1mix: A Triple Knockout Proteomics Standard—This
investigation had a single MS run and a balanced design.

Experimental design: In the study by Paulo et al. (19), three highly
abundant proteins (Met6, Pfk2, and Ura2) were knocked out, one at
a time, from three yeast proteomes. Each yeast deletion strain was
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labeled by TMT reagent three times, and the strains were combined
in a single TMT 9-plex mixture.

Data acquisition and processing: The mixture was profiled using
SPS in a single MS run. The raw data from the original manuscript
were re-analyzed for this study using Mascot Server 2.6.2 and Pro-
teome Discoverer 2.2.0.388. All the post-processing steps were the
same as in the SpikeIn-5mix data sets. The PSM report contained
1067 proteins. 147 protein groups containing multiple proteins were
filtered out, such that the final data set consisted of 919 proteins.

Pairwise comparisons: We evaluated the statistical approaches by
their ability to detect changes in the abundance of the knockout pro-
teins between pairs of deletion strains. Each condition was labeled
with the knockout protein, i.e. DMet6, DPfk2, and DUra2. We per-
formed the pairwise comparisons: DMet6-DPfk2, DMet6-DUra2, and
DPfk2-DUra2. The knockout proteins were viewed as true positive
changes. Because the knockouts could affect the abundances of the
other proteins, the full extent of true positives was unknown.

Human-3mix-balanced: Breast Cancer Samples with Fractiona-
tion—In this investigation, 27 biological replicates were allocated to
3 TMT mixtures in a balanced design.

Experimental design: Djomehri et al. (20) allocated 15 MBC (meta-
plastic breast carcinoma) samples, 6 TNBC (triple-negative breast
cancer) samples, and 6 normal adjacent breast (Control) samples
into three TMT 10-plex mixtures. Each mixture had one reference
channel, containing a pool of all the 27 samples.

Data acquisition and processing: Each TMT mixture was sepa-
rated into eight fractions and profiled using SPS, producing a total of
24 MS runs. Raw data were analyzed with MSFragger (v20181128)
and Philosopher toolkit (v20181128, github.com/Nesvilab/philoso-
pher) by the authors of the original manuscript. The PSM files were
exported to R, for the same post-processing as in the SpikeIn-5mix
datasets. If a peptide ion was present in multiple fractions, it was
only kept in the fraction where it had the highest mean intensity. If
the peptide ion had the same highest mean intensity in multiple frac-
tions, it was only kept in the fraction where it had highest maximal in-
tensity. After merging the nine fractions, the final data set consisted
of 5763 proteins. Because the PSM files did not contain protein
groups, no additional filtering was necessary.

Pairwise comparisons: We evaluated the statistical approaches
by their ability to detect changes in abundance between pairs of con-
ditions across the mixtures. The three conditions were labeled MBC,
TNBC, and Control. The pairwise comparisons were MBC-Control,
TNBC-Control, and MBC-TNBC. Because the data set is a biological
investigation, the true positives were unknown.

Mouse-3mix-unbalanced: Mouse Tissue Mixture with Fractio-
nation—In this investigation, 20 biological replicates were allocated
to 3 TMT mixtures in an unbalanced design.

Experimental design: Plubell et al. (21) subjected twenty mice to
either low-fat or high-fat diets for either a short (8weeks) or long
(18weeks) duration. Five mice were subjected to each combination
of low (LF) or high fat (HF) and short or long-term diet. Samples from
epididymal adipose tissue of the mice were randomly allocated to
three TMT 10-plex mixtures. Each mixture included two reference
channels with pooled samples, containing a proportion of peptides
from each sample. Some channels were unused and resulted in an
unbalanced design.

Data acquisition and processing: Each TMT mixture was sepa-
rated into eight fractions and profiled using SPS, producing a total of
27 MS runs. Raw data were downloaded from ProteomeXchange
(identifier PXD005953) and re-analyzed for this study with Mascot
Server 2.6.2 and Proteome Discoverer 2.2.0.388. All the post-pro-
cessing steps were the same as in the Human-3mix-balanced data
set. The PSM report from Proteome Discoverer contained 5823 pro-

teins. 730 protein groups containing multiple proteins were filtered
out, such that the final data set consisted of 4713 proteins.

Pairwise comparisons: We evaluated the ability of the statistical
approaches to detect changes in abundance between pairs of condi-
tions across the mixtures. The four conditions were labeled Long_HF,
Long_LF, Short_HF, and Short_LF. The pairwise comparisons were
Long_HF-Long_LF, Short_HF-Short_LF, Long_HF-Short_HF, and
Long_LF-Short_LF. Because the data set is a biological investigation,
the true positives were unknown.

RESULTS

Existing Statistical Methods for Experiments with Isobaric
Labeling—This section reviews the existing statistical analysis
strategies for experiments with isobaric labeling, and parti-
tions them into a series of common steps summarized in the
rows of Table I. Specifically, spectrum-level normalization
reduces artifacts of sample preparation or mass analysis at
the level of reporter ion intensities. Protein summarization
takes as input all reporter ion intensities (or their ratios) of a
protein in a run and aggregates them into a single estimate
of protein abundance per channel per run. Protein-level nor-
malization reduces the technological artifacts in the protein
summaries. Statistical modeling and inference quantifies the
sources of systematic and random variation for each protein,
and tests proteins for differential abundance. Various work-
flows approach these steps in various ways. The steps can
be applied locally (i.e., separately within a spectrum or a pro-
tein), or globally (i.e., simultaneously to all spectra or proteins
in a run), and may or may not rely on a reference channel
with constant protein abundance across the runs. Not every
workflow uses every step.

Columns in Table I summarize two representative work-
flows that we call Ratio1Median1Limma (22, 23) and
Sum1IRS1edgeR (21). We selected these workflows because
they represent two main commonly used approaches (ratio-
based and sum-based), have an open-source implementation,
and are compatible with multiple data processing tools. Addi-
tionally, the table summarizes the statistical analysis workflow
of Proteome Discoverer 2.2, based on its user guidebook and
the method by McAlister et al. (7). We overview the steps of
these workflows below and illustrate each step in supplemental
Section 2. Whenever possible, we expand the discussion to
other approaches that focus on each step.

Spectrum-level normalization: We loosely classify spec-
trum-level normalizations into two groups. The first group
uses local ratio-based normalization, as exemplified by
Ratio1Median1Limma. If a reference channel is available, for
each spectrum the method subtracts from the log2 intensities
of the endogenous channels the log2 intensity of the refer-
ence channel. In absence of a reference channel, the method
assumes a constant protein abundance across the mixtures
and replaces the reference channel with the median of log2
intensity in the spectrum (23). The resulting log2 ratios are
centered around 0 (and the ratios on the original scale are
centered around 1), as illustrated in supplemental Fig. S2.1A.
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TABLE I
Representative workflows for differential analysis of mass spectrometry experiments with isobaric labeling. All the four methods take as input the
same PSM report from a data processing tool. Rows in the Table classify the statistical analyses into a series of common steps. Columns in the
Table are representative workflows, adapted from the corresponding publications or open-source code. Local steps are applied within a spec-

trum or a protein. Global steps are applied to all spectra or proteins

Method
Ratio1Median1Limma

Adapted from Herbrich et al.
[22] and Kammers et al. [23]

Sum1IRS1edgeR Adapted
from Plubell et al. [21]

Proteome Discoverer 2.2 User
Guide Book [51] Adapted from

McAlister et al. [7]

MSstatsTMT
This Manuscript

Spectrum-level
normalization

Local ratio-based
normalization: log2
transform the intensities;
for each spectrum,
calculate log2 ratio

None None Global median
normalization: log2
transform the intensities;
equalize the median of
the log2 intensities across
all spectra, channels and
MS runs

- without reference channel:
subtract the median of
log2 intensities of all
channels in the spectrum

- with reference channel:
subtract log2 intensity of
the reference channel

Protein summarization Median summarization: for
each protein and each
channel, estimate protein
ratio as the median of all
the log2 ratios of all the
spectra of the protein

Sum summarization: for
each protein and each
channel, estimate
protein summary as the
sum of all the spectrum
intensities on the
original (not log) scale

Sum summarization: for
each protein and each
channel, estimate protein
summary as the sum of all
the spectrum intensities
on the original (not log)
scale

Tukey'smedian polish: for
each protein and each run,
imputemissing valueswith
Accelerated Failure Time
model and estimate protein
summary in each channel
with Tukey'smedian polish

Protein-level
normalization

Global zero median
normalization: for each
run and each channel,
subtract the median of all
the log2 ratios across
proteins, such that the
median ratio of each
channel is zero

- Remove proteins with
missing summaries

For each run:
- Global equal sum
normalization: sum the
summaries of all proteins
in each channel, and
equa lize the sums over
all channels and runs

- Local protein scaling:
scale the normalized
summaries of each
protein to have an
average of 100.

Local normalization with
reference channel: for
each protein, equalize the
log2 protein summaries in
the reference channel of
each MS run to their
median across all the
runs

- Global equal sum
normalization: sum the
summaries of all
proteins in each
channel, and equalize
the sums over all
channels and runs

- Local IRS normalization
with reference channel:
scale the normalized
summaries in the
reference channel in
each run to equalize
their geometric means
across runs

Statistical modeling and
inference

linear model with limma.
The linear model includes
fixed run effect and
condition effect.

Negative Binomial
regression edgeR with
library size correction;
uses subsets of data
with pairs of conditions

one-way ANOVA linear mixed-effects model
fit simpler model for
proteins where
parameters of full model
are not estimable

Applicable experimental
designs

- single mixture with single
technical replicate MS
run

- treat every design as
single mixture with
single technical
replicate MS run

- treat every design as
single mixture with single
technical replicate MS
run

- single mixture with single
technical replicate MS
run

- multiple mixtures with
single technical replicate
MS run OR single mixture
with multiple technical
replicate MS runs

- single mixture with multiple
technical replicateMS
runs

- multiple mixtures with
single technical replicate
MS run

- multiple mixtures with
multiple technical
replicate MS runs

Implementation adapted from code in
Kammers et al. [52] to
handle multi-group
designs

adapted from code in
Wilmarth et al. [53]

proprietary, Proteome
Discoverer 2.2

R/Bioconductor package
MSstatsTMT
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The second group of methods use global spectrum-level
normalization. These methods do not calculate ratios but
assume constant total protein abundance across all the
spectra, channels, and runs. For example, variance stabilizing
normalization (VSN) transforms the reporter ion intensities to
roughly equalize their variance over the entire intensity range.
Originally designed for transcriptomics, the method was
specifically adapted to proteomic experiments with isobaric
labeling (24–26). CONSTANd (27) was explicitly designed for
multiplexed proteomic experiments as an instance of con-
strained optimization. For each run, the method constructs a
data matrix where rows are spectra, columns are channels,
and entries are intensities of the reporter ions in that run. The
method estimates a normalized version of the data matrix
with maximal similarity to the original matrix while satisfying
two equality constraints. The first constraint ensures that the
summation of each row of the normalized matrix is equal to
1. The second constraint ensures the summation of each col-
umn is equal to a value determined by the number of spectra
and channels in a run.

Protein summarization: Statistical methods for protein sum-
marization can also be loosely classified into two groups. The
first group assumes that all the spectra represent the protein
abundance equally well. Ratio1Median1Limma employs Me-
dian summarization, which for each protein and each channel
estimates protein-level log2 as the median of the log2 ratios of
the spectra (22, 23). In contrast, Sum1IRS1edgeR (21) and
McAlister et al. (7) (adapted by Proteome Discoverer 2.2) use
Sum summarization, which sums the reporter ion intensities of
all the spectra on the original (i.e. not log-transformed) scale.
The methods are illustrated in supplemental Fig. S2.2. Other
methods include Tukey’s median polish, which considers all
the channels in an MS run simultaneously, takes as input the
log2 reporter ion intensities of the protein across all the chan-
nels, and iteratively fits a two-way robust additive model (28).
The second group of protein summarization methods assigns
different weights to different spectra of the protein and esti-
mates protein abundance with a weighted average of the re-
porter ion intensities or ratios of its spectra. Summarization
methods in this group differ in how they estimate the weights.
For example, the R package isobar (29) calculates ratios of
intensities between pairs of channels in a spectrum, estimates
the noise variance of the ratios, and uses the inverse of the
variances as the ratios’ weights. The output of the procedure is
not a summary of protein abundance per channel, but a ratio
of protein abundances between pairs of channels or pairs of
conditions. Method iPQF (30) in the R package MSnbase (28)
estimates the weights of the spectra based on multiple spectral
characteristics, such as peptide mass and charge.

Protein-level normalization: Many recent methods apply nor-
malization to protein summaries, and many require at least one
reference channel in each MS run. Sum1IRS1edgeR employs
two normalization procedures as illustrated in supplemental
Fig. S2.3. The first is a global equal sum normalization, which

sums the summaries of all proteins in each channel on the
original scale, and equalizes the sums over all channels and
runs. The second is a local Internal Reference Scaling (IRS)
normalization (21), which normalizes each protein separately.
For each protein, IRS normalization first calculates a geometric
mean of the normalized protein summaries in the reference
channel across the runs. Next, the method calculates a scale
factor, i.e. a ratio of the protein summary in the reference chan-
nel of each run to the geometric mean above. Finally, the pro-
tein summary in every channel is multiplied by the scale factor
of its run. An alternative approach in (22) calculates the ratio of
a protein summary in a channel to the protein summary in the
reference channel of the run.

The second group of methods does not use a reference
channel at this stage. For example, Ratio1Median1Limma
implements a global zero median normalization (22, 23). For
each run and channel, it subtracts the median of all the pro-
tein-level log2 ratios, to set to zero the median over all the
protein summaries in the channel. McAlister et al. (7) use a
global equal sum normalization that equalizes the sum of the
protein summaries across the channels and runs. Proteome
Discoverer 2.2 supplements the global equal sum normaliza-
tion with protein scaling, which scales the normalized sum-
maries across each protein to generate the protein ratios
with a total or average of 100. The methods are illustrated in
supplemental Fig. S2.3.

Statistical modeling and testing for differential abundance:
Most statistical methods for detecting differentially abundant
proteins are applied after protein summarization and normaliza-
tion. The simplest approach, implemented in Proteome Discov-
erer 2.2, fits a one-way Analysis of Variance (ANOVA) to all the
protein summaries from all the runs (7). Alternatives use statis-
tical methods originally designed for transcriptomics, such as
R/Bioconductor packages limma (31) and edgeR (32).

More complex statistical modeling is required for experiments
with multiple MS runs and missing values. Ratio1Median1
Limma (23) extends limma to explicitly account for multiple MS
runs. The method takes as input the log2 protein ratios pro-
duced by normalization and summarization, and fits a two-way
additive linear model with a fixed group effect and a fixed MS
run effect, which does not distinguish between biological and
technical replicate MS runs. It then uses the Empirical Bayes
procedure in limma to combine the estimates of random varia-
tion across all the proteins in a moderated t-statistic (33).
Although the original implementation of limma did not allow pro-
teins with missing values, more recent limma 3.44 includes pro-
teins with missing values into analyses. D’Angelo et al. (34)
expanded the use of limma by imputing missing values within
an MS run, and excluding peptide ions that were completely
missing in at least one MS run. In experiments with multiple MS
runs, this exclusion significantly reduced the number of proteins
that can be tested for differential abundance. Sum1IRS1edgeR
(21) uses edgeR, originally designed for transcriptomic experi-
ments. The model is primarily appropriate for experiments that

Differential Abundance in Experiments with Isobaric Labeling

1710 Mol Cell Proteomics (2020) 19(10) 1706–1723

https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105
https://doi.org/10.1074/mcp.RA120.002105


generate data in form of discrete counts because it assumes a
negative binomial distribution. The implementation is limited to
two conditions (or subsets of the data set with pairs of condi-
tions), requires an additional normalization with respect to the
total protein abundances in a sample (called library size), and
removes proteins with any missing values.

Several statistical methods take as input reporter ion inten-
sities before protein summarization. Paulo et al. (35) first
summarize the spectra at the peptide level, and use the sum-
maries as input to an additive linear model that includes a
group effect and a peptide effect, but ignores a run effect.
Oberg et al. (15) take as input MS/MS spectra, and fit a linear
mixed-effects model that decomposes the variation in the re-
porter ion intensities into contributions from multiple sources,
including multiple MS runs. The model has many parameters,
is limited to balanced designs, and requires computationally
intensive procedures such as stage-wise or iterative regres-
sion (36).

Proposed Statistical Methodology

Input to MSstatsTMT and Notation—Fig. 1 outlines a repre-
sentative design of a proteomic experiment with isobaric
labeling, and the input to MSstatsTMT for one protein. The
experiment has m=1,. . ., M biological Mixtures. Each mixture
contains samples from distinct biological subjects, labeled
with isobaric tags (e.g. TMT 10- or 11-plex). Each mixture is
profiled in t=1,. . ., T Technical replicate MS runs. Therefore,
the experiment has a total of M3T MS Runs. In practice,
MSstatsTMT can be applied to any number and type of tech-
nical replicates. For example, technical replicates can be
separately digested and randomly labeled to reflect the varia-
tion because of digestion and labeling. Biological replicates

from different conditions can be assigned to different chan-
nels in each MS run.

This manuscript focuses on a group comparison design,
i.e. a design with c=1,. . ., C Conditions (such as treatments,
or disease types), where each condition is represented by
different subjects. Each MS run consists of b=1,. . ., B Bio-
logical replicates (BioRep) from each of the C conditions.
Thus, each MS run has B3C distinct biological replicates.
For simplicity, below we refer to each column in Fig. 1 as a
Channel. In the example of Fig. 1, the experiment has MTCB
channels.

In each MS run, the protein is represented by f=1,. . ., F
Features. The features are MS2 or MS3 spectra identified by
a search engine such as Mascot or Sequest. In each run and
each channel, each feature is quantified by a log2-trans-
formed intensity of the reporter ion (defined as the height of
the reporter ion peak, or any other measurement) by a data
processing tool such as Proteome Discover, MaxQuant, or
SpectroMine and denoted Xmtcbf. The log2 transformation is
important, because measurements on the log scale conform
more closely to the Normal distribution (37) and better satisfy
the statistical modeling assumptions.

Fig. 1 represents a balanced design, i.e., a design where
all the conditions in a mixture have the same number of bio-
logical replicates. In practice, the experiment design can be
unbalanced and can contain a different number of biological
replicates within a mixture and a condition, and a different
number of technical replicates per mixture. MSstatsTMT
applies to these situations.

The data structure in Fig. 1 can also be unbalanced
because of missing feature intensities. Occasionally, a re-
porter ion channel can be missing within a feature. More

FIG. 1.Representative design of a proteomic experiment with isobaric labeling, for one protein. The experiment hasMmixtures, T techni-
cal replicates MS Runs per biological mixture,C conditions and S biological replicates per condition and mixture, resulting inMTCB observations
per feature. The protein has F features. Subjects in amixture are randomly quantifiedwith isobaric channels (e.g., 127C and 129N). In the language
of experimental design, an MS run is a whole plot (in blue), each combination of conditions and biological replicates is a subplot (in orange), and a
feature is a sub-subplot (in purple). The symbol X in each cell denotes the log2 reporter ion intensity of the observed feature and NA denotes miss-
ing feature intensity. When a feature is not identified in oneMS run, the values of all the corresponding cells are NA. For example, Feature 3 is only
identified in Technical Replicate Run 1 ofMixture 1.
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frequently, missing features arise when peptide ions are
inconsistently identified between the MS runs and especially
between the mixtures. Some of the observed intensities can
be compromised by interferences and thus become outliers.

Statistical Motivation behind MSstatsTMT—Optimal statistical
analysis is always motivated by the experimental design (38).
Experiments with isobaric labeling impose two restrictions on
data collection. First, all the conditions and subjects in a mix-
ture are quantified simultaneously within an MS run, and are
therefore simultaneously affected by the random artifacts in
that run. Second, all the features of a protein are quantified
simultaneously within a run. In the statistical language, such
two-layer restrictions are known as split-split-plot designs
(39, 40), where a MS run is a whole plot, each combination of
conditions and subjects is a subplot, and a feature is a sub-
subplot. In experiments with isobaric labeling, comparison of
interest, e.g. conditions, are at the level of the subplot.

In the general statistical literature, the split-split-plot design
is optimally represented by a linear mixed-effects model with
multiple variance components, described in supplemental
Section 3.1 (39, 40). Unfortunately, the estimation of these
models is not scalable to large-scale datasets with many pro-
teins and runs and is difficult to extend to cases with missing
values and outliers. At the same time, in a special case of
balanced design, parameter estimation and model-based in-
ference in these models only depend on the summary of the
reporter ion intensities per channel and run. In other words,
in balanced designs it is sufficient to first summarize the
log2-intensities of the reporter ions over all the features of a
protein in a run (i.e. in the sub-subplot), and then fit a simpli-
fied protein-level model that only involves the whole plot and
the sub-plot.

Based on this insight from balanced designs, we propose
a workflow, called MSstatsTMT, that generalizes the infer-
ence to complex designs, many proteins and multiple data
processing tools. MSstatsTMT separates spectrum-level nor-
malization, protein summarization and protein-level normal-
ization, and then uses normalized protein summaries as input
to statistical modeling and inference. In the special case of
balanced designs, conclusions from the proposed approach
are equivalent to the conclusions from the optimal general
model in supplemental Section 3.1.

Protein Summarization and Normalization in MSstatsTMT—
Each step of MSstatsTMT is summarized in Table I, and illus-
trated in supplemental Fig. S2.1. The combined outcome of
protein summarization and normalization is illustrated for one
example protein in Fig. 2.

Global median normalization between channels: This step
simultaneously considers all the features identified in the
experiment. Similarly to isobar (29) and to normalizations
used in label-free quantification (41), MSstatsTMT assumes
that the total abundance of the analytes is equal across all
the channels and runs. Therefore, MSstatsTMT applies a
global equal median normalization between channels to

account for differences in labeling efficiency and other tech-
nical artifacts. As illustrated in supplemental Fig. S2.1D,
MSstatsTMT equalizes the median of the reporter ion inten-
sities across all the channels and MS runs.

Protein summarization: This step and all the subsequent
steps of MSstatsTMT consider one protein and one MS run
at a time. It focuses on the sub-subplot aspect of the experi-
mental design (supplemental Section 3.1), and summarizes
the log2 intensities of the features in each channel and MS
run while accounting for missing and outlying feature inten-
sities. This summarization is identical to the summarization
used for label-free experiments in MSstats (42). Specifically,
it fits the observed intensities of a protein to a two-way
model.

Xmtcbf ¼ mmt 1 Featuref ðmtÞ 1ChannelbðmtcÞ 1emtcbf (1)

Sf Featuref ðmtÞ ¼ 0;ScbChannelbðmtcÞ ¼ 0

Assuming that the missing feature intensities primarily arise
from low-abundant analytes, MSstatsTMT extends the model
above with the Accelerated Time Failure assumption (43) and
imputes the missing feature intensities within each MS run.
To impute an intensity of a feature MSstatsTMT requires at
least one nonmissing channel for the same feature in that
run, and at least one nonmissing feature from the same pro-
tein in the same channel in that run. If the entire feature was
not quantified in a run, it is left missing. If the entire protein
was not quantified in a channel, all the intensities from that
protein in that channel are left missing. Next, to eliminate the
undue influence of outliers, MSstatsTMT re-estimates the pa-
rameters of the additive model from the observed and the
imputed values with the Tukey’s median polish (44). Finally,
MSstatsTMT summarizes the protein abundance Ymtcb in a
channel and in a run containing biological replicate b of con-
dition c profiled by technical MS run t of mixture m as

Ymtcb ¼ m̂mt 1 dChannelbðmtcÞ (2)

The values Ymtcb are the sub-subplot level summaries in
this design.

Local protein-level normalization with reference channel:
This second normalization takes the protein summaries in
Eq. 2 as input. Because different features of a protein are
typically identified in different MS runs, and because the fea-
tures differ in ionization efficiency and other biochemical
properties, the protein summaries are not comparable
between runs. To account for this, MSstatsTMT relies on the
presence of at least one reference channel. The reference
channel lacks biological variation and reflects technological
artifacts (such as different labeling and ionization efficiency).
For each protein, MSstatsTMT equalizes the protein summa-
ries in the reference channel of each MS run to the median of
the reference channels between the runs. It then applies the
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corresponding shifts to the protein-level summaries in the
remaining channels of each run, as illustrated in supplemen-
tal Fig. S2.3D. If the design includes multiple reference chan-
nels per MS run, MSstatsTMT starts by averaging the protein
summaries of the reference channels.

The local protein normalization by MSstatsTMT is similar in
spirit to that of IRS normalization, but is different in that it is
applied to the og-scaled protein summaries. It is equivalent
to calculating log-ratios between the endogenous and the
reference channels and rescaling the log-ratios to a com-
mon median value. The local protein normalization by
MSstatsTMT is like the approach by Kammers et al. (23) in
Ratio1Median1Limma in balanced designs. However, the
results of MSstatsTMT and Ratio1Median1Limma differ
substantially when MS runs contain different number of
replicates from each condition. Fig. 2 illustrates that in
unbalanced designs, normalization without a reference
channel can remove the true biological signal. Normaliza-
tion with respect to a reference channel avoids this
artifact.

Statistical Modeling and Inference in MSstatsTMT—The nor-
malized protein-level summaries are used as input to statistical
modeling. For experimental designs with multiple biological
replicates, multiple mixtures, and multiple technical replicates
(such as in Fig. 1), MSstatsTMT fits the following model:

Ymtcb ¼ mþMixturem þ TechRep Mixtureð Þt mð Þ
þ Conditionc þ Subjectmcb þ emtcb (3)

Where

Mixturem;
iid
Nð0;s2

MÞ;

TechRepðMixtureÞtðmÞ;
iid
Nð0;s2

TÞ;

SC
c¼1Conditionc ¼ 0;

Subjectmcb;
iid
N 0;s2

s

� �
;

emtcb;
iid
N 0;s2
� �

FIG. 2.Spectrum-level normalization, protein summarization andprotein-level normalization in representativeworkflows in Table I, in a
hypothetical experiment with two reference channels and three runs. The individual steps are detailed in supplementary Section 2. Each
panel is a MS run. x-axis: TMT channels. y-axis: log2 intensity. Colored dots are log2 protein intensities summarized and normalized by each work-
flow, labeled with the true abundance in the respective channel and mixture. Triangle dots indicate reference channels. To make the scale of the
protein summaries comparable between workflows, the normalized protein intensities reported by Sum1IRS1edgeR and Proteome Discoverer
were log2 transformed, and equalized to the protein summaries in Channel 126 of Run 1. Red horizontal line indicates the median of the protein
summaries in the reference channels across the runs, as estimated byMSstatsTMT. A, Balanced design, where each run has an equal number of
replicates from each condition. All theworkflows equalized the reference channels between the runs, and reported similar normalized protein sum-
maries.B, Unbalanced design, where each run has a different number of replicates from each condition. Normalizations byRatio1Median1Limma
and Proteome Discoverer failed to eliminate undue variation between reference channels and compressed the differences in protein summaries
across conditions and runs. Normalizationswith respect to the reference channels bySum1IRS1edgeR andMSstatsTMT avoided this artifact.
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The term Subject represents biological replicates, with the
convention that each biological replicate has a unique identi-
fier across mixtures and conditions. Mixture and TechRep
(Mixture) distinguish technical variation between mixtures,
and between replicate MS runs of a same mixture. e repre-
sents the technical variation that is not explained by Mixture
and TechRep(Mixture). Supplemental Section 3 provides the
methodological justification, and supplemental Section 4 the
empirical justification behind this model. As the result of
detailed modeling of systematic sources of variation, random
errors at the level of protein summaries emtcb can be assumed
independent and nonsystematic. When the experimental
design does not include replicates for all the sources of varia-
tion in Fig. 1 some terms in Eq. 3 are not estimable. In this
case MSstatsTMT fits simpler models as described in supple-
mental Section 3.

Parameters of the model are estimated using restricted
maximum likelihood. Because the number of biological repli-
cates in each condition is often small, MSstatsTMT adopts
Empirical Bayes moderation of the standard errors, as pro-
posed in the R package limma for analysis of gene expres-
sion microarrays (45). Model-based tests for differentially
abundant proteins between pairs of conditions is carried by
comparing the terms Condition (see supplemental Section
3.7 for technical details). Finally, MSstatsTMT adjusts the p-
values of the tests to account for multiple comparisons
between the proteins by the method of Benjamini-Hochberg
FDR (46).

Implementation of MSstatsTMT—We implemented this
workflow for general group comparison designs in the
open-source R/Bioconductor package MSstatsTMT (47).
MSstatsTMT includes converters from Proteome Discov-
erer, MaxQuant, OpenMS, and SpectroMine. In addition to
formatting the data, the converters construct spectral fea-
tures as follows. The converters remove spectra with an
excessive number of missing reporter ion intensities, or
peptide identifications shared by multiple proteins. If mul-
tiple spectra have the same peptide ion identification, the
converters only retain a single “best” spectrum with the
minimal number of missing values, highest intensity, or
lowest interference score. If the experiment contains frac-
tions, and a peptide ion is present in multiple fractions,
the peptide ion is only kept in the fraction where it has the
highest mean intensity. If the peptide ion has the same
highest mean intensity in multiple fractions, it is only kept
in the fraction where it has highest maximal intensity. Pro-
teins with more than one summary value in more than one
condition are retained for the downstream statistical
analysis.

The missing value imputation and protein summarization
steps in MSstatsTMT rely on functionalities in the R package
MSstats (42). Statistical modeling, inference and hypothesis
testing relies on the functionalities in the R packages lme4
(48) and lmerTest (49). The Empirical Bayes moderation relies

on the functionalities in the R package limma (31). Analyses
of all the datasets in this manuscript were completed in
under one hour on a MacBook Pro with Intel Core i5 and 8
GB memory.

Evaluation

Evaluation Strategy—We evaluated the performance of
MSstatsTMT v1.6.2 while comparing all pairs of conditions in
the datasets under “Experimental Procedures”, using work-
flows in Table I. All workflows except Proteome Discoverer
took as input features produced by the MSstatsTMT con-
verter. For Ratio1Median1Limma, we selected spectrum-
level normalization without using reference channel as rec-
ommended by Kammers et al. (23). For Proteome Discoverer
2.2, the input and the results of statistical analysis were as
reported by the software.

We defined a testable protein a protein with enough data
to perform a test for differential abundance with a workflow
and used the number of testable proteins in each workflow
as a criterion for evaluation. Evaluations on the controlled
mixtures and on the simulation experiments considered the
number of true positives (TP), false positives (FP), true nega-
tives (TN) and false negatives (FN), where the total
TP1FP1TN1FT equals to the number of testable proteins
specific to each comparison and each workflow. We also
considered the empirical false discovery rate (eFDR = FP/
(TP1FP)), the sensitivity (TP/(TP1FN)) and the specificity TN/
(TN1FP) of detecting differentially abundant proteins among
the testable proteins at the FDR=0.05 cutoff. We further con-
sidered area under the ROC curve (AUC), which represents
sensitivity versus 1-specificity at various FDR-adjusted p-
value cutoffs, calculated using R package pROC (50). Finally,
we compared the estimated fold changes to the true fold
changes. Evaluations on biological investigations focused on
the number of differentially abundant proteins at FDR=0.05.

Evaluation on Controlled Mixtures—We first evaluated
MSstatsTMT on controlled mixtures that contained ground
truth but lacked biological variation. Because the controlled
mixtures had a balanced design, all normalization and sum-
marization methods produced relatively similar results (simi-
larly to the illustration in Fig. 2), and differences in perform-
ance were primarily because of statistical modeling and
inference.

MSstatsTMT best balanced the number of true and false
positive differentially abundant proteins: Fig. 3 summarizes
the performance of the representative workflows in Table I on
SpikeIn-5mix-MS3. For investigations without biological vari-
ation, MSstatsTMT fit the simple model in supplemental Sec-
tion 3.6. This model is similar (but not identical) to the models
fit by limma and one-way ANOVA (implemented in Proteome
Discoverer), and these workflows had a similar number of
testable proteins. EdgeR fit a different model, which assumed
that reporter ion intensities were count data following a
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Negative Binomial distribution. The inappropriate assumption,
combined with subsetting the data set for each pair of condi-
tions, negatively affected the number of testable proteins.

limma produced the largest number of both true and false
positive differentially abundant proteins, and the largest
eFDR. This was because of a combination of the treatment
of missing values and of the Empirical Bayes step, which
under-estimated the biological variation. Because the data
set had a relatively small number of true differentially abun-
dant proteins (21) as compared with the background proteins
(4791), all the workflows produced similar sensitivity, speci-
ficity and AUC (calculated with respect to their individual
number of testable proteins). The performance of one-way
ANOVA was close (but slightly worse) than MSstatsTMT.
Overall, MSstatsTMT best balanced the number of true posi-
tives and the eFDR.

MSstatsTMT had qualitatively similar performance in MS2
and MS3 data acquisition: supplemental Fig. S5.1 shows that
SpikeIn-5mix-MS2 produced more testable proteins than
SpikeIn-5mix-MS3, for all the workflows. This led to a larger
number of both true and false positives. MSstatsTMT
reported more true positives as compared with the other
workflows while minimizing eFDR, a result consistent with
SpikeIn-5mix-MS3. supplemental Fig. S5.2 shows that all the

workflows underestimated the true fold changes of the
spiked proteins to some extent in both MS2 and MS3
acquisitions. This may be because of the low abundance
(,1%) of spiked-in peptides as compared with the back-
ground peptides (approximately 14ng as compared with 2
mg for the UPS1 and SILAC-HeLa peptides, respectively).
Despite the larger number of proteins in MS2, its ratio com-
pression was more severe, confirming that MS3-based quan-
tification can help alleviate ratio compression.

Evaluation on Controlled Mixtures with Simulated Source of Bi-
ological Variation—To evaluate MSstatsTMT in experiments in
presence of biological variation, we simulated various
amounts of biological variation added to SpikeIn-5mix-MS3
as described in EXPERIMENTAL PROCEDURES. As before,
because of the balanced nature of the designs, differences in
performance primarily come from statistical modeling and
inference.

MSstatsTMT accurately characterized biological variation
in investigations with both biological and technical replicates:
The simulated data set SpikeIn-5mix-3TechRep-MS3-Sim
had five biological mixtures, three technical replicate MS runs
per mixture, and a balanced design. Fig. 4 summarizes the
performance of the workflows. MSstatsTMT fit the model in
Eq. 3, which distinguished these sources of variation. In

FIG. 3. Detection of differentially abundant proteins in all pairs of conditions in SpikeIn-5mix-MS3 (FDR cutoff of 0.05). Colors represent
statistical modeling and inference methods in Table I. A, Number of testable proteins. B, Number of true positive differentially abundant proteins.
C, Number of false positive differentially abundant proteins.D, Empirical false discovery rate. E, Sensitivity of correctly detecting the spiked-in pro-
teins. F, Specificity of correctly detecting the background proteins.G, Area under ROCcurve (AUC).
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contrast, the models in limma, edgeR and one-way ANOVA
(implemented in Proteome Discoverer) did not have enough
flexibility to distinguish biological and technical variation.
They combined the variation from these two sources, which
lead to over-estimation of the degrees of freedom and under-
estimation of the standard error and increased the false posi-
tive differentially abundant proteins.

Fig. 5 further details the differences between the workflows in
the case of one example protein. In this example, MSstatsTMT
was the only method that separated the sources of biological
and technical variation, accurately estimated the standard error
and the degrees of freedom and did not result in a false positive
detection of differential abundance. Overall, in presence of both
biological and technical replicates, MSstatsTMT best balanced
the number of true positives and the eFDR.

MSstatsTMT best balanced true and false positive differen-
tially abundant proteins in investigations with many biological
replicates: We further simulated an experiment SpikeIn-
15mix-MS3-Sim with the same number of runs, but no tech-
nical replicates. Instead, it contained up to 15 distinct biologi-
cal mixtures, corresponding to up to 30 biological replicates
per condition.

Because the experiment did not include technical repli-
cates, the models in limma and one-way ANOVA (imple-
mented in Proteome Discoverer) were similar (but not identi-
cal) to the model in MSstatsTMT in supplemental Eq. S2. Fig.

6 and supplemental Fig. S5.3 illustrate that increasing the
number of biological replicates (and the number of mixtures)
improved the sensitivity and the specificity of most work-
flows. This underscored the importance of biological repli-
cates for achieving accurate results.

At the same time, additional mixtures introduced more
missing values, with up to 60% of proteins having at least
one missing summary (supplemental Fig. S5.4). Therefore,
the difference in performance was due primarily to the treat-
ment of missing values. In limma, the negative impact of
treatment of missing values and of the Empirical Bayes step
was exacerbated and resulted in a large number of false pos-
itive differentially abundant proteins. One-way ANOVA was
less sensitive than MSstatsTMT, however the discrepancy
became smaller with the increase of sample size. edgeR fil-
tered out proteins with missing summaries, and therefore
reported the smallest number of testable proteins, true posi-
tive and false positive differentially abundant proteins.

Supplemental Fig. S5.5 further illustrates the differences
between the workflows in the case of one example protein. In
this example, the protein was entirely missing in 12 mixtures and
therefore was not testable with edgeR. limma underestimated the
standard error and identified the background protein as differen-
tially abundant. Overall, MSstatsTMT reported more true positives
while controlling the false discovery rate as the number of mix-
tures and percentage of missing values increased.

FIG. 4. Detection of differentially abundant proteins in all pairs of conditions in SpikeIn-5mix-3TechRep-MS3-Sim (FDR cutoff of 0.05).
Colors represent statistical modeling and inferencemethods in Table I. X-axis: simulated biological standard deviation (standard deviation = 0 cor-
responds to the original controlled mixtures SpikeIn-5mix-MS3). A, True positive differentially abundant proteins. B, False positive differentially
abundant proteins. C, Empirical false discovery rate. D, Sensitivity of detecting the spiked-in proteins. E, Specificity of detecting the background
proteins. F, Area under ROCcurve (AUC).
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FIG. 5. Background protein P55209 (Nucleosome assembly protein 1-like 1, NP1L1 human) from SpikeIn-5mix-3TechRep-MS3-Sim. The
experiment had a total of 15 runs, with 5 biological mixtures and 3 technical replicates each. The simulated biological standard deviation was set to 0.2,
and therefore the true variance of the term Subjectwas 0.04. The protein did not have any missing protein summary values, and therefore was testable
with all the workflows. A, Normalized log2 protein-level summaries byMSstatsTMT. x-axis: TMT channels. y-axis: log2 intensity. Each panel represents
oneMS run. Labels inside each panel are conditions of the corresponding channel andmixture.B,MSstatsTMT:model andmodel-based inference com-
paring condition 0.125 and 0.667. Because this is a background protein, the true log2 fold change is 0.MSstatsTMT separated the sources of biological
and technical variation. The estimate of biological variation was 0.0341 (close to the true value of 0.04). The protein was not found differentially abundant.
C, limma: model and model-based inference comparing condition 0.125 and 0.667. limma did not separate the biological and the technical variation. It
reduced the standard error and inflated the degrees of freedom associated with the comparison and resulted in a false positive conclusion. D,One-way
ANOVA implemented in Proteome Discoverer: same conclusion as in (C). E, EdgeR: model and model-based inference comparing condition 0.125 and
0.667EdgeRwasunable to estimate the standard error of the estimated fold change, but reported theprotein as differentially abundant.
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Evaluation on Biological Investigations with Diverse Designs—
We evaluated MSstatsTMT in three biological investigations,
each illustrating different challenges related to their experi-
mental designs.

In the TKO-1mix investigation, all four workflows detected
the knockout proteins as differentially abundant: The investi-
gation profiled three knockout conditions, with three biologi-
cal replicates each, in one MS run. This simple design pro-
duced few missing values, and MSstatsTMT fit a simple
model in supplemental Eq. S4. As the result, all the work-
flows in Table I had a similar performance (Fig. 7). Normal-
ized protein summaries reported by every workflow were
similar, and lower in the corresponding knockout proteomes.
All the workflows correctly detected the knockout proteins as
differentially abundant. The workflows reported similar num-
bers of testable proteins, and a similar set of differentially
abundant proteins. Proteome Discoverer included around
100 more “master” proteins from the ambiguous protein
group, which were filtered out by MSstatsTMT converter prior
to using the other workflows.

In the Human-3mix-balanced investigation, differentially
abundant proteins were dependent on the statistical model in
each workflow: 27 human samples were profiled in three
TMT 10-plex mixtures and no technical replicates. Nearly
33% of proteins had at least one missing summary. In this
balanced design, all normalization and summarization
methods produced relatively similar results. MSstatsTMT fit
the model in supplemental Eq. S2. Fig. 8 summarizes the
results.

MSstatsTMT and Ratio1Median1Limma reported the
maximal number of testable proteins. Ratio1Median1
Limma reported most differentially abundant proteins,
and MSstatsTMT reported an intermediate number of dif-
ferentially abundant proteins. This is consistent with the
results on the controlled mixtures, where Ratio1Median1
Limma underestimated the standard error of proteins
with missing runs. Sum1IRS1edgeR required an addi-
tional internal normalization step to correct the protein
summaries with respect to differences in “library size”.
Although this normalization had little impact in the case
of the controlled mixtures, it reduced the number of dif-
ferentially abundant proteins from 1900 to 557 in this
data set. Moreover, Sum1IRS1edgeR lost many testable
proteins because of missing values and had the least re-
producible results of tests for differential abundance.
Only one protein out of the nine differentially abundant
proteins in the comparison MBC-TNBC detected by
Sum1IRS1edgeR was also found with another workflow.

In the Mouse-3mix-unbalanced investigation, both normal-
ization and representation of sources of variation played an
important role in detecting differentially abundant proteins:
The investigation profiled 20 mouse samples within three
TMT 10-plex mixtures in an unbalanced design. Nearly 54%
of proteins had at least one missing summary across the
three mixtures. MSstatsTMT fit the model in supplemental
Eq. S2. Fig. 9A summarizes the results.

Consistent with the previous results, MSstatsTMT and
Ratio1Median1Limma reported the maximal number of

FIG. 6. Detection of differentially abundant proteins in all pairs of conditions in SpikeIn-15mix-MS3-Sim (FDR cutoff of 0.05). SpikeIn-
15mix-MS3-Sim experiment simulated 15 biological mixtures and no technical replicates. Panels in the figure represent randomly selected sub-
sets of 1, 2, 3, 5, 10 mixtures, and 15mixtures. Colors represent statistical modeling and inference methods in Table I. x-axis: simulated biological
standard deviation (standard deviation = 0 corresponds to the original controlledmixtures SpikeIn-5mix-MS3).A, Number of true positive differen-
tially abundant proteins.B, Number of false positive differentially abundant proteins.
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testable proteins, whereas Sum1IRS1edgeR lost testable pro-
teins because of missing values. Unlike in the previous results,
MSstatsTMT reported most differentially abundant proteins. This
is due in part to the step of protein-level normalization. Fig. 9B
and 9C illustrate in the example of one protein that in this unbal-
anced design the ratio normalization in Ratio1Median1Limma
normalized away the fold changes between conditions. In partic-
ular, the protein summaries in reference channel of Mixture 3
shifted away from those in Mixture 1 and Mixture 2. This pro-
duced the smallest estimate of the absolute fold change.
Sum1IRS1edgeR used the reference channel for normalization,
but produced a large estimate of fold change, likely because of
the Negative Binomial distribution assumption that can be nega-
tively affected by outliers.

The statistical modeling in Proteome Discoverer did not
consider the between-mixture effect and detected most pro-
teins as nonsignificant. Overall, MSstatsTMT balanced the
estimation of the fold change, standard error, and degrees of
freedom for this unbalanced experimental design.

DISCUSSION

This manuscript proposes a statistical workflow for detect-
ing differentially abundant proteins in MS-based proteomic
experiments with TMT labeling. The workflow is implemented
as an open-source R/Bioconductor package, which takes as
input exports from data processing tools such as Proteome
Discoverer, MaxQuant, OpenMS, or SpectroMine.

FIG. 7. Detection of differentially abundant proteins in all pairs of conditions in TKO-1mix (FDR cutoff of 0.05). A, Profile plot of
the three knockout proteins Met6, Ura2, and Pfk2. Because the experiment consisted of one MS run, the plots only have one panel. Gray
lines are the features of the protein. Color lines are log2 protein intensities summarized by the methods. To make the scale of the protein
summaries comparable in the profile plot, the normalized protein intensities estimated by Proteome Discoverer and Sum1IRS1edgeR
were log2 transformed. B, Number of testable proteins and number of differentially abundant proteins for each pairwise comparison. “All
pairwise” indicates the total number of differentially abundant proteins across the three comparisons. C, Overlap of proteins detected
as differentially abundant by MSstatsTMT, Proteome Discoverer, Ratio1Median1Limma, and Sum1IRS1edgeR for each pairwise
comparison.
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Our evaluations indicate that performance of MSstatsTMT,
as well as of all the other workflows, depends on the intrin-
sic characteristics of the investigation. For the protein-level
normalization step, the use of a reference channel has little
impact on the detection of differentially abundant proteins
in balanced designs. However, in unbalanced designs, nor-
malization without a reference channel can eliminate true
fold changes, and reference channel-based normalization is
preferred. The presence of a reference channel also
improves the probability of selecting a peptide ion for frag-
mentation and the accuracy of the peptide identification.
Therefore, MSstatsTMT encourages the users to add a ref-
erence channel to their designs.

Similarly, for the statistical modeling and inference
step, most workflows performed similarly well in simple
designs such as TKO-1mix. For the controlled mixtures
with no biological variation, high signal-to-noise ratio,
and balanced designs, MSstatsTMT performed similarly
to Ratio1Median1Limma and Proteome Discoverer. The situa-
tion changes when the investigation incorporates larger biologi-
cal variation, more biological replicates and mixtures, and com-
binations of biological and technical replicates. Such complex
designs require more consideration regarding statistical model-
ing. Because limma, edgeR and one-way ANOVA do not dis-
tinguish between the biological and the technical variance and
have limitations in handling missing values. This leads to inac-
curacies in the inference, and loss of performance. In contrast,
MSstatsTMT selects an appropriate model for each protein,
and reflects both the experimental design and the pattern of

missing protein summaries. This increases the sensitivity of
detecting differentially abundant proteins while controlling false
positive rate.

Beyond the performance of the workflows, experimentalists
should always question the assumptions underlying each work-
flow. For example, the assumption of a Negative Binomial distri-
bution in edgeR, which is inappropriate for TMT experiments,
contributed to the negative performance of the workflow on the
evaluation datasets. Similarly, global peptide normalization
assumes that only a small proportion of proteins differ between
the conditions. This assumption may not hold, e.g. in TKO-1mix
where reporter ion intensities of peptides from DPfk2 were sys-
temically below those from the other conditions. Athough this
may reflect a technical artifact, it is also possible that the inter-
vention affected the expression of many proteins.

Although statistical analyses in this manuscript-controlled
FDR at 5%, the empirical FDR reported on the controlled
mixtures was quite higher. A possible reason for this is spec-
tral misidentification during the upstream steps of data proc-
essing. Intensity patters in the controlled mixtures indicated
that some spectra from the spiked-in proteins were incor-
rectly identified as the background, thus inflating the empiri-
cal FDR. In biological investigations, FDR control can be sim-
ilarly affected by spectral misidentifications.

Evaluations in this manuscript also assumed that the spec-
tral features were mapped unambiguously to a protein
sequence, and that the data set did not contain protein
groups. Unlike the assumptions above, this assumption is
not essential, and was only made for convenience of the

FIG. 8. Detection of differentially abundant proteins in all pairs of conditions in Human-3mix-balanced experiment (FDR cutoff of 0.05).
A, Number of testable proteins and number of differentially abundant proteins for each pairwise comparison. “All pairwise” indicates the total num-
ber of differentially abundant proteins across the three comparisons. B, Overlap of proteins detected as differentially abundant by MSstatsTMT,
Proteome Discoverer,Ratio1Median1Limma, andSum1IRS1edgeR for each pairwise comparison.
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evaluation. MSstatsTMT can also be applied to protein
groups, in which case protein summarization and statistical
modeling and inference will refer to representative patterns of
the entire group. It may also be possible to rescue the shared
peptides and further separate the protein groups, and this
may be one direction of future research.

Overall, we hope that the statistical methodology and its
implementation will be useful to many experimentalists rely-
ing on multiplexed MS-based proteomics in their work.

DATA AVAILABILITY

All the datasets for the four experiments, from raw files to sta-
tistical analysis results, are available online.

The details of the experimental design, the raw data, and
the intermediate data processing outputs are deposited in
each MassIVE repository: SpikeIn-5mix-MS3 data (MassIVE
repository identifier: MSV000084264, ProteomeXchange

identifier: PXD0015258), SpikeIn-5mix-MS2 data (MassIVE
repository identifier: MSV000084266, ProteomeXchange
identifier: PXD015261), TKO-1mix data (MassIVE repository
identifier: MSV000084263, ProteomeXchange identifier:
PXD015257), Human-3mix-balanced (MassIVE repository
identifier: MSV000085343, ProteomeXchange identifier:
PXD014414), Mouse-3mix-unbalanced data (MassIVE re-
pository identifier: MSV000082569, ProteomeXchange
identifier: PXD005953)

The PSM quantification reports, the R scripts for statistical
analysis, and the results for differential abundance analysis
by each method are available in each MassIVE.quant reanaly-
sis container. SpikeIn-5mix-MS3 data (MassIVE.quant reanal-
yses container identifier: RMSV000000265), SpikeIn-5mix-
MS2 data (MassIVE.quant reanalyses container identifier:
RMSV000000266), TKO-1mix data (MassIVE.quant reanalyses
container identifier: RMSV000000267), Human-3mix-balanced

FIG. 9. Detection of differentially abundant proteins in all pairs of conditions in Mouse-3mix-unbalanced (FDR cutoff of 0.05). A, The
number of testable proteins and the number of detected differentially abundant proteins. ‘All pairwise’ is the total number of differentially abundant
proteins across comparisons. B, The normalized summaries of protein P01867 (Ig gamma-2B chain C region, IGG2B mouse). Each panel repre-
sents one MS run. y-axis: log2 intensity. x-axis: TMT channels. The labels inside each panel are the conditions in the corresponding channel and
mixture. Color lines are log2 protein intensities summarized by each workflow. Tomake the scale of the protein summaries comparable in the pro-
file plot, the normalized protein intensities estimated by Proteome Discoverer and Sum1IRS1edgeRwere log2 transformed, and the protein sum-
maries in Channel 126 ofMixture 1 were equalized across all themethods.C, Results of comparison between Long_HF and Long_LF for P01867.
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(MassIVE.quant reanalyses container identifier: RMSV000000323),
Mouse-3mix-unbalanced data (MassIVE.quant reanalyses con-
tainer identifier: RMSV000000264).
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