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In Brief
Match-between-runs is a
powerful approach to mitigate
the missing value problem in
label-free quantification. It
transfers features identified by
MS/MS from one run to the
other, but previously, there was
no false discovery rate control
over this process. We present a
mixture model–based approach
to estimate and control the false
discovery rate, which we have
implemented in IonQuant. We
demonstrate the sensitivity,
accuracy, and speed of IonQuant
using proteomics data from
timsTOF, Orbitrap, and Orbitrap
coupled to FAIMS.
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TECHNOLOGICAL INNOVATION AND RESOURCES
IonQuant Enables Accurate and Sensitive
Label-Free Quantification With FDR-Controlled
Match-Between-Runs
Fengchao Yu1 , Sarah E. Haynes1, and Alexey I. Nesvizhskii1,2,*
Missing values weaken the power of label-free quantita-
tive proteomic experiments to uncover true quantitative
differences between biological samples or experimental
conditions. Match-between-runs (MBR) has become a
common approach to mitigate the missing value problem,
where peptides identified by tandem mass spectra in one
run are transferred to another by inference based on m/z,
charge state, retention time, and ion mobility when appli-
cable. Though tolerances are used to ensure such trans-
ferred identifications are reasonably located and meet
certain quality thresholds, little work has been done to
evaluate the statistical confidence of MBR. Here, we
present a mixture model-based approach to estimate the
false discovery rate (FDR) of peptide and protein identifi-
cation transfer, which we implement in the label-free
quantification tool IonQuant. Using several bench-
marking datasets generated on both Orbitrap and tim-
sTOF mass spectrometers, we demonstrate superior
performance of IonQuant with FDR-controlled MBR
compared with MaxQuant (19–38 times faster; 6–18%
more proteins quantified and with comparable or better
accuracy). We further illustrate the performance of Ion-
Quant and highlight the need for FDR-controlled MBR, in
two single-cell proteomics experiments, including one
acquired with the help of high-field asymmetric ion
mobility spectrometry separation. Fully integrated in the
FragPipe computational environment, IonQuant with FDR-
controlled MBR enables fast and accurate peptide and
protein quantification in label-free proteomics
experiments.

Owing to its sensitive and high-throughput nature, liquid
chromatography-mass spectrometry (LC-MS) is a popular
technology to identify and quantify peptides and proteins from
complex samples. Various approaches to LC-MS data
acquisition (1–4) have been developed, among which data-
dependent acquisition (DDA) remains the most commonly
used strategy. In the course of a DDA run, eluted peptides are
introduced into a mass spectrometer, where peptide ions are
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sampled for fragmentation and identified from the resulting
tandem mass (MS/MS) spectra. Precursor peptide ion in-
tensities are assumed to be correlated with the actual peptide
amount, yielding relative peptide and, after an additional
peptide to protein roll-up step, protein quantification. Peptide
ions successfully targeted and identified by MS/MS are used
to calculate peptide and then protein abundances. However,
owing to the stochastic nature of intensity-based sampling of
peptide ions for MS/MS analysis, not all peptides are
consistently identified in all runs. This in turn gives rise to
missing quantification values, weakening essential compari-
sons between different biological samples or experimental
conditions. Missing values are generally more prevalent in
DDA proteomics than in genomics or transcriptomics. The
issue of missing data can be alleviated to some degree using
the data-independent acquisition (DIA) strategy (5–9). How-
ever, as label-free quantification using DDA data remains
popular, there is a critical need to improve computational
solutions for this method.
To address the missing value problem in DDA-based pro-

teomics, a number of “identification transfer” approaches
have been devised (10–13), exemplified by the match-
between-runs (MBR) option in MaxQuant (14, 15) that allows
“transfer” of identified precursor peptide peaks from one run
(referred to below as donor run) to another (acceptor). Given a
peak identified by MS/MS in the donor run, attributes, such as
m/z, charge state, and retention time, are used to locate a
corresponding peak in the acceptor run that is most likely the
same peptide. The intensity of the donor peak is then
assigned to the acceptor peak, thus filling in the missing value.
With more quantified features in common between runs, a
greater number of peptides and proteins can be compared
among different runs and experiments, increasing the depth of
experimental findings (16, 17).
While the goal of MBR is to mitigate the missing value

problem, it has the potential to introduce false positives, as
transferred peaks have not been rigorously identified using
icine and Bioinformatics, University of Michigan, Ann Arbor, Michigan,
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Match-Between-Runs With False Discovery Rate Control
MS/MS spectra in the acceptor run. Lim et al. (18) evaluated
the false transfer rate of MBR using a two-organism dataset.
They concluded that there was a considerable proportion of
false positives from MBR when using MaxQuant, yet most
were removed with additional filtering as part of the LFQ cal-
culations. However, in practical settings, even with the addi-
tional filtering, FDR of MBR may still be unacceptably high.
Thus, this subject deserves a more rigorous treatment that
can be generalized across different samples and experimental
designs. Here, we propose a semisupervised approach to
control the FDR of MBR, extending our earlier work on FDR for
protein identification (4, 19) and DIA quantification (20, 21). We
implement FDR-controlled MBR in IonQuant (22), which has
been extended to support LC-MS data both with and without
ion mobility. We also implement a new protein abundance
calculation module in IonQuant based on the MaxLFQ strat-
egy (15), improving upon our previously described top-N
approach (21, 22). Using the dataset from Lim et al. (18), we
reproduce the authors findings and demonstrate that Ion-
Quant with FDR-controlled MBR has a lower false positive rate
and higher sensitivity compared with MaxQuant. With two
additional datasets from timsTOF Pro mass spectrometers,
we demonstrate that FDR-controlled MBR results in higher
quantification precision (lower CV), accuracy, and sensitivity.
Finally, we demonstrate that IonQuant displays high sensitivity
and precision in single-cell data with and without high-field
asymmetric ion mobility spectrometry (FAIMS) separation
and that FDR control for MBR is crucial in such datasets.
Overall, we propose an efficient approach to perform MBR
with FDR control while maintaining high quantification accu-
racy and precision. We implement the new methods as a
default option in IonQuant, readily available as a standalone
tool or within our integrated computational platform FragPipe
(https://fragpipe.nesvilab.org/).
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

We used five datasets in this work. In all datasets, we estimated the
identification false-discovery rate using the target-decoy approach (4).
For MSFragger, peptide-spectrum matches (PSMs), peptides, and
proteins were filtered at 1% PSM and 1% protein identification FDR.
For MaxQuant, PSMs and peptides were filtered at 1% PSM FDR, and
proteins were filtered at 1% protein FDR, which is MaxQuant’s default
setting. A two-organism dataset (H. sapiens and S. cerevisiae) with 40
LC-MS runs from Lim et al. (18) was generated on an Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher Scientific). In this dataset,
20 runs include only H. sapiens proteins, whereas the remaining 20
runs contain a mixture of H. sapiens and S. cerevisiae proteomes.
S. cerevisiae peptides transferred to the 20 H. sapiens-only runs by
MBR are false positives and were used to evaluate the false positive
rate. We also employed two datasets from timsTOF Pro (Bruker), as in
our previous work (22). A HeLa dataset with four replicate injections
from Meier et al. (23) was used to evaluate the sensitivity (i.e., quan-
tified protein count) and precision (i.e., coefficient of variation [CV]) of
quantification across replicate runs. A three-organism timsTOF
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dataset (H. sapiens, S. cerevisiae, and E. coli) with six runs from
Prianichnikov et al. (24) was used to evaluate quantification accuracy
and contains two experimental conditions with ground truth protein
ratios: 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). A single-cell
dataset published by Williams et al. (25) was generated on an Orbitrap
Fusion Lumos mass spectrometer (Thermo Fisher Scientific). This
dataset contains three replicate runs with 0 cell (blank runs), 11 rep-
licates with one cell, four replicates with three cells, four replicates
with ten cells, and four replicates with 50 cells. Numbers of quantified
peptides and proteins were used to evaluate sensitivity, and quanti-
fication CV was used to evaluate precision. The last dataset was also
from a HeLa single-cell experiment (26), acquired on an Orbitrap
Eclipse Tribrid mass spectrometer with the help of FAIMS separation.
There are three single HeLa cell runs, three blank runs, and three li-
brary runs generated from 100 cells. Numbers of quantified proteins
were used to evaluate sensitivity.

Indexing-Based MBR

We developed a fast MBR algorithm based on indexing. In IonQuant
(22), an index of each run is built and written to the disk for fast feature
extraction, which supports data with and without ion mobility infor-
mation. The peak tracing and normalization modules were improved to
make it more sensitive and robust compared with the initial release of
IonQuant. The new version performs resampling to make the peaks
have the same time interval. Then, it performs Savitzky-Golay
smoothing (27), finds the boundaries, and subtracts background
noise using Skyline’s approach (https://skyline.ms/wiki/home/
software/Skyline/page.view?name=tip_peak_calc). In the normaliza-
tion module, the whole m/z range is now divided into ten bins with the
same number of ions, which makes normalization more robust for
sparse data or samples with large differences in abundance.

Given a run with possible missing values that will accept ions
(acceptor run) and a separate run that will be used to fill these missing
values (donor run), correlations between the two runs are calculated
using overlapped ions’ retention times, intensities, and ion mobilities if
applicable: (o×r1 +o×r2)/2 or (o × r1 + o × r2 + o × r3)/3, where o is
the overlapping ratio (28); r1, r2, and r3 are Spearman’s rank correlation
coefficients of retention time, intensity, and ion mobility, respectively.
Up to n (user-specified “MBR top runs” parameter, 10 by default)
donor runs with the highest correlations (which must be greater than
user-specified “MBR min correlation” parameter, 0 by default) are
selected.

For each ion in every selected donor run, we locate the target region
within the acceptor run using an approach similar to FlashLFQ (29).
First, pairs of retention times from the corresponding ions are
collected and sorted according to the value from the donor run. Using
di and ai to denote the retention times of i-th pair of ions from the
donor and acceptor runs, respectively, we have pairs from (d1, a1) to
(dN, aN) sorted by di, where N is the number of overlapped ions. Given
a donor ion with retention time t, we find its position in the sorted pairs
satisfying di ≤ t < di+1. Then, we collect all pairs satisfying di −

τ ≤ dj ≤ di + τ, where τ is a predefined tolerance (“MBR RT window”
parameter, 1 min by default). With those pairs, we generate a list
whose elements are aj − dj and calculate the median (m) and median
absolute deviation (σ) of that list. The possible target range in the
retention time dimension is then:

[di +m−2σ,di +m + 2σ] (1)

If ion mobility data are used, we take the same approach to locate
the target range in the ion mobility dimension (controlled by the “MBR
IM window” parameter, 0.05 by default). The transferred ion’s m/z
equals the donor ion’s m/z adjusted by mass calibration error (mass
calibration is performed by MSFragger (30)). After locating the target
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TABLE 1
List of individual scores used to compute the composite score for each

transferred ion

Score Explanation

Log10(intensity) Log-transformed intensity of a traced peak.
The intensity can be from an area (without
ion mobility) or a volume (with ion mobility).

Log10(KL) Log-transformed Kullback-Leibler divergence
of an experimental isotope distribution and
the theoretical isotope distribution. 0, +1,
and +2 isotope peaks are used. The
absolute value is also square root
transformed.

Abs(ppm) Absolute value of the mass error (in ppm) from
a traced peak. The value is also square root
transformed.

IM diff Ion mobility difference between an acceptor
ion and its donor ion. The value is also
square root transformed.

RT diff Retention time difference between an
acceptor ion and its donor ion. The value is
also square root transformed.

Match-Between-Runs With False Discovery Rate Control
region in m/z, retention time, and ion mobility if applicable, we trace all
peaks within the region using our recently described algorithm (22).
Two isotope peaks (+1 and +2) are also traced to check the charge
state and the isotope distribution. Peak boundaries are allowed to
extend beyond the target region’s retention time and ion mobility
bounds. Peak tracing is performed rapidly using the index, after which
the donor ion’s peptide information is assigned to the traced mono-
isotopic peak.

IonQuant can automatically detect if the data were acquired using
FAIMS. If FAIMS was used, IonQuant builds separate spectral indexes
corresponding to each compensation voltage. Then, peak tracing, ion
detection, and ion transfer are performed within each compensation
voltage.

MBR False Discovery Rate Estimation

To estimate the rate at which false transfers occur, we adopted a
supervised semiparametric mixture model that we previously applied
in a number of related applications (19, 20). For each successfully
transferred donor ion (i.e., target ion), we try to transfer a decoy ion,
created to have the same retention time and ion mobility (if applicable)
but with a large m/z shift (31–33). To generate a decoy, we first shift
the m/z by +11 × 1.0005 Th. If there is no traceable peak in that region,
we keep decreasing the m/z shift by 1.0005 Th until we successfully
trace a peak or until the m/z shift reaches +4 Th.

For all transferred target and decoy ions, we calculate four (without
ion mobility) or five (with ion mobility) scores (Table 1). For one of these
scores (using the 0/+1/+2 peaks), Kullback–Leibler divergence is used
to compare the quality of the traced isotopic distribution to a theo-
retical one given m/z and charge state, where the Poisson distribution
is used as theoretical (34).

We classify all transferred ions (identified with sequence, charge,
and modification information) into four types: a target ion that has not
been identified by MS/MS in the acceptor run (type 1); a decoy ion that
is from an m/z-shifted type 1 ion (type −1); a target ion that has already
been identified by MS/MS (type 2); or a decoy ion that is from an m/z-
shifted type 2 ion (type −2). Following the strategy we previously used
for DIA data (20), we train a linear discriminant analysis (LDA) model
using scores from type 2 and −2 ions. From the trained LDA, we
calculate a final score for each type 1 and −1 ion:

s = ∑
i

wibi (2)

where s is the final score, wi are the weights from LDA, and bi are
the scores detailed in Table 1. If multiple ions were transferred to
one location, the top scoring one is kept.

Using the final scores from type 1 and −1 ions, we estimate a
posterior probability of correct identification transfer by fitting a
mixture model:

f(s) = π0f0(s) + π1f1(s) (3)

where f0 is the distribution of correctly transferred ions, f1 is the
distribution of incorrectly transferred ions, π0 and π1 are the
respective priors of false and true transferred ions. We use the
expectation-maximization algorithm (20) to estimate the co-
efficients and distributions in Equation 3.

After fitting the mixture model, we calculate a posterior probability
for each transferred ion using

p(si) = π1f1(si)
π0f0(si) + π1f1(si) (4)

where si is the score of the transferred ion. Then, we calculate an
ion-level MBR FDR using the posterior probability (35) of type 1
ions:

F̂DR(t) =
∑
si≥t

(1−p(si))
∑
i

1si≥t
(5)

where t is a score threshold and∑
i
1si≥t is the number of type 1 ions

whose score is larger than t. We can also calculate peptide- and
protein-level FDR for MBR by collapsing ions with the same
sequence or protein and using the highest probability entry in the
FDR calculation.

Calculating Protein Intensity Using MaxLFQ Algorithm

Cox et al. (15) proposed MaxLFQ algorithm to calculate protein
intensity with peptide intensities. It has a high precision (low CV) ac-
cording to our previous study (22). We implemented it in IonQuant to
provide a new (default) option in addition to the top-N approach.

Given a study with N experiments (samples) and a protein with M
quantified peptide ions, for each peptide ion p ∈ [1,M], we calculate a
log-ratio of its intensities between experiments i and j:

ri,j(p) = log
Ii(p)
Ij(p) = log Ii(p)−log Ij(p) (6)

where Ii (p) is the intensity of peptide ion p from i-th experiment. If
the ion is not quantified in experiment i or j, we do not calculate
the corresponding log ratio. Then, we have a linear relationship
among the log-transformed protein intensities and their peptide
ion log-ratios:

xi−xj = mi,j (7)

where xi is the (unknown) log-transformed protein intensity in i-th
experiment, andmi,j is the median of the log-ratios ri,j (p) among all
Mol Cell Proteomics (2021) 20 100077 3
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peptide ions p from one to M. Given the set of one to N experi-
ments, Equation 7 can be expressed in a matrix form

Ax = b (8)

where

Ai,j =
⎧⎪⎪⎨
⎪⎪⎩
−1 (i ∕= j)
∑N−1
i=1

1(i, j) (i = j) (9)

x=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

bi =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
j=i+1

mi,j (i = 1)

∑N
j=i+1

mi,j−∑i
j=1

mj,i (i > 1)

In Equation 9, 1 (i, j) equals one if there is a peptide ion quantified in
both experiment i and j, and 0 otherwise. Equation 8 can be efficiently
solved with Cholesky decomposition to get the log-transformed pro-
tein intensity xi. Then, the protein intensity in experiment i equals exi .

Validation of the FDR for MBR Approach Using Two-Organism
Dataset

We used 40 runs from Lim et al. (18) (ProteomeXchange (36)
identifier PXD014415) to evaluate the sensitivity and precision of FDR-
controlled MBR. This dataset contains 20 runs with only H. sapiens
proteins and 20 with a mixture of H. sapiens (90%) and S. cerevisiae
(10%) proteins, all acquired on an Orbitrap Fusion Lumos mass
spectrometer. Further sample preparation and data acquisition details
can be found in the original publication (18). We used FragPipe
(version 13.0) with MSFragger (37) (version 3.0), Philosopher (38)
(version 3.2.7), and IonQuant (22) (version 1.5.5) to analyze this
dataset. For this analysis pipeline, raw spectral files were first con-
verted to mzML using ProteoWizard (version 3.0.20066) with vendor’s
peak picking. We used MaxQuant (39) (version 1.6.14.0) and also
Skyline (40) [version Skyline-daily (64 bit) 20.2.1.315 (3785d2eb9)] for
comparison. We used raw spectral files for MaxQuant and spectral
files converted to the mzML format for other tools. A protein sequence
database of reviewed H. sapiens (UP000005640) and S. cerevisiae
(UP000002311) from UniProt (41) (reviewed sequences only; down-
loaded on Jan. 15, 2020) and common contaminant proteins (26,448
proteins total) was used. For the MSFragger analysis, precursor and
(initial) fragment mass tolerance were set to 50 ppm and 20 ppm,
respectively. Reversed protein sequences were appended to the
original database as decoys. Mass calibration and parameter optimi-
zation were enabled. The isotope error was set to 0/1/2, and one
missed trypsin cleavage was allowed. The peptide length was set from
7 to 50, and the peptide mass was set to 500 to 5000 Da. Oxidation of
methionine and acetylation of protein N termini were set as variable
modifications. Carbamidomethylation of cysteine was set as a fixed
modification. The maximum allowed variable modifications per pep-
tide was set to 3. Philosopher (38) with PeptideProphet (42) and
ProteinProphet (43) was used to estimate the identification FDR. The
PSMs were filtered at 1% PSM and 1% protein identification FDR.
Quantification and MBR was performed with IonQuant. The minimum
number of ions parameter required for quantifying a protein was set to
4 Mol Cell Proteomics (2021) 20 100077
2 (default). To test the performance of FDR control for MBR, the
maximum number of runs used for transfer was set to 40, and the
minimum required correlation between the donor and acceptor run
was set to 0. Ion-, peptide-, and protein-level MBR FDR thresholds
were all set to 1% unless otherwise noted. Protein intensities were
computed using the re-implementation of MaxLFQ protein intensity
calculation algorithm described above. Default values were used for all
the remaining parameters. For MaxQuant comparisons, the parame-
ters were set as close to those described above as possible, with
maximum modifications per peptide set to 3, maximum missed
cleavages set to 1, LFQ enabled with default settings, maximum
peptide mass set to 5000, built-in contaminant proteins were not
used, and the second peptide option was not used. Default values
were used for all the remaining MaxQuant parameters.

For Skyline comparisons, pep.xml files from PeptideProphet were
loaded with a probability threshold 0.9486 that corresponds to 1%
peptide-ion level FDR in this dataset. A protein FASTA file filtered with
1% protein FDR was also loaded to make sure that Skyline was
processing the peptides additionally filtered with 1% protein FDR.
Retention time filtering tolerance was set to 0.4 min, the same toler-
ance as in IonQuant. After loading all PSMs, we let Skyline generate
decoys by reversing the sequences and shifting the precursor masses.
Then, we reintegrated the peaks by training a model with the built-in
mProphet (44). Finally, we exported a peptide quantification report
with estimated q-values, and filtered the data using a 0.01 threshold.

We classified a peptide as an S. cerevisiae peptide if it only maps to
S. cerevisiae proteins. We classified a peptide as H. sapiens if it maps
to at least one H. sapiens protein. The classification was done based
on the protein name in the searched protein sequence database:
those ending with “_HUMAN” were classified as H. sapiens proteins,
and those ending with “_YEAST” were classified as S. cerevisiae
proteins.

Quantification Precision Comparison Using Four HeLa Cell Lysate
Replicates

We used four replicate HeLa cell lysate runs acquired on a timsTOF
Pro mass spectrometer (23) with 100 ms TIMS accumulation time to
evaluate quantification precision when MBR is used. As in the previ-
ous section, we used FragPipe (version 13.0) with MSFragger (version
3.0), Philosopher (version 3.2.7), and IonQuant (version 1.5.5) to
analyze this dataset. MaxQuant (version 1.6.14.0) was used to perform
a benchmark comparison. Raw spectral files (.d extension) were used.
The sequence database contained reviewed H. sapiens
(UP000005640) proteins and common contaminants from UniProt
(downloaded on September 30, 2019; 20,463 sequences). The mini-
mum number of ions parameter required for quantifying a protein was
set to 2 unless otherwise noted. For MBR in IonQuant, MBR top runs
parameter was set to 3, and MBR min correlation was set to 0. Ion-,
peptide-, and protein-level MBR FDR threshold were set to 1%. The
remaining parameters were identical to those in the previous section.
We used the number of proteins quantified in at least two runs and
quantification CV across replicates to evaluate the performance.

Quantification Accuracy Comparison Using the Three-Organism
Dataset

We used the three-organism dataset by Prianichnikov et al. (24) to
demonstrate the accuracy of IonQuant with MBR. There are six runs
from two experimental conditions (A and B) in which H. sapiens,
S. cerevisiae, and E. coli proteins are mixed at known ratios. The ratios
between conditions A and B are 1:1 (H. sapiens), 2:1 (S. cerevisiae),
and 1:4 (E. coli). These data were acquired on a timsTOF Pro mass
spectrometer, and details of the sample preparation and data gener-
ation can be found in the original publication (24). We used FragPipe
(version 13.0) with MSFragger (version 3.0), Philosopher (version
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3.2.7), and IonQuant (version 1.5.5) to analyze the data. MaxQuant
results published by Prianichnikov et al. (24) were used as a bench-
mark comparison. Using the latest MaxQuant (version 1.6.14.0), a
reviewed UniProt protein sequence database and parameters closest
to those of MSFragger and IonQuant yielded results similar to those in
the original publication (supplemental Fig. S1). A combined database
of reviewed H. sapiens (UP000005640), S. cerevisiae (UP000002311),
and E. coli (UP000000625) sequences from UniProt (30,788 se-
quences downloaded Apr. 18, 2020) was used. Ion-, peptide-, and
protein-level MBR FDR thresholds were set to 1%. The minimum
number of ions parameter required for quantifying a protein was set to
2. Allowed missed cleavages was set to 2, and all other parameters
were the same as those in the previous section. We used LFQbench
(45) to plot the protein quantification results.

Single-Cell Dataset Analysis

We used 26 runs published by Williams et al. (25) to demonstrate
IonQuant’s performance with single-cell data. There are three repli-
cates containing 0 cells which served as negative controls, 11 repli-
cates containing one cell, four replicates containing three cells, four
replicates containing ten cells, and four replicates containing 50 cells.
The data were generated on an Orbitrap Fusion Lumos mass spec-
trometer (Thermo Fisher Scientific) over a 30 min LC gradient, with
MS/MS spectra acquired in the ion trap. Details of the sample prep-
aration and data acquisition can be found in Williams et al. (25). The
raw data files were converted to mzML format using ProteoWizard
(version 3.0.19302) with vendor’s peak picking. We used FragPipe
(version 13.0) with MSFragger (version 3.0), Philosopher (version
3.2.7), and IonQuant (version 1.5.5) to analyze the data. We also used
MaxQuant (version 1.6.14.0) as a benchmark. The database was
downloaded along with the data (20,129 proteins, ProteomeXchange
(36) identifier MSV000085230). In MSFragger analysis, common con-
taminants and reversed protein sequences were appended by
Philosopher. In MaxQuant analysis, the built-in contaminant se-
quences were used. The precursor mass tolerance was set to 20 ppm,
and the initial fragment mass tolerance was set to 0.6 Da. Two missed
cleavages were allowed. IonQuant (version 1.5.5) with and without
MBR was used. The MBR top runs parameter for MBR transfer was
set to 26, and the minimum required correlation was kept at 0. The
MaxLFQ protein intensity calculation algorithm was used. The mini-
mum number of ions parameter required for quantifying a protein was
set to 1. Multiple ion-level MBR FDR thresholds were applied. The rest
of the parameters are the same as those used in the previous section.
MaxQuant’s parameters were set as close as possible to those used in
MSFragger and IonQuant. We used the numbers of quantified pep-
tides and proteins to evaluate the sensitivity, and we used CV to
evaluate the precision of label free quantification with MBR.

Single-Cell FAIMS Dataset Analysis

We used nine runs published by Cong et al. (26) to demonstrate the
performance of analyzing single-cell data from an Orbitrap Eclipse
Tribrid mass spectrometer (Thermo Fisher Scientific) coupled with
FAIMS. There are three single HeLa cell runs, three blank runs serving
as negative controls, and three runs with 100 HeLa cells that served as
a library for MBR. Each run has two compensation voltages: −55 V
and −70 V. The sequence database contains reviewed H. sapiens
(UP000005640) proteins and common contaminants from UniProt
(downloaded on Sep. 30, 2019; 20,463 sequences). We used FragPipe
(version 13.0) with MSFragger (version 3.0), Philosopher (version
3.2.7), and IonQuant (version 1.5.5) to analyze the data. Raw spectral
files were first converted to the mzML format using ProteoWizard
(version 3.0.20253) with vendor’s peak picking. The number of allowed
donor runs was set to 9. The rest of the parameters are the same as
those used in the previous section. MaxQuant (version 1.6.14.0) was
used for comparison. Since MaxQuant does not support FAIMS data
natively, we split each raw file into separate mzXML files using FAIMS-
MzXML-Generator (https://github.com/PNNL-Comp-Mass-Spec/
FAIMS-MzXML-Generator). Scans in each mzXML file have the
same compensation voltage (46). Then, we assign fraction number
one to the mzXML files with compensation voltage equal to −55 V, and
fraction number three to the mzXML files with compensation voltage
equal to −70 V (supplemental Fig. S3). In this way, ions are only
allowed to be transferred among the files with the same compensation
voltage. The rest of the parameters were set as close as possible to
those used in MSFragger and IonQuant. We compared the number of
quantified proteins with and without MBR from MaxQuant and
IonQuant.

Run Time Comparison

We used the two-organism dataset with 40 Orbitrap Fusion Lumos
runs and the HeLa dataset with four timsTOF Pro runs to demonstrate
the speed of label-free quantification coupled with FDR-controlled
MBR in IonQuant (version 1.5.5). MaxQuant (version 1.6.14.0) was
used for comparison. For the two-organism dataset, we used a
combined database of reviewed H. sapiens (UP000005640) and
S. cerevisiae (UP000002311) sequences from UniProt (41) plus com-
mon contaminants (26,448 proteins downloaded Jan. 15, 2020). For
the HeLa dataset, a database of reviewed H. sapiens (UP000005640)
proteins from UniProt (20,463 proteins downloaded on Sep. 30, 2019)
and common contaminants was used. Reversed proteins sequences
were appended to both databases as decoys for MSFragger analysis.
All other parameters are identical to those used in the previous sec-
tion. All analyses were run on a desktop with four CPU cores (Intel
Xeon E5-1620 v3, 3.5 GHz, eight logical cores) and 128 GB memory.
We isolated quantification-specific run times from MaxQuant log files.

RESULTS AND DISCUSSION

FDR-Controlled MBR

We developed an MBR module in IonQuant enabling ac-
curate and fast label-free quantification with match-between-
runs peptide ion transfer with the help of the indexing func-
tionality in IonQuant (see Fig. 1 for an overview). For each
experiment (acceptor run) in the analysis, ion-level Spear-
man’s rank correlation coefficients with all other experiments
are calculated, where an ion is defined as the combination of
peptide sequence, modification pattern, and charge state. The
percentage of ions overlapping between two runs is used as a
weight in the calculation (28). For each acceptor run, IonQuant
picks the top N runs with a correlation larger than a certain
threshold as donor runs. Both parameters (“MBR top runs”
and “MBR min correlation” can be adjusted by the user). Given
an ion from a donor run, IonQuant locates a region in the
acceptor run where the transferred ion is likely to be using m/z,
retention time, and ion mobility (if applicable) distributions
from both runs (see Fig. 1 and Experimental Procedures). For
simplicity, we use retention time to describe the region-finding
process. Given an ion from a donor run, all ions within a
predefined retention time tolerance are collected. Retention
time differences from pairs of ions overlapping between the
runs are calculated, and the median and median absolute
deviation of these differences are found. Then, the region for
transfer is determined using Equation 1. We use the same
Mol Cell Proteomics (2021) 20 100077 5
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FIG. 1. Overview of match-between-runs in IonQuant. A, for each acceptor run (unfilled central point with blue outline) ion-level correlations
with all other runs (filled blue and gray points) are calculated, where distance from the central point represents correlation. The top N runs
(numbered blue points) within the correlation threshold (gray area) are selected as eligible donor runs. For every ion in each eligible donor run,
target and decoy (m/z-shifted) transfer regions are located using retention time (and ion mobility if applicable). Peak tracing in the acceptor run is
used to determine the isotopic distribution and the charge state. All matches are evaluated, and the top scoring donor for each acceptor peak is
selected for transfer. B, all matches/transferred ions are classified into one of the four categories shown. Type 2 and −2 matches are used to train
a linear discriminant analysis (LDA) model. The trained LDA is then used to calculate the final score for type 1 and −1 matches. A posterior
probability of correct transfer is estimated by fitting a mixture model, allowing estimation of ion-, peptide-, and protein-level false discovery rate
(FDR) for match-between-runs.

Match-Between-Runs With False Discovery Rate Control
approach to locate the ion mobility region. After getting a 1-D
(without ion mobility) or 2-D (with ion mobility) region, Ion-
Quant traces peaks using the donor ion’s m/z, taking any
mass calibration correction into account. In addition to the
monoisotopic peak, two additional isotope peaks (+1 and +2)
are also included in peak tracing so that the isotopic distri-
bution and charge state can be used in the evaluation. Finally,
IonQuant assigns the donor ion’s peptide to each traced peak
and calculates four (without ion mobility) or five (with ion
mobility) scores (Table 1) measuring the quality of the peptide
ion transfer.
In conventional MBR, most notably in MaxQuant, ions

matching tolerance criteria are transferred without statistically
assessing the confidence in the transfer. Here, we propose a
semiparametric mixture-modeling approach to estimate the
FDR of transferred ions (see Experimental Procedures). Briefly,
decoy ion transfers are generated by transferring ions with an
m/z shift. All transferred ions are classified into four types: the
ion has not been identified by MS/MS (type 1); the ion is a
decoy type 1 ion (type −1); the ion has been identified by MS/
MS (type 2); and the ion is a decoy type 2 ion (type −2). Ion-
Quant trains a LDA model with type 2 and −2 ions to separate
the target and decoy ions. Using the trained model, a final
score is calculated for each of the type 1 and −1 ions
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(Equation 2). A mixture model (Equation 3) is built using type 1
and −1 ions, and the expectation-maximization algorithm is
used to fit the model and subsequently calculate the posterior
probability. Finally, global ion-level FDR (Equation 5) is
calculated using the local FDR, equal to one minus the pos-
terior probability (Equation 4). IonQuant also calculates pep-
tide and protein level FDR by collapsing ions with the same
peptide and protein, respectively.
In the remainder of the manuscript, we demonstrate the

accuracy of FDR-controlled MBR using a two-organism
dataset, and the precision and accuracy of subsequent
label-free quantification by using HeLa replicate runs, a three-
organism dataset, and two single-cell dataset, respectively.
Evaluation of FDR-Controlled MBR Method

We used the dataset published by Lim et al. (18) to evaluate
the false positive rate of FDR-controlled MBR (see
Experimental Procedures). The dataset is comprised of 20 LC-
MS files from H. sapiens-only proteins (“H”) and 20 from a
mixture of H. sapiens (90%) and S. cerevisiae (10%) proteins
(“HY”). With MBR, S. cerevisiae peptides transferred from HY
to H runs are known to be false positives and can be used to
evaluate the false positive rate, equal to false positives



TABLE 2
Peptides quantified by MaxQuant and IonQuant in analyzing the two-organism dataset with MBR

MaxQuant IonQuant

Total unique H. sapiens peptides 38,405 Total unique H. sapiens peptides 45,875
Sample H, MBR− 19,360 ± 648 50.4% Sample H, MBR− 26,032 ± 499 56.8%
Sample HY, MBR− 18,945 ± 522 49.3% Sample HY, MBR− 25,683 ± 716 56.0%
Sample H, MBR+ 31,129 ± 637 81.0% Sample H, MBR+ 36,450 ± 283 79.5%
Sample HY, MBR+ 29,747 ± 730 77.5% Sample HY, MBR+ 36,113 ± 625 78.7%
Total unique S. cerevisiae peptides 3527 Total unique S. cerevisiae peptides 4610
Sample H, MBR− 20 ± 5 0.6% Sample H, MBR− 26 ± 6 0.6%
Sample HY, MBR− 1848 ± 93 52.4% Sample HY, MBR− 2597 ± 82 56.3%
Sample H, MBR+ 98 ± 10 2.7% Sample H, MBR+ 105 ± 16 2.3%
Sample HY, MBR+ 2858 ± 63 81.0% Sample HY, MBR+ 3625 ± 62 78.6%

MSFragger was used to provide identification result for IonQuant. “Sample H” indicates H. sapiens-only samples and “Sample HY” indicates
samples with a mixture of H. sapiens and S. cerevisiae proteins. There are 20 runs in each sample type. “MBR+” and “MBR-” indicate that the
analysis was performed with and without match-between-runs (MBR), respectively. For each analysis, unique peptide counts (±range of counts)
are listed along with per run identification rates (% of all observed peptides found in each run).

FIG. 2. Per-run proteome coverage and observed false positive
rate as a function of the model-estimated false discovery rate
(FDR) threshold. Coverage is equal to the number of H. sapiens
peptides/proteins from one run divided by the total number of
H. sapiens peptide/protein identifications in the entire experiment. The
false positive rate is equal to the number of S. cerevisiae peptides/
proteins from one run divided by the total number of S. cerevisiae
peptides/proteins.

Match-Between-Runs With False Discovery Rate Control
(S. cerevisiae peptides in H runs) divided by negatives
(S. cerevisiae peptides in total). To ensure all S. cerevisiae
peptides in the HY runs have the chance to be transferred, the
number of top runs used in transferring was set to 40 and
minimum required correlation was set to 0. In evaluation, a
peptide was assigned to S. cerevisiae if all proteins it maps to
are from S. cerevisiae or to H. sapiens if at least one of its
proteins is from H. sapiens.
Overall, IonQuant coupled with MSFragger identified 45,875

unique H. sapiens peptides and 4610 unique S. cerevisiae
peptides, ~19% and ~31% more H. sapiens and S. cerevisiae
peptides compared with MaxQuant, respectively (Table 2,
supplemental Table S1). More peptides were also identified or
transferred in individual runs with MSFragger and IonQuant. In
transferring ions between the runs, IonQuant had a lower false
positive rate than MaxQuant, 2.3% compared with 2.7%. The
numbers listed for MaxQuant in Table 2 differ slightly from
supplemental Fig. S1 in Lim et al. (18) because of small dif-
ferences in data analysis settings and version of the tools
used. Figure 2 shows average peptide coverage, average
peptide false positive rate, average protein coverage, and
average protein false positive rate with respect to different
MBR FDR thresholds. The peptide/protein coverage values
shown are H. sapiens peptides/proteins in each H run divided
by total H. sapiens peptides/proteins identified in the dataset.
Peptide coverage increases from 57% to 79% with the in-
clusion of MBR, and protein coverage increases from 87% to
96%. As the MBR FDR threshold is increased, neither peptide
nor protein coverage increase significantly, indicating most
H. sapiens peptides have been successfully transferred by
IonQuant already at 1% MBR FDR. The false positive rate
continues to rise when the MBR FDR threshold is increased,
as expected.
In comparing with the results from Skyline, we noticed that

using three scores (intensity, retention time difference, and
precursor mass error) had a lower false positive rate
(supplemental Table S12), 5.2% versus 10.4%, than using the
default set of scores in training a model using the built-in
mProphet. Despite this improvement, mProphet’s false posi-
tive rate remained higher than IonQuant’s (2.3%). The peptide
numbers in Skyline without MBR are similar to those from
IonQuant because both tools were processing the PSMs from
MSFragger.

Improved Protein Quantification With FDR-Controlled MBR

We used four HeLa cell lysate replicates acquired on a
timsTOF Pro published by Meier et al. (23) to demonstrate the
sensitivity and precision of label-free quantification coupled to
FDR-controlled MBR (see Experimental Procedures). We
Mol Cell Proteomics (2021) 20 100077 7



TABLE 3
Proteins quantified in at least two runs and median coefficient of

variation (CV) from four HeLa cell lysate replicates

Tool
Proteins
quantified

Median
CV

MaxQuant MBR− min 1 peptide 5406 5.3%
min 2 peptides 4186 4.3%

MBR+ min 1 peptide 5950 5.3%
min 2 peptides 5073 4.7%

IonQuant MBR− min 1 ion 5971 4.0%
min 2 ions 5061 3.5%

MBR+ min 1 ion 6346 4.0%
min 2 ions 5527 3.6%

“MBR+” and “MBR−” indicate that the analysis was performed with
and without match-between-runs (MBR), respectively.

Match-Between-Runs With False Discovery Rate Control
previously (22) performed a similar analysis of the same
dataset but without MBR and with protein abundances
calculated from peptide ion intensities using top-N peptide
approach. In this work, we use a new protein abundance
calculation module in IonQuant implemented according to the
MaxLFQ (15) algorithm (see Experimental Procedures).
Table 3 lists the numbers of proteins quantified in at least

two runs and the median CV from each method. Detailed ion
and protein lists can be found in supplemental Tables S2 and
S3. The results from IonQuant and MaxQuant (both with
MaxLFQ method) are shown, which were run under similar
settings of requiring either a minimum of one or two peptide
ions in pair-wise ratio calculation in MaxLFQ method
(referred to as “Min ions” in IonQuant and “LFQ min. ratio
count” in MaxQuant). Enabling MBR (MBR+) improved the
number of quantified proteins without a significant increase
in protein quantification CV. For example, with min two ion
setting, IonQuant MBR+ quantified 9% more proteins (5527
versus 5061), while maintaining a CV similar to IonQuant
MBR- (medians were 3.6% and 3.5%, respectively).
Compared with MaxQuant, IonQuant quantified more pro-
teins and with greater precision (lower CVs) in all pair-wise
comparisons between the tools under comparable settings.
For example, with minimum ion count set to 1, IonQuant with
MBR+ quantified 6346 proteins with a median CV of 4.0%,
compared with 5950 proteins with a median CV of 5.3% for
MaxQuant with MBR+. IonQuant’s maxLFQ-based protein
abundance calculation method also had lower CVs
compared with IonQuant with MSstats (47) for peptide to
protein intensity roll-up, whereas our initial (top-N peptide
based) strategy for protein abundance calculation in Ion-
Quant was inferior to that of MSstats (22) (supplemental
Table S13).
We also used the three-organism mixture dataset published

by Prianichnikov et al. (24) to demonstrate the accuracy of
label-free quantification when FDR-controlled MBR is
employed (see Experimental Procedures). There are three
replicates each of two experimental conditions, where the
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ratios between the two conditions are 1:1 (H. sapiens), 2:1
(S. cerevisiae), and 1:4 (E. coli). Because these proteomes
were mixed at known ratios, we can evaluate the accuracy of
the label-free quantification algorithm by comparing the esti-
mated ratio against the ground truth. MaxQuant results pub-
lished by Prianichnikov et al. (24) were used as a benchmark.
We also repeated the analysis with a more recent version of
MaxQuant (version 1.6.14.0), a newer reviewed protein data-
base, and parameters as close as possible to those used in
MSFragger and IonQuant and got similar results
(supplemental Fig. S1). We used LFQbench (45) to summarize
the analyses and visualize the results (Fig. 3 and supplemental
Fig. S2). As expected, both MaxQuant and IonQuant quanti-
fied more proteins with MBR than without MBR. IonQuant
quantified 6% and 23% more proteins compared with Max-
Quant with and without MBR, respectively (Fig. 3,
supplemental Tables S4 and S5). IonQuant also had fewer
outliers than MaxQuant. The peptide level comparison
(supplemental Fig. S2) showed the same trend in comparing
IonQuant with MaxQuant.

FDR-Controlled MBR in Single-Cell Data

We then evaluated the performance of IonQuant with FDR-
controlled MBR in single-cell datasets. The first dataset (24)
consisted of five biological replicates with 1, 3, 10, and
50 cells. In addition, blank runs (0-cells) were also acquired
and used as a negative control for MBR. MaxQuant with and
without MBR were used as a benchmark.
We first evaluated the number of quantified proteins (pro-

teins with nonzero intensities) (Fig. 4A). Detailed ion and pro-
tein lists can be found from supplemental Tables S6 and S7.
Of note, MaxQuant with MBR (MBR+) reported on average 68
proteins from a replicate of the blank (0-cell) run, which is
much more than MaxQuant MBR- (14 proteins), IonQuant
MBR- (19 proteins), and IonQuant MBR+ (31 proteins with 1%
FDR). This by itself indicates a noticeable false transfer rate of
MaxQuant’s MBR in these data. MSFragger with IonQuant,
without MBR (MBR-), identified and quantified a higher num-
ber of proteins per sample on average than MaxQuant across
all groups of samples. As expected, as the number of cells per
sample increases, the average number of proteins quantified
per sample, with and without MBR, increases for both Max-
Quant and IonQuant. Comparing the numbers from MaxQuant
MBR+ and IonQuant MBR+ with FDR set to 1% shows that
IonQuant still has a higher number of transferred proteins than
MaxQuant, which demonstrates the high sensitivity of Ion-
Quant coupled with MSFragger.
Figure 4B shows the number of peptides and proteins

quantified in at least two runs, and median protein quantifi-
cation CV from analyzing 11 replicates of 1-cell sample with
MaxQuant and IonQuant, respectively. Without MBR, Ion-
Quant measured more peptides (1409 versus 1208) and more
proteins (406 versus 371), while achieving a lower median CV
(19.3% versus 27.0%) compared with MaxQuant. With MBR



FIG. 3. Ground-truth protein quantification results from MaxQuant and IonQuant from a mixture of three different proteomes. Max-
Quant results are as published by Prianichnikov et al. 2020. “MBR+” and “MBR−” indicate that the analysis was performed with and without
match-between-runs (MBR), respectively. S. cerevisiae proteins are shown in orange, H. sapiens in green, and E. coli in purple. The known ratios
of condition A over condition B are 2:1 (S. cerevisiae), 1:1 (H. sapiens), and 1:4 (E. coli). The horizontal colored dashed lines (orange, green, and
purple) indicate the true ratios. The black dashed lines are fitted curves from observed ratios. Box plots of the intensities are shown to the right of
each scatter plot panel.
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and 1% FDR control, IonQuant also measured more peptides
(4457 versus 3937) and more proteins (1030 versus 918) while
maintaining a lower median CV (24.1% versus 26.0%)
compared with MaxQuant.

FDR-Controlled MBR in Single-Cell Data With FAIMS

We used nine runs (26) from an Orbitrap Eclipse Tribrid mass
spectrometer (Thermo Fisher Scientific) coupled with FAIMS to
further demonstrate the necessity of controlling FDR for MBR in
sparse datasets. There are three blank samples containing cell-
free supernatant analyzed as negative control, three single
HeLa cell samples, and three samples with 100 HeLa cells to
be used as a library for MBR. Each run has two compensation
voltages: −55 V and −70 V. MaxQuant with and without MBR
was again used for comparison. Because MaxQuant does not
natively support FAIMS data, we split each run into two: one
has scans with −55 V and the other has scans with −70 V. In
MaxQuant analysis, files with different compensation voltages
were assigned to different fractions (i.e., 1 and 3, supplemental
Fig. S3). IonQuant automatically detects and handles FAIMS
data, so this manual step is not necessary.
Table 4 shows the number of quantified proteins (proteins

with nonzero intensities) from blank and single-cell HeLa
samples (the corresponding ions and protein lists can be
found in supplemental Tables S8 and S9). Both MaxQuant and
IonQuant with MBR identified a relatively large number of
proteins in the blank samples (79 and 97 on average per
replicate, respectively). This suggests that the blank samples
in this experiment cannot be considered as true negative
controls for MBR, further highlighting the need for statistical
FDR control. While MaxQuant with MBR+ quantified signifi-
cantly more proteins in the single-cell samples than with MBR-
Mol Cell Proteomics (2021) 20 100077 9



FIG. 4. Peptides and proteins from MaxQuant and IonQuant
analysis of the single-cell dataset. “MBR+” and “MBR−” indicate
that the analysis was performed with and without match-between-
runs, respectively. A, numbers of proteins with nonzero intensities
from samples with 0 cells (blank runs), one cell, three cells, and
ten cells, respectively. Two ion-level MBR false discovery rate (FDR)
thresholds (1% and 5%) were applied. Black dots indicate the numbers
from individual runs. B, peptides/proteins quantified in at least two runs
and median protein quantification coefficient of variation (CV) from 11
replicates of one cell samples, as a function of FDR threshold. “MQ”
indicates MaxQuant and “IQ” indicates IonQuant. Black curves and
dots indicate the median of CV of the corresponding tool.

Match-Between-Runs With False Discovery Rate Control
(on average, 1230 versus 557), with MBR+, it also reported on
average 492 proteins in the blank samples. In contrast, Ion-
Quant with MBR+ and 1% FDR quantified a comparable
number of proteins (on average, 1156) in the single-cell runs
as MaxQuant with MBR+; however, the number of quantified
TABLE

Number of proteins with nonzero intensities

Data type MQ MBR− MQ MBR+ IQ MBR− I

Blank 79 (152) 492 (887) 97 (195)
Single-cell HeLa 557 (853) 1230 (1902) 756 (1024)

The total nonredundant protein count in parentheses, and average pr
“MBR+” and “MBR−” indicate that the analysis was performed with a
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proteins in the blank samples has not increased as signifi-
cantly as with MaxQuant. Applying more lenient MBR FDR
thresholds of 2% or 5% in IonQuant results in a significant
increase in the number of quantified proteins, whereas the
number of proteins in the blank samples increases as well but
still stays below that of MaxQuant with MBR+.
Overall, our results above suggest that application of the

MBR strategy with no FDR control to sparse datasets, such as
single-cell FAIMS data, may result in a high rate of false
transfers. IonQuant, with its ability to estimate FDR, provides
the users a way to control the rate of false transfers by
applying an FDR threshold of their choice. This dataset also
invites a discussion regarding a reasonable FDR threshold to
apply in different scenarios. In a typical whole cell lysate data,
the saturation in the number of quantified proteins is clearly
reached at a small FDR threshold (e.g., around 1% FDR in
Fig. 2). In such datasets, applying a more lenient FDR
threshold is likely to reduce the overall quantification accuracy
with no noticeable improvement in the number of quantified
proteins. Single-cell datasets, on the other hand, are naturally
sparser, with more peptides and proteins that can be trans-
ferred from other single-cell runs and especially from the “li-
brary” runs (i.e., from boosting samples containing a higher
number of cells). In such cases, using a more lenient (e.g., 2%)
MBR FDR threshold may be considered, provided that
downstream data analysis tools (e.g., for pathway-level anal-
ysis) are sufficiently robust toward quantification errors (48).
Speed of Indexing-Based MBR in IonQuant

Finally, we compared the computational time required by
IonQuant (version 1.5.5) and MaxQuant (version 1.6.14.0),
both with MBR enabled. The HeLa dataset (timsTOF Pro) and
the two-organism dataset from (Orbitrap Fusion Lumos) were
used, comprising four and 40 LC-MS files, respectively
(Experimental Procedures). For MaxQuant, only jobs related to
quantification and MBR were counted (supplemental
Tables S10 and S11). Table 5 displays the run time of these
tools in minutes. IonQuant is approximately 19 or 38 times
faster than MaxQuant in analyzing the data with and without
ion mobility, respectively. The reason that IonQuant exhibits a
smaller gain in speed compared with MaxQuant when
analyzing the timsTOF Pro data is that most of the IonQuant
runtime is spent loading the raw data via the vendor-provided
library (22).
4
from MaxQuant (MQ) and IonQuant (IQ)

Q MBR+, 1% FDR IQ MBR+, 2% FDR IQ MBR+, 5% FDR

153 (314) 252 (548) 482 (954)
1156 (1638) 1481 (2093) 2046 (2591)

oteins per run are outside parentheses.
nd without match-between-runs (MBR), respectively.



TABLE 5
Run time comparison (in minutes) of quantification-related tasks using
the HeLa dataset (4 timsTOF Pro runs) and the two-organism dataset

(40 Orbitrap Fusion Lumos runs)

Tool HeLa Two-organism

MaxQuant 699 1056
IonQuant 37 28

Match-Between-Runs With False Discovery Rate Control
CONCLUSIONS

MBR is a commonly used approach to quantify additional
peptides and proteins by transferring information across
different samples. It largely mitigates the missing value prob-
lem of DDA-based label-free quantification, increasing data
completeness for improved differential analyses. Peptides are
transferred from one run to the other by aligning retention time
and ion mobility (if applicable). Owing to the dynamic range
and complexity of proteomic samples, low signal-to-noise
ratios and co-isolation interference can result in incorrectly
transferred ions. To our knowledge, there was previously no
method to control the rate of false transfers in DDA-based
MBR in practical settings. To address this issue, we have
described a method to estimate and control the FDR for MBR
with the help of mixture modeling and the target-decoy
concept. We implemented MBR with FDR control in our
quantification tool, IonQuant. Our experiments and compari-
sons with a frequently used tool MaxQuant showed that Ion-
Quant allowed fewer false positive transfers while maintaining
high sensitivity. We also highlight the importance of FDR
control when MBR is applied to sparse datasets such as those
from single-cell FAIMS proteomics experiments. Furthermore,
by way of advanced indexing technology, IonQuant performs
MBR with unmatched speed, making it well-suited even for
analysis of large-scale datasets.
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