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Abstract: Two novel mixed ligand complexes with general formula
[M2(4,4′-bpy)1.5(CBr2HCOO)6(H2O)2]n (where 4,4′-bpy = 4,4′-bipyridine) were synthesized.
Thermal analysis was used to describe a solid intermediate and final products of thermolysis.
A coupled TG-MS system was used to monitor principal volatile fragments evolved during pyrolysis.
Crystal structures of the complexes were determined. Cationic dinuclear M2 (M(III) = La, Sm)
coordination cores were obtained. Both crystal structures are isostructural. Single crystal X-ray
diffraction analysis revealed that investigated structures of 1D coordination polymers assembled in
ladder-like systems. The central atom replacement resulted in unit cell identity parameter Π = 0.0091.
Additionally, the isostructurality of the reported La(III) and Sm(III) complexes was revealed using
Hirshfeld Surface analysis supported by Enrichment Ratio calculations.

Keywords: coordination polymer; lanthanum and samarium complexes; TG-MS study; X-ray
structure; Hirshfeld surface; enrichment ratio

1. Introduction

Coordination polymers are compounds that comprise an interesting and promising field
of chemistry. One of the reasons is their valuable and oftentimes unusual properties. These compounds
find applications in many different areas of everyday life, industry, and science. Some of the examples
are sensors and biosensors [1–8], electronic and optoelectronic devices [9,10], chemical catalysts,
and photocatalysts [11–16]. Some coordination polymers can be used to remove harmful
substances [17–20] or to capture and entrap other molecules [21,22]. It is one of the promising ideas
of dealing with the increasing levels of carbon dioxide in the air [23] and can also be applied in modern
medicine, e.g., cancer therapy [24]. Coordination polymers can form one-, two-, or three-dimensional
structures. Both metal-organic structures and typical Werner complexes can form polymeric chains.
The formation of different polymeric structures results in changes of physical and chemical properties
of stand-alone complexes and ligands and, thus, allows for their improvement and optimization.
As a result, these compounds are the center of many researchers’ attention. 4,4′-Bipyridine is a type
of ligand that is often used in the synthesis to obtain coordination polymers. Such complexes exhibit
very unique properties like photoluminescence or photochromism [25–28], biological [29,30] and
magnetic properties [26,31], or the ability to detect or absorb harmful substances [32–35]. In this paper,
we present synthesis, thermal properties, and crystal structures of two 4,4′-bipyridine coordination
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polymers with lanthanum (III) and samarium (III) dibromoacetates. Our previous papers have
covered crystal structures of similar compounds [36–38]. Both ligands that we used are unique
chemical compounds due to their possible ways of forming coordination bonds towards metal ions.
4,4′-Bipyridine is one of the isomers of bipyridine. This molecule may coordinate as a bridging
N-donor ligand, thus, increasing the possibility of obtaining a coordination polymer. Another ligand
coordinates through the carboxylate group, which can bind to metal ions in different ways and also may
create polymeric structures [36–38]. This work is a continuation of our research concerning lanthanide
coordination polymers with selected N-donor and O-donor ligands.

2. Materials and Methods

2.1. Materials

4,4′-Bipyridine, CBr2HCOOH, La2O3, and Sm2O3 were obtained from Sigma Aldrich, St. Louis,
MO, USA.

Yellow, single crystals of investigated coordination polymers were obtained at room
temperature after several weeks of slow evaporation of La(4,4′-bpy)(CBr2HCOO)3·H2O [39] and
Sm(4,4′-bpy)0.5(CBr2HCOO)3·2H2O [40] filtrates. Both compounds were washed with 40% v/v
ethanol and then with ethanol and diethyl ether mixture (1:1). Next, they were dried in open air.
The coordination polymers were characterized by elemental analysis, thermal analysis, single-crystal
X-ray diffraction, and Hirshfeld Surface calculations.

C27H22Br12N3O14La2 (1849.10 g/mol), yield (2.13%), Analytical Calculated: C, 17.54, H, 1.20,
N, 2.28. Found: C, 17.36, H, 1.17, N, 2.52.

C27H22Br12N3O14Sm2 (1872.01 g/mol), yield (1.99%), Analytical Calculated: C, 17.32, H, 1.19,
N, 2.25. Found: C, 17.45, H, 1.21, N, 2.46.

2.2. Methods

The contents of carbon, hydrogen, and nitrogen were determined by a Vario micro company
Elementar Analysensysteme GmbH (Langenselbold, Germany). The TG-MS coupled measurements
were performed out for La(III) and Sm(III) complexes using the Netzsch TG 209 apparatus (Selb,
Germany) coupled with Netzsch MS spectrometer (Selb, Germany) in the temperature range 25–1000 ◦C
at a heating rate of 10 ◦C·min−1, in flowing dynamic air atmosphere v = 20 mL·min−1 using ceramic
crucibles. As a reference material, ceramic crucibles were used.

In single crystal X-ray analysis, the crystals formed yellow plates. The intensity data was collected
on a Kuma CCD diffractometer. Crystal structure refinement was carried out with SHELX [41,42].
Crystallographic information files for the crystal structures are available under deposition numbers
2021532 and 2021533 (Supplementary Materials).

Hirshfeld Surface (HS) and Fingerprint (FP) analysis. The CrystalExplorer 17.5 software was used
to generate Hirshfeld Surfaces [43,44]. Molecular geometries were derived from the crystal structures.
For molecular fragments with the crystallographic disorder identified, only the major components
were considered. The HSs for analysis were generated for asymmetric units of polymeric systems.
Respective parameters, i.e., distances from the HS to the nearest atom interior (di) and exterior (de)
to the surface are plotted as scattergrams, namely Fingerprints (FPs). A quantitative decomposition
analysis of atom-to-surface contacts was calculated as a percentage of the points in the Hirshfeld
Surface with di and de for specific atomic pairs. Additionally, the analysis is supported by Enrichment
Ratio (ER) calculations for meaningful contacts between atomic pairs [45].
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3. Results and Discussion

3.1. Thermal Study

Thermal analysis was used to describe pyrolysis in air atmosphere of lanthanum (III) and samarium
(III) coordination compounds (Table 1). Solid intermediate and final products of decompositions
of polymers were determined on the basis of the mass losses and volatile products of thermolysis.
Both complexes are stable up to 50 ◦C. The first step of decomposition is dehydration. The complexes
lose water molecules in the temperature ranges: 50–135 ◦C for La(III) and 50–125 ◦C in the case
of the Sm(III) compound. Anhydrous species are stable up to 200 and 195 ◦C, respectively. When
the temperature rises on TG curves, mass loss is observed due to the degradation of the bridging
organic ligands (one molecule of 4,4′-bipyridine and four dibromoacetates). The mass losses found
on TG curves are in good agreement with the calculated ones. These processes occur for La(III) and
Sm(III) compounds in the ranges ca. 200–340 and 195–325 ◦C, respectively. Further heating causes
several overlapping steps associated with the total decomposition of ligands. The horizontal mass
level for La2O3 begins at 950 ◦C (found 17.0%, calc. 17.62%) and, for Sm2O3, begins at 945 ◦C (found
19.0%, calc. 18.63%).

Table 1. Thermal decomposition data of La(III) and Sm(III) compounds.

Compound Range of
Decomposition/◦C

Mass Loss/% Intermediate and Residue
Solid ProductsFound Calc.

La2(4,4′-bpy)1.5(CBr2HCOO)6(H2O)2

50–135 2.0 1.95 La2(4,4′-bpy)1.5(CBr2HCOO)6
200–340 34.0 33.84 La2(4,4′-bpy)(CBr2HCOO)2Br4
340–950 47.0 46.59 La2O3

Sm2(4,4′-bpy)1.5(CBr2HCOO)6(H2O)2

50–125 2.0 1.92 Sm2(4,4′-bpy)1.5(CBr2HCOO)6
195–325 33.5 33.43 Sm2(4,4′-bpy)(CBr2HCOO)2Br4
325–945 45.5 46.02 Sm2O3

Coordination polymers of La(III) and Sm(III) are characterized by the lowest thermal stability
compared to the type of complexes published in References [39,40]. This is likely due to their structures.
It also has an impact on temperatures at which the final solid decomposition products are formed.
These temperatures are higher for the coordination polymers when compared to the complexes of La(III)
and Sm(III) described in References [39,40].

3.2. TG-MS Spectra

The TG–MS system was used to analyze principal volatile thermal decomposition and
fragmentation products evolved during pyrolysis of La(III) and Sm(III) complexes in air. Their
TG-MS spectra are very similar. The principal mass fragments correspond to: OH+, H2O+, CO2

+, C+,
Br+, HBr+, and others. For La(III) and Sm(III) compounds, major maxima for ion currents are observed
in the temperature range of 200–300 ◦C. The first peaks for OH+ and H2O+ (m/z = 17, 18) occur
at around 100 ◦C and are connected with the dehydration of the complexes. Next, OH+ and H2O+ are
produced by oxidation of organic ligands (peaks at 250, 350, 450, and 550 ◦C). The profiles of C+ and
CO2

+ (m/z = 12, 44) exhibit maxima at 210, 240, 450, and 530 and a very broad one between 780–880 ◦C.
The profiles of CH2O+ or NO+ (m/z = 30) appear at about 250 ◦C. The major ion signals containing
bromide: Br+, HBr+, and CBrH+ have one center in the temperature range of 235 to 300 ◦C. The strong
peak of NH+ (m/z = 15) was monitored at 250 ◦C. The mass spectrometer detected trace amounts
of other fragments. The data above suggests a simultaneous decomposition of both 4,4′-bipyridine and
dibromoacetate ions. The rise in temperature (above 400 ◦C) causes burning of the organic residues
and the formation of final solid thermal decomposition products (La2O3 and Sm2O3, respectively)
at about 950 ◦C. Figure 1, as an example, presents the correlation of some ion currents on the TG curve
of the Sm(III) complex in the atmosphere.
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Figure 1. TG curve for Sm(III) complex and ion current detected by MS spectra for several
mass fragments.

3.3. Crystal Structure Determination

Complexes 1 and 2 crystallize in the triclinic space group P-1 with the same coordination
spheres with formula [M2(4,4′-bpy)1.5(CBr2HCOO)6(H2O)2]n (M(III) = La, Sm). Crystal data and
structure refinement details are summarized in Table 2. The numbering of atoms is shown in Figure 2.
The cationic dinuclear M2 (M(III) = La, Sm) coordination cores were obtained. Both crystal structures
are isostructural with approximately the same lattice parameters. The central atom replacement
resulted in unit cell identity parameter Π = 0.0091 [46]. The asymmetric unit consists of one and a half
molecules of bipyridine, two water molecules, six dibromoacetates, and two cations (Figure 2). Three
dibromo-acetate molecules in both examined structures show a disorder (Figures 3 and 4).Materials 2020, 11, x FOR PEER REVIEW  5 of 12 
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Table 2. Crystal and structure refinement data for study complexes.

Crystal Data

Chemical formula C27H22Br12N3O14 La2 (1) C27H22Br12N3O14Sm2 (2)
Mr 1849.21 1872.09

Crystal system, space group Triclinic, P-1 Triclinic, P-1
Temperature (K) 296 296

a, b, c (Å) 9.6064 (4), 11.0105 (5), 22.9742 (9) 9.3646 (3), 11.0114 (4), 22.7802 (8)
α, β, γ (◦) 82.468 (4), 87.786 (3), 85.730 (4) 82.242 (3), 88.230 (3), 86.388 (3)

V (Å3) 2401.33 (18) 2322.32 (14)
Z 2 2

Radiation type Mo Kα Mo Kα
µ (mm−1) 11.80 12.89

Crystal size (mm) 0.3 × 0.3 × 0.1 0.4 × 0.2 × 0.1

Data Collection

Diffractometer Kuma KM-4 CCD Kuma KM-4 CCD

Absorption correction

Multi-scan
CrysAlis RED, Oxford Diffraction
Ltd., Version 1.171.33.66 (release

28-04-2010 CrysAlis171.NET)
(compiled Apr 28 2010,14:27:37)
Empirical absorption correction

using spherical harmonics,
implemented in SCALE3

ABSPACK scaling algorithm.

Multi-scan
CrysAlis PRO 1.171.41.76a (Rigaku

Oxford Diffraction, 2020)
Empirical absorption correction

using spherical harmonics,
implemented in SCALE3

ABSPACK scaling algorithm.

Tmin, Tmax 0.250, 1.000 0.106, 1.000
No. of measured, independent

and observed [I > 2σ(I)] reflections 33071, 8797, 6405 32238, 8811, 7090

Rint 0.034 0.053
(sin θ/λ)max (Å−1) 0.602 0.610

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.00 0.047, 0.114, 1.02

No. of reflections 8797 8811
No. of parameters 609 586
No. of restraints 258 234

H-atom treatment
H atoms treated by a mixture

of independent and
constrained refinement

H atoms treated by a mixture
of independent and

constrained refinement
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The coordination polyhedral can be described as a trigonal prismatic, square face tricap (Figures 5
and 6). Both metals are nine coordinate. The central atoms are coordinated by three oxygen atoms from
chelating-bridging, tridentate dibromoacetate ligands, four oxygen atoms from bridging dibromoacetate
substituents, one water oxygen atom, and one nitrogen atom from 4,4’-bipyridine. The cores are linked
together by two common oxygen atoms from tridentate dibromoacetate ligands and two O–C–O
bridges formed by carboxylate groups of dibromoacetates. The metal cores and dibromoacetic acid form
a one-dimensional polymeric chain. Two of these are bounded together by 4,4’-bipyridine, which has an
inversion point lying on the midpoint of the bond linking two pyridine rings. The other 4,4’-bipyridine
molecule coordinates metal (III) only with one nitrogen atom. The second nitrogen atom is involved
in hydrogen bonding with a water molecule inside the coordination sphere of the second core metal,
which creates a two-dimensional supramolecular structure (Figure 7). The layers of polymeric chains
are connected by weak Br...Br and Br...H–C interactions.
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Figure 5. The lanthanum coordinate polyhedron. Figure 5. The lanthanum coordinate polyhedron.

Two known analogous complexes that differ in the ligand contain dichloroacetates [37,38]. These
structures adopt a polymer arrangement. The biggest difference is the cationic dinuclear coordination
cores for the currently studied complexes. Additionally, the lanthanum atom is ten coordinate and
the samarium atom is nine coordinate for previous structures.
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Strong hydrogen bonds are formed by water molecules (Tables 3 and 4). The O1W water forms
ring hydrogen bonds that stabilize the coordination sphere. In the case of the O2W water molecule,
the O2W—H2WA···O1E hydrogen bond system forms ring R(6) (according to the definition of Bernstein
et al. [47]), which stabilizes the coordination sphere. Another O2W—H2WB···N20 hydrogen bond forms
infinite chain C(22) connecting neighboring molecules through a bipyridine (Figure 8). The compound
with Sm(III) creates hydrogen bonds analogous to that of compound 1. Additionally, there are weak
C–H...O and C–H...Br interactions that stabilize the polymer system.

3.4. Hirshfeld Surface Analysis

The Hirshfeld Surface analysis provides insight into the neighborhood of the molecules
or molecular fragments within the crystalline environment. Therefore, as a complementary tool
for traditional structural descriptions, HS and FP are widely used for crystal packing comparisons [48,49].
Originally, the methodology was dedicated to the structures formed by hydrogen bonded molecules
or discrete complexes. However, the growing interest in crystal engineering and supramolecular
chemistry leads to the continuous development of their applicability. Since the analysis of polymeric
structures has to be conducted for a molecular fragment only, we should be aware of the fact that
it would represent not only intermolecular contacts but also covalent bonding being intersected
by the generated HS. The HS analysis supported by an Enrichment Ratio (ER) calculation allows
evaluating the propensity of studied systems to form particular interactions. Favored contacts, i.e.,
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with ERXY higher than unity, have a high propensity to form contacts, while element pairs that tend
to avoid contacts are characterized by ERXY < 1.

Table 3. Hydrogen-bond geometry (Å, º) for compound 1.

D—H···A D—H H···A D···A D—H···A Symmetry Codes Graph-Set

O1W—H1WA···Br5C 0.83 (1) 2.95 (4) 3.589 (4) 135 (5) R (7)
O1W—H1WB···N1i 0.84 (1) 2.84 (7) 3.231 (6) 110 (6) (i) x + 1, y, z R (8)
O1W—H1WB···O2Bi 0.83 (1) 2.07 (3) 2.812 (5) 147 (5) (i) x + 1, y, z R (6)
O2W—H2WA···O1Eii 0.84 (1) 2.16 (3) 2.907 (5) 148 (5) (ii) x − 1, y, z R (6)
O2W—H2WA···O1B 0.84 (1) 2.94 (7) 3.304 (6) 109 (6) R (6)
O2W—H2WB···N20iii 0.84 (1) 1.90 (1) 2.734 (6) 173 (5) (iii) −x, −y + 2, −z + 2 C (22)

Table 4. Hydrogen-bond geometry (Å, º) for compound 2.

D—H···A D—H H···A D···A D—H···A Symmetry Codes Graph-Set

O1W—H1WA···Br5C 0.84 (1) 2.98 (7) 3.566 (6) 129 (8) R (7)
O1W—H1WB···N1i 0.84 (1) 2.49 (5) 3.164 (8) 139 (6) (i) x + 1, y, z R (8)
O1W—H1WB···O2Bi 0.84 (1) 2.07 (6) 2.757 (7) 138 (8) (i) x + 1, y, z R (6)
O2W—H2WA···O1B 0.84 (1) 2.62 (7) 3.270 (7) 135 (8) R (6)
O2W—H2WA···O1Eii 0.84 (1) 2.21 (6) 2.862 (7) 135 (7) (ii) x − 1, y, z R (6)
O2W—H2WB···N20iii 0.84 (1) 1.92 (2) 2.745 (9) 168 (8) (iii) −x, −y + 2, −z + 2 C (22)
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Both structures 1 and 2 were characterized using 3-D Hirshfeld Surface and deriving two
dimensional FP maps (Figure 9). Relevant HSs were generated for the asymmetric units of the structures.
Perfectly matching FPs and almost identical percentage contributions of major intermolecular contacts
confirm the isostructurality of both systems.
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Figure 9. Hirshfeld Surfaces and 2D Fingerprint Plots (FPs) generated for the asymmetric unit of 1 (a) and
2 (b). Over the HS dnorm is mapped. dnorm is visualized over a fixed color scale of −1.12 (red), 0.47
(white), to 1.46 (blue). de and di are the distances to the nearest atomic exterior and interior to the surface.
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The decomposition of FPs (Figure 10) shows that H· · ·Br contacts comprise 38.6% (in 1) and
38.9% (in 2) of the total HS area. Moreover, the enrichment ratio values (ERHBr = 1.30) are higher than
unity, which suggests that this halogen bonding may play a key role in the supramolecular assembly
of polymeric chains.
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Figure 10. Percentage contribution of particular interatomic contacts to the Hirshfeld Surface areas
for 1 (blue) and 2 (orange). The chart is decorated with respective enrichment ratio (ER) values (in red).
ER values were not computed for actual contacts contribution below 2% and random contacts below
1% since they are not meaningful.

Similarly, Br· · ·Br contacts are crucial for crystal packing description. These contacts reach 20.1%
in the studied structures and their ER values ERBrBr = 1.10 also suggest that these are favored.
Both types of interactions, i.e., H· · ·Br and Br· · ·Br associate neighboring polymeric chains within
the crystal structure. H...H contacts comprising 7.4–7.5% mainly follow the intramolecular steric
interactions between C–H groups of aromatic fragments. However, their ERs are significantly lower
than unity, which indicates that these contacts are disfavored in this structure. In contrast, electrostatic
O· · ·H, C· · ·H, and N· · ·H contacts are underrepresented since their ERs are higher than unity in both
structures. The presence of C· · ·H contacts follows the π-facial hydrogen bonds, while strongly favored
(ERNH = 2.02 and ERNH = 2.06 in 1 and 2, respectively). N· · ·H contacts are caused mostly by O–H· · ·N
interactions between polymeric chains. Even though, in both structures, Br· · ·C contacts cover about
5% of the HS surfaces, their ERs suggest that they are also disfavored.

4. Conclusions

Studied crystal systems 1 and 2 are isostructural. MS data for La(III) and Sm(III) complexes
detected several profiles of ion currents. Emission of gaseous products in particular steps of thermal
decomposition of La(III) and Sm(III) complexes corresponds with mass losses on TG curves. The central
atom replacement resulted in unit cell identity parameter Π = 0.0091. The value close to 0 indicates great
similarity of the compared unit cells. Moreover, structural studies augmented by Hirshfeld Surface
analysis of coordination polymers 1 and 2 clearly confirmed their isostructurality. Both supramolecular
systems are characterized by almost identical HS and FP shapes, which follow the identity of their
assembly. Percentage contributions of particular interatomic contacts to the HSs revealed that H· · ·Br
and Br· · ·Br contacts play a crucial role in the stabilization of crystal systems of 1 and 2. However,
despite relatively low percentage contributions, other electrostatics as C· · ·H, O· · ·H, and N· · ·H are
also significant for the assemblies of these isostructural systems. The O–H...O (Br) hydrogen bonds are
responsible for the stabilization of the coordination sphere, while the O–H...N bonds are responsible
for the formation of a layered system (ladder). Research on such structures should be continued due to
the broad possible applications of polymeric coordination compounds, e.g., in medicine, absorption,
catalysis, sensors, and electronic devices. The obtained compounds represent a remarkable and
promising field of chemistry and, therefore, research on this type of coordination compound should
be continued.
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