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Abstract: The microbiome of the temperate coral Astrangia poculata was first described in 2017 
using next-generation Illumina sequencing to examine the coral’s bacterial and archaeal associates 
across seasons and among hosts of differing symbiotic status. To assess the impact of methodology 
on the detectable diversity of the coral’s microbiome, we obtained near full-length Sanger sequences 
from clone libraries constructed from a subset of the same A. poculata samples. Eight samples were 
analyzed: two sets of paired symbiotic (brown) and aposymbiotic (white) colonies collected in the 
fall (September) and two sets collected in the spring (April). Analysis of the Sanger sequences 
revealed that the microbiome of A. poculata exhibited a high level of richness; 806 OTUs were 
identified among 1390 bacterial sequences. While the Illumina study revealed that A. poculata’s 
microbial communities did not significantly vary according to symbiotic state, but did vary by season, 
Sanger sequencing did not expose seasonal or symbiotic differences in the microbiomes. 
Proteobacteria dominated the microbiome, forming the majority (55% to 80%) of classifiable bacteria 
in every sample, and the five bacterial classes with the highest mean relative portion (5% to 35%) were 
the same as those determined by prior Illumina sequencing. Sanger sequencing also captured the same 
core taxa previously identified by next-generation sequencing. Alignment of all sequences and 
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construction of a phylogenetic tree revealed that both sequencing methods provided similar 
portrayals of the phylogenetic diversity within A. poculata’s bacterial associates. Consistent with 
previous findings, the results demonstrated that the Astrangia microbiome is stable notwithstanding 
the choice of sequencing method and the far fewer sequences generated by clone libraries (46 to 326 
sequences per sample) compared to next-generation sequencing (3634 to 48481 sequences per 
sample). Moreover, the near-full length 16S rRNA sequences produced by this study are presented as 
a resource for the community studying this model system since they provide necessary information 
for designing primers and probes to further our understanding of this coral’s microbiome. 

Keywords: Astrangia poculata; coral; microbiome; bacteria; archaea; microbes; clone library; 
Sanger sequencing; 16S rRNA 
 

1. Introduction 

Astrangia poculata, the northern star coral, is a temperate scleractinian coral with a wide 
geographic range. It has been documented on the Atlantic Coast of the United States from Maine to 
Florida, as well as the Gulf Coasts of Florida, Louisiana and Texas [1,2]. This ahermatypic coral also 
grows in the eastern Atlantic off the west coast of Africa [1,2], and has been documented at depths 
ranging from 0 to 263 m [1].  

One of the distinguishing features of A. poculata is its facultative symbiosis with members of the 
endosymbiotic dinoflagellates Breviolum psygmophilum (formerly Symbiodinium psygmophilum) [1,3–6]. 
Polyps with low dinoflagellate density (aposymbiotic) appear white and translucent [7], while 
symbiotic polyps of A. poculata are brown, reflecting the pigments of the algae that reside in the 
coral [5,7]. Both symbiotic states can coexist within a single colony, a state referred to as “mixed”, 
resulting in a mottled appearance [1,5]. 

Because symbiotic, aposymbiotic, and mixed colonies of A. poculata occur naturally, the 
species is an ideal organism to study microbial community interactions associated with symbiotic 
state. The first study to describe the bacterial and archaeal associates of A. poculata used Illumina 
sequencing and found a significant influence of season on alpha diversity within each sample’s 
microbial community [5]. However, there was no significant difference between microbiomes of 
brown versus white colonies; the microbiome of A. poculata remained stable regardless of the coral’s 
symbiotic state [5]. Six phylogenetic classes dominated the microbiome, including three classes from 
the Proteobacteria phylum (Gamma-, Delta-, and Alphaproteobacteria), Flavobacteriia, Cytophagia, 
and the archaeal class Thaumarcheota.  

Moreover, Sharp et al. discovered that four bacterial operational taxonomic units (OTUs) and 
one OTU from the Thaumarchaeota class (genus Nitrosopumilus) appeared in 100% of their 72  
A. poculata samples [5]. Identifying core microbiome members is crucial for understanding 
symbiont-host ecology [8]. Core bacteria may perform critical functions for the coral, potentially 
related to the health or nutrition of the host [8,9]. The dominant members of a microbiome are not 
always the same as the core members; rather, core members, though ubiquitous, may comprise only a 
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small portion of the host’s microbial community [10]. Identifying core members of A. poculata’s 
microbiome is a key step in researching the interactions between the host and its microbial 
community [8]. 

Currently, this coral species is considered a model system for examining coral-microbial 
interactions (https://kotysharp.weebly.com/astrangia-workshop.html). However, the ability to 
develop primers and probes to more specifically target key microbial groups has been hindered by 
the lack of full length 16S rRNA sequences, since sequences produced by the Illumina platform are 
of insufficient length (approximately 250 base pairs) for the design of primers and probes.  

The first goal of this study was to determine whether sequencing methodology affected the 
observed diversity of the A. poculata microbiome, including detection of the core microbiome. The 
second goal was to create a resource for the research community by generating a dataset of longer 
sequences that are better suited for the development of probes and primers. 

2. Materials and methods 

2.1. Sample collection and storage  

Paired brown (symbiotic) and white (aposymbiotic) samples of A. poculata were collected as 
described in Sharp et al. [5]. Briefly, samples were collected from Narragansett Bay (Fort Wetherill State 
Park, Jamestown, RI) in September 2015 and April 2016 by SCUBA from depths of 1–5 m (Table 1). 
Paired colonies were selected such that the brown and white members of the pair were no more than 
10 cm apart. Samples were immediately brought to the surface, frozen in liquid nitrogen, and held at 
−80 ℃until DNA extraction.  

Table 1. A. poculata sampling dates, symbiont status, and number of clone library 
bacterial sequences obtained for each sample. All samples were collected via SCUBA at 
Fort Wetherill State Park, Jamestown, RI (41° 28’ 40’’ N, 71° 21’ 34’’ W) from a depth 
of 1–5 m.  

Sample Date of 
collection 

Symbiont status Number of bacterial 
sequences obtained 
before filtering 

Number of bacterial 
sequences remaining after 
filtering 

FW1B4_CL Sept. 9, 2015 Brown (symbiotic) 480 81 
FW1W4_CL Sept. 9, 2015 White (aposymbiotic) 480 217 
FW1B8_CL Sept. 9, 2015 Brown (symbiotic) 480 246 
FW1W8_CL Sept. 9, 2015 White (aposymbiotic) 480 221 
FW3B7_CL April 29, 2016 Brown (symbiotic) 480 46 
FW3W7_CL April 29, 2016 White (aposymbiotic) 480 326 
FW3B9_CL April 29, 2016 Brown (symbiotic) 480 159 
FW3W9_CL April 29, 2016 White (aposymbiotic) 480 94 
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2.2. DNA extraction  

DNA was extracted from each sample of A. poculata as described in Sharp et al. [5]. Briefly, 
the PowerSoil DNA Isolation Kit (QIAGEN, Germantown, MD) was used according to the 
manufacturer’s protocol to extract DNA from a fragment of each sample comprising mucus, tissue, 
and skeleton. 

2.3. DNA amplification and quantification 

Bacterial primers: DNA from each sample was amplified by PCR using primers 8F (5’-AGA 
GTT TGA TCC TGG CTC AG) and 1492R (5’-GGT TAC CTT GTT ACG ACT T) to target the 16S 
rRNA gene [11,12]. Each 25-µL reaction contained 12.5 µL AmpliTaq Gold 360 Master Mix (Applied 
Biosystems, Foster City, CA), 0.4 µM concentration of each primer, and 10 µL of template DNA. 
The reaction conditions consisted of 15 min of initial denaturation at 95 ℃ , 30 cycles of  
(i) 1 min denaturation at 95 ℃, (ii) 1 min annealing at 54 ℃, and (iii) 2 min extension at 72 ℃, and 
10 min of final extension at 72 ℃. Amplicons were visualized on a 1.5% agarose gel, then extracted 
from the gel using the QIAquick Gel Extraction Kit (QIAGEN, Germantown, MD) according to the 
manufacturer’s instructions. Gel-extracted amplicons were quantitated using a Qubit dsDNA HS 
Assay Kit (Thermo Fisher Scientific, Waltham, MA) on a Qubit 3.0 fluorometer according to the 
manufacturer’s instructions.  

Archaeal primers: DNA from two of the samples (FW1B8 and FW1W8) was also amplified 
using primers 21F (5’-TTC CGG TTG ATC CYG CCG GA) and 958R (5’-YCC GGC GTT GAM 
TCC AAT T) in order to amplify the 16S rRNA gene from Archaea [13]. Each 25-µL reaction 
contained 12.5 µL AmpliTaq Gold 360 Master Mix (Applied Biosystems, Foster City, CA), 0.4 µM 
concentration of each primer, and 10 µL of template DNA. The reaction conditions consisted of  
15 min of initial denaturation at 95 ℃, 30 cycles of (i) 95 ℃ for 1.5 min, (ii) 55 ℃ for 1.5 min, and 
(iii) 72 ℃ for 1.5 min, and 10 min of final extension at 72 ℃ [13]. Amplicons were visualized, 
extracted, and quantitated as described above for the bacterial amplicons. 

2.4. Cloning and sequencing  

Amplicons were cloned into the pDrive vector using the PCR Cloning Plus kit (QIAGEN, 
Germantown, MD) and used to transform competent cells. After M13 screening, inserts in positive 
transformants were sequenced by the Clemson University Genomics Computational Laboratory (Clemson, 
SC) using Sanger sequencing on a 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA).  

2.5. Sequence processing and deposition 

Vector and ends were trimmed from the sequences using Geneious (version 11.1.4; Biomatters 
Ltd., Auckland, NZ). Using QIIME version 1.9.1 [14], all sequences less than 50 bp were removed. 
Greengenes (version 13_8) [15–17] was used through QIIME to perform a chimera check with 
usearch61 [18], and to classify taxonomy using an open reference algorithm with a 97% similarity 
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threshold [18]. Singletons were retained, while all other default parameters were used. After chimeric, 
unclassified, chloroplast, and mitochondrial sequences were removed, 996 bacterial OTUs and 18 
archaeal OTUs remained. Upon submission of the sequences to NCBI’s GenBank, GenBank’s 
implementation of version 10 of usearch (64-bit version) using the uchime2_ref command in high 
confidence mode [19] uncovered 190 additional chimeras among the bacterial sequences. These 
sequences were removed, resulting in a data set of 806 bacterial OTUs (Table S1) and 18 archaeal 
OTUs (Table S2). Sequences representing each bacterial OTU have been deposited in GenBank 
under accession numbers MK175495 to MK176300. Sequences representing each archaeal OTU 
have been deposited in GenBank under accession numbers MH915525 to MH915542. The sequences 
are also available as part of a USGS data release [20].  

2.6. Sequence analysis 

The previously published unrarefied OTU table produced by Illumina next generation 
sequencing technology [5] was modified for the purposes of this study. All samples not analyzed in 
this study were removed from the Illumina table, as well as archaeal OTUs, as the current study used 
separate primers for archaea and bacteria, and therefore could not include archaea in quantitative analyses. 
After these modifications, 7687 OTUs remained. Finally, the modified next-generation OTU table was 
rarefied to the smallest number of sequences remaining among the eight samples (3516 sequences per 
sample among 4400 OTUs) using QIIME2 (version 2018.6) [21]. The OTU table generated from the 
clone library sequences was also rarefied in QIIME2 to the smallest number of clone library 
sequences remaining in a sample after filtering (46 sequences among 282 OTUs). These rarefied 
OTU tables were used as the basis for calculating the Shannon diversity index in R using the vegan 
package [22]. The Shannon index was also calculated for the full (unrarefied) clone library data for 
comparison purposes. Greengenes (version 13_8, through QIIME) was used for taxonomic 
classification of the clone library sequences for consistency with those assigned for the next-
generation sequences in Sharp et al. [5]. Community composition was assessed using the unrarefied 
OTU tables at the class level. Each class comprising at least 2.5% of any sample was identified 
individually, while all others were grouped as Other. Relative abundance column graphs were 
prepared in R using base graphics [23]. 

2.7. Beta diversity 

Beta diversity was analyzed using PRIMER 7 (version 7.0.13; PRIMER-E [24]) with 
PERMANOVA+. The bacterial OTU abundance tables for each data set (after rarefaction of the 
next-generation bacterial data) were square-root transformed and then used to calculate Bray-Curtis 
similarity [25]. Permutational multivariate analysis of variance (PERMANOVA) [26] was used to 
determine whether there was a significant difference between bacterial communities originating from 
samples of different seasons (fall versus spring) or symbiotic state (brown colonies versus white 
colonies). 
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2.8. Phylogenetic analysis 

Aligned sequences consisted of one representative sequence for each OTU that contained more 
than two sequences in the unrarefied table of next-generation sequences (3630 OTUs), and one 
representative sequence for each OTU in the full OTU table of clone library sequences (806 OTUs). 
Sequences were aligned with SSU-ALIGN (release 0.1.1) using default parameters [27]. SSU-ALIGN 
also generates confidence estimates that each nucleotide was correctly aligned, based on the 
parameters of the model used for alignment. Based on those estimates, the program was used to mask 
the parts of the alignment that were most likely to contain errors, and the masked alignment was used 
for construction of a phylogenetic tree by FastTree (version 2.1.10) with default parameters [28]. The 
tree was visualized using the ape package [29] in R.  

2.9. Analysis of shared OTUs 

Core next-generation bacterial OTUs that were captured by clone library sequences were 
aligned with BLASTN [30] using the next-generation sequence as the query, all clone library OTU 
sequences as the subject, the option to align two or more sequences, and all default parameters 
except for setting the maximum number of target sequences to 1000. BLASTN was also used to 
align archaeal OTUs that appeared both in clone libraries and in next-generation sequences, using the 
next-generation sequence as the query, the clone library OTU sequence as the subject, the option to 
align two or more sequences, and all default parameters. 

3. Results 

Bacterial 16S rRNA sequences obtained from the eight coral colonies totaled 3880. After 
filtering the data to remove sequences less than 50 bp long, chimeras, chloroplast and mitochondria 
sequences, and sequences that could not be classified, 1390 bacterial sequences remained (Table 1), 
classified into 806 OTUs (Table S1). One-hundred ninety-two archaeal 16S rRNA sequences were 
obtained from two of the colonies (FW1B8 and FW1W8) separately, using archaea-specific primers. 
After filtering, 189 archaeal sequences remained, which were classified into 18 OTUs (Table S2). 

3.1. Shannon diversity index  

The Shannon diversity index considers both richness and evenness of the communities [31]. 
When calculated from the rarefied bacterial clone library OTU table, the Shannon index for the clone 
library sequences ranged from 3.39 to 3.80 (Table 2). Analysis of the full set of bacterial clone 
library data (unrarefied) produced Shannon indices ranging from 3.58 to 5.21. In contrast, the  
next-generation bacterial sequences generated Shannon indices ranging from 4.70 to 6.53 (Table 2). 
Hutcheson’s t-test indicated that the diversity of the next-generation sequences was significantly 
greater than the diversity of the clone library sequences (Table S3) [32]. 
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Table 2. Shannon diversity indices of bacterial communities associated with each  
A. poculata sample. Indices for clone library bacterial communities are presented before 
and after rarefaction of the abundance table for comparison. Clone libraries were rarefied 
to 46 bacterial sequences per sample. The next-generation sequences were rarefied to 
3516 sequences per sample. Source of next-generation sequence data is Sharp et al. [5]. 

Sample Season Symbiont status Shannon index, next-
generation bacterial 
community 

Shannon index, 
clone library 
bacterial 
community,  
before rarefaction 

Shannon index, 
clone library 
bacterial 
community, after 
rarefaction 

FW1B4 Fall Brown (symbiotic) 5.42 3.85 3.50 
FW1W4 Fall White (aposymbiotic) 6.12 4.96 3.74 
FW1B8 Fall Brown (symbiotic) 6.53 5.20 3.71 
FW1W8 Fall White (aposymbiotic) 6.41 5.21 3.80 
FW3B7 Spring Brown (symbiotic) 5.29 3.58 3.58 
FW3W7 Spring White (aposymbiotic) 5.66 4.15 3.41 
FW3B9 Spring Brown (symbiotic) 4.70 3.98 3.39 
FW3W9 Spring White (aposymbiotic) 6.29 4.36 3.67 

3.2. Community composition 

The five classes that formed the largest average components of the samples’ bacterial 
communities as represented by the clone libraries (Alphaproteobacteria, Gammaproteobacteria, 
Deltaproteobacteria, Flavobacteriia, and Cytophagia) are the same top five classes identified through 
the next-generation sequence analysis [5]. Proteobacteria formed the majority of bacteria in every 
sample (Figure 1). In particular, Alphaproteobacteria comprised the largest component of six of the 
eight samples analyzed by clone libraries, and ranged from 17% to 58% of the bacterial community 
in all clone library samples. These amounts exceeded the portion of the bacterial communities made 
up of Alphaproteobacteria in the next-generation sequences (11% to 30%; Figure 1). 
Gammaproteobacteria, in contrast, made up a smaller portion of the clone library sequences, but a 
larger portion of the next-generation sequences in all but one of the samples (FW3B9, which 
consisted of 62.9% Gammaproteobacteria in the clone library sequences, but 60.4% 
Gammaproteobacteria in the next-generation sequences). In the clone libraries, Gammaproteobacteria 
constituted 9% to 63% of the bacterial communities, while in the next-generation sequences 
Gammaproteobacteria comprised 17% to 60% of the bacterial communities.  
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Figure 1. Composition of A. poculata bacterial communities as determined by clone 
library and next-generation sequences. Each class comprising at least 2.5% of any sample 
was identified individually, while all others were grouped as Other Bacteria. Source of 
next-generation sequence data is Sharp et al. [5]. 

3.3. Beta diversity 

The Bray-Curtis similarity matrices for the clone library data (Table S4) and the next generation 
data (Table S5) indicate that the bacterial communities as determined by next generation sequencing 
display higher between-sample similarity than the between-sample similarity exhibited by the clone 
library bacterial communities. The clone library sequences displayed no significant difference among 
bacterial communities originating from brown versus white colonies (PERMANOVA, F = 0.99707, 
p = 0.55). The same result was observed among the next generation sequences, using an OTU table 
based on the bacterial subset of those sequences [5] (PERMANOVA, F = 0.99199, p = 0.59). 
PERMANOVA analysis similarly demonstrated no significant difference between fall and spring 
bacterial communities in the clone libraries (F = 1.0941, p = 0.49). In contrast, using an OTU table 
based on the bacterial subset of next generation sequences [5], PERMANOVA analysis revealed that 
bacterial communities differed by season (F = 2.6123, p = 0.03).  
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3.4. Phylogenetic analysis 

Although the next generation bacterial sequences yielded many more OTUs than the clone 
library sequences (7687 OTUs versus 806 OTUs), phylogenetic analysis revealed substantial overlap 
among the two sets of OTUs (Figure 2). In order to visualize the phylogenetic placement of the clone 
library bacterial OTUs without the more abundant next generation bacterial OTUs obscuring them, 
the leaves representing next generation OTUs were plotted first. The leaves representing clone 
library OTUs were plotted next, in order to overlay the next generation OTUs. In some classes (e.g., 
Cytophagia, OM190, Verrucomicrobiae, Deltaproteobacteria), branches of next-generation OTUs 
extend further than the branches of clone library OTUs, indicating that next-generation sequencing 
uncovered OTUs in those classes that are slightly more divergent than the clone library OTUs. Only 
a small number of branches, representing only a few OTUs, display next-generation sequences 
without clone library sequences overlaid. 

 

Figure 2. Phylogenetic tree representing bacterial OTUs from clone libraries and  
next-generation sequencing. OTUs from next-generation sequencing are displayed if the 
OTU contained more than two sequences in the unrarefied OTU table (3626 OTUs). 
Source of next-generation sequence data is Sharp et al. [5]. 

3.5. Analysis of shared OTUs 

Sharp et al. identified four bacterial OTUs that appeared in the microbiome of every coral sample 
[5]. All four of those next-generation OTUs were captured by clone library sequencing (Table 3). The 
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OTUs were classified by Greengenes as members of the Inquilinus genus (in the family 
Rhodospirillaceae), the Amoebophilaceae and Flavobacteriaceae families, and the 
Alphaproteobacteria class. In the case of Inquilinus and Flavobacteriaceae, the clone libraries 
captured multiple sequences corresponding to those OTUs with at least 97% identity. 

Table 3. Alignment statistics for the core next-generation bacterial OTUs that were captured 
by clone library sequences. Clone library OTUs are included in this table if the BLASTN 
result showed query cover ≥ 90% and identity ≥ 97%. Length of all next-generation 
sequences was 253 bp. Source of next-generation sequence data is Sharp et al. [5].  

Greengenes 
classification of 
next-generation 
OTU (to lowest 
level) 

Next-gen 
OTU 
identifier 

Corresponding 
clone library 
OTU identifier  

Clone 
library 
sequence 
accession 
number 

Length 
of clone 
library 
sequence 

Identity between 
sequences in aligned 
portion 

Gaps 

Inquilinus 301588 NCUR_OTU46 MK176023 823 bp 253 bp/253 bp 
(100%) 

0/253 (0%) 

Inquilinus 301588 NCUR_OTU203 MK175889 866 bp 249 bp/253 bp (98%) 0/253 (0%) 
Amoebophilaceae 590468 NCUR_OTU241 MK175907 841 bp 253 bp/253 bp 

(100%) 
0/253 (0%) 

Flavobacteriaceae 807522 689465 MK175665 828 bp 247 bp/253 bp (98%) 0/253 (0%) 
Flavobacteriaceae 807522 2676455 MK175756 858 bp 247 bp/254 bp (97%) 1/254 (0%) 
Flavobacteriaceae 807522 NCUR_OTU817 MK176202 823 bp 245 bp/253 bp (97%) 0/253 (0%) 
Alphaproteobacteria 4313721 NCUR_OTU91 MK176254 831 bp 253 bp/253 bp 

(100%) 
0/253 (0%) 

The next-generation sequencing by Sharp et al. also identified four archaeal OTUs that appeared in 
all eight of the samples analyzed here. Only two of the eight samples were used for archaeal sequencing 
in this study, but all four of the OTUs were detected among those two clone libraries (FW1B8 and 
FW1W8). Comparing each next-generation archaeal OTU to its clone library counterpart 
demonstrated close alignment (Table 4).  

Table 4. Alignment statistics for the four archaeal OTUs appearing both in clone 
libraries and in next-generation sequences. All next-generation OTU sequences were  
253 bp in length. All OTUs were classified by Greengenes to the class Thaumarcheota, 
genus Nitrosopumilus. Source of next-generation sequence data is Sharp et al. [5]. 

OTU identifier 
(from 
Greengenes) 

Clone library 
sequence 
accession number 

Length of 
clone library 
sequence 

Portion of next-
generation sequence 
covered in alignment 

Gaps in next-
generation sequence 
upon alignment 

Identity between 
sequences in 
aligned portion 

152483 MH915526 782 bp 251 bp/253 bp 0 99% 
154353 MH915527 874 bp 252 bp/253 bp 0 99% 
461312 MH915530 872 bp 253 bp/253 bp 0 98% 
4369009 MH915528 854 bp 253 bp/253 bp 1 98% 
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4. Discussion 

Every bacterial class (n = 10) detected whose members constituted at least 2.5% of the 
bacterial community of at least one sample in the Illumina data set was also detected here in the 
clone library data set as at least 2.5% of at least one sample’s bacterial community. Three 
additional classes (Verrucomicrobiae, Nitrospira, Betaproteobacteria) comprised at least 2.5% of 
the bacterial community of at least one clone library sample, but not of an Illumina sample (Figure 1). 
By both sequencing methods, Proteobacteria were the dominant bacterial class in every A. poculata 
sample. Moreover, the same five bacterial classes comprised the highest mean portion of A. poculata 
communities based on clone libraries (5.0% to 35.8%) as well as Illumina sequencing (4.6% to 
29.5%). Thus, the bacterial communities exhibited overall stability regardless of the sequencing 
platform used to examine the diversity within those communities. 

There are several factors that may have contributed to the high level of similarity observed 
between the results of the Illumina study and the present results. This study used the same DNA 
extractions as in Sharp et al. [5], eliminating extraction method as a potential source of variability in 
community composition. The choice of 16S region to amplify can play a role in determining the 
relative abundance of bacterial community members [33], but in the present study, the region 
sequenced entirely encompassed the V4 region sequenced in the Illumina study. Thus, although 
different primers and sequencing platforms can affect the observed relative abundance of 
microbiome members [34], the use of the same samples, extractions, and sequenced regions, 
combined with the stability of the A. poculata microbiome, likely contributed to the resemblance 
detected in bacterial community composition between the studies.  

The reason that the samples yielded greater diversity through next-generation sequencing than 
through clone library sequencing (Table 2) is likely due to the greater number of sequences 
generated by the Illumina method. Even after rarefaction, 3516 next-generation sequences remained 
for each sample, while the number of clone library sequences analyzed for each sample ranged from 
46 to 326 (Table 1). Higher alpha diversity indices associated with next-generation sequencing were 
also described in a study of the cervical microbiome comparing microbial diversity obtained by three 
different sequencing methods (Sanger, Illumina, and 454 pyrosequencing) [35]. The Shannon index 
yielded by Illumina sequencing was consistently higher than the same measure when determined 
from Sanger sequencing. The differences between the Shannon index for the sequencing 
methodologies illustrate one of the primary advantages of using next-generation sequencing methods: 
generation of a greater number of sequences, by an order of magnitude, than can be cost-effectively 
obtained through clone libraries. 

Beta diversity is usually stable between data sets obtained by Sanger and Illumina sequencing, 
and thus the sequencing method should not affect community comparisons [36,37]. Nelson et al. [38] 
agree that beta diversity is less affected by sequencing platform than alpha diversity, although 
Gihring et al. [39] caution against comparisons between studies that used different numbers for 
rarefying sequence sets, given that sample size influences diversity estimates. In accordance with 
that view, Sharp et al.’s [5] Illumina sequences from A. poculata would ideally be rarefied to the 
same number as the clone library sequences in this study in order to compare the beta diversity 
calculated in each study. However, that would mean eliminating more than 98% of the information 
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provided by the next-generation sequences. Therefore, the differences in rarefaction depth (3516 for 
next-generation sequences, but 46 for Sanger sequences) likely explain the differences we observed 
in beta diversity, in which season made a difference in the Illumina data set, but not in the Sanger 
data set.  

The bacterial classes identified in the community composition analysis as meeting a 2.5% 
threshold appear as large colored clusters on the phylogenetic tree (Figure 2). Those classes are well 
represented by both sequencing methods. These results demonstrate that members of the microbiome 
identified as dominant by next-generation sequencing are also likely to be identified through clone 
library sequencing, although there are many more representatives of next-generation OTUs within 
those classes. Some of these additional OTUs may be genuine detections due to the increase in 
sequencing depth. However, Illumina MiSeq’s most common source of error is substitution type 
miscalls [40]. Studies using mock communities have demonstrated that common methods of 
alignment of MiSeq sequences for OTU clustering can then compound the sequencing errors by 
predicting many more OTUs than actually exist [41–43]. 

Clone library sequencing of A. poculata’s bacterial community captured all four core 
bacterial OTUs previously identified by Sharp et al. [5] (Table 3). Moreover, one of the next-
generation OTUs (OTU 807522, from the Flavobacteriaceae family) constituted less than 2.4% of 
the microbiome of one of the samples examined here, and less than 1.1% of the other seven samples. 
The other core OTUs represented 0.1% to 8.5% of the samples (OTU 4313721, Alphaproteobacteria), 
0.05% to  
5.4% of the samples (OTU 590468, Amoebophilaceae), and 0.02% to 6.8% of the samples (OTU 
301588, Inquilinus). Taken together, this indicates that clone library sequencing can still capture 
relatively rare bacterial taxa within a microbial community. 

Because this study could not capture archaeal sequences at the same time as bacterial sequences, 
but instead had to amplify and clone those sequences separately, we cannot draw a quantitative 
conclusion regarding percentages of the prokaryotic community. However, it is worth noting that 
a substantial amount of sublevel archaeal diversity was discovered. Archaeal sequences were 
distributed into 18 OTUs, 16 of which were classified by Greengenes as the Nitrosopumilus 
genus (part of the Cenarchaeaceae family). The other two OTUs were classified only as far as the 
family level, into the Cenarchaeaceae family. The archaeal OTUs revealed by clone library 
sequencing included all four archaeal OTUs identified by Sharp et al. [5] as occurring in all eight of 
the samples analyzed here (Table 4). As in the results of the bacterial clone libraries, these results 
establish that prevalent members of the archaeal community detected by next-generation sequencing 
are also likely to be identified by clone libraries. 

5. Conclusions 

This study examined the microbiomes of eight colonies of the temperate coral Astrangia 
poculata, in order to determine whether fewer, longer sequences obtained by Sanger sequencing 
could capture key diversity (e.g., dominant and core members of the microbiome) as identified by 
shorter reads previously produced by the Illumina platform. Microbiome diversity was stable and 
remarkably similar across the two sequencing platforms. The primary taxa identified by Sanger 
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sequencing were the same as those revealed by Illumina sequencing. Moreover, the sequences 
obtained in this study included the five OTUs (four bacterial and one archaeal) identified as core to  
A. poculata by Sharp et al. [5]. Minor differences in the relative abundance of community members 
could be attributable to the different sequencing platforms, and could also arise from biases produced 
by the use of different primer sets and rarefaction depths. However, phylogenetic analysis 
demonstrated that the Sanger sequences substantially overlapped with the Illumina sequences from 
the A. poculata microbiomes. Thus, this study demonstrates that Sanger sequencing was capable of 
reproducing the biologically-relevant diversity detected by deeper next-generation sequencing, while 
also producing longer sequences useful to the research community for probe and primer design. 
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