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Bone development have been shown to play an important role in regulating

hematopoiesis as one major component of bone marrow microenvironment.

Recent studies support the notion that there is an intricate relationship between

hematopoiesis and bone homeostasis, however, little is known about the alterations in

the hematopoietic lineages in pathologic conditions. Using various osteoporotic

mouse models, we show here that bone microarchitecture abnormalities alter

parameters of peripheral blood cells. The level of white blood cells is dynamics and

negatively correlated with bone mineral density during the progression of

osteoporosis. Furthermore, our clinical data confirm that osteoporosis is associated

with abnormal circulating blood cell counts. These results demonstrated a causal link

that osteoporosis is accompanied by the altered circulating blood cells, supporting the

idea of a close interplay between hematopoiesis and bone homeostasis. Our study

would propose that routine complete blood count might be applied as a potential

diagnostic and putative marker for osteoporosis.

KEYWORDS

osteoporosis, hematopoiesis, bone homeostasis, circulating blood cells, bone
mineral density
Introduction

Osteoporosis (OP) is a type of systemic skeletal and age-related disease characterized

by stumpy bone mass and the microarchitectural weakening, leading to elevated bone

fragility and thus a subsequent increased risk of fractures (1–3). OP frequently occurs in

postmenopausal women, affecting about 1 out of 3 women over 50 years old (4, 5).
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Notably, nearly half of women have experienced fractures one

time after 50 years old (6–8). With the aging of the population,

the incidence of osteoporotic fractures might be increased by

approximately 25% in the next 10 years. Loss of bone mineral

density (BMD) is the major diagnostic metrics of OP due to

an imbalance between osteoclast-mediated bone resorption

and osteoblast-mediated bone formation in these patients

(9–11). However, this diagnostic method is usually

performed after the onset of the symptoms of osteoporotic

patients, which might delay all the efforts at prevention

and treatment.

Recent studies support the notion that there is an intricate

relationship between hematopoiesis and bone homeostasis in

normal steady states (12, 13). Bone marrow is responsible for

providing an appropriate and specific microenvironment for the

maintenance of bone homeostasis and blood cells formation, in

which different stages of hematopoiesis, bone formation, bone

resorption and variety of immune responses are precisely

controlled (14–17). The osteogenic niche comprised of

osteoprogenitors, preosteoblasts, osteoblasts, osteocytes and

osteoclasts, exerts established functions in providing unique

niches and anatomical spaces for supporting normal

hematopoiesis (18, 19). On the other hand, hematopoiesis

plays a critical role in the precise regulation of special

microenvironment which are directly related with the bone

and blood physiology (20–22).

Given this, the nature of the relationships between blood

cells formation and bone homeostasis remains undefined

outside of normal physiological states. In this study, we

explored the relevance of these relationships to osteoporotic

conditions. Our findings demonstrated a causal link that

osteoporosis is accompanied by the altered circulating blood

cells, supporting the idea of a close interplay between

hematopoiesis and bone homeostasis. Our study would

propose that routine complete blood count is applied as a

potential diagnostic and putative marker for osteoporosis. A

better understanding of these relationships can offer novel

insights into routine assessment and early diagnosis for bone

loss related diseases including osteoporosis.
Material and methods

Ethical statement

This study was approved by the Ethical Committee of Heze

municipal Hospital. The animal use protocols in this study

were conducted in accordance with the Medical Ethical

Committee (MEC) and approved by the Institutional Animal

Care and Use Committees at Shandong University.
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Study participants

Between January, 2020 and October, 2021, 608 osteoporotic

patients who were received treatment at Heze municipal

Hospital included in this study. All patients were diagnosed

with osteoporosis according to the 2015 Guidelines for the

Diagnosis and Treatment of Osteoporosis issued by the

Branch of Osteoporosis and Bone Mineral Salt Diseases,

Chinese Medical Association. Besides, 527 healthy participants,

who were referred to Heze municipal Hospital for routine

checkups, were recruited in this study.

The following exclusion criteria were employed: (1) do not

meet the diagnosis of osteoporosis; (2) Rheumatoid arthritis,

diabetes mellitus, hyperthyroidism, and other secondary

osteoporosis; (3) history of anemia or recent blood donation

in the past 2 months; (4) history of serious cardiovascular and

cerebrovascular diseases; (5) history of malignancy tumor,

autoimmune disease, hematological disorders, renal and liver

failure, liver cirrhosis, thyroid or parathyroid disorders and

current infection.
Data collection

The general information and hematological indices,

including sex, age, white blood cells (WBC), number of

neutrophils (NEUT#), number of lymphocytes (LYMPH#),

number of monocytes (MONO#), number of eosinophils

(EO#), number of basophils (BASO#), red blood cells (RBC),

hemoglobin (HGB), hematocrit (HCT), mean corpuscular

volume (MCV), mean corpuscular hemoglobin (MCH), red

cell distribution width-CV (RDW-CV), platelets (PLT),

platelets and platelet distribution width (PDW), mean platelet

volume (MPV), platelet hematocrit (PCT), were recorded

and analyzed.
Construction of OVX-related
osteoporotic mouse models

Sixty-four female C57BL/6J mice (about 8 weeks old, 18 to

20 g) were purchased from Beijing Vital River Laboratory

Animal Technology Co., Ltd. The mice were housed under

standard laboratory conditions with free access to sterile

standard mouse chow and water. The condition was at room

temperature (22 ± 2°C) with a relative humidity (55 ± 5%) under

a normal 12 h light/12 h dark cycle. After 1 week of acclimation

to the environment, all the mice were randomly assigned to two

groups: sham group (n=32) and OVX group (n=32).

The surgical ovariectomy (OVX) operation was conducted

according to the previous study (23). The bilateral ovaries were
frontiersin.org

https://doi.org/10.3389/fendo.2022.965290
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.965290
gently removed from mice in OVX group. while some adipose

tissue around the ovaries were removed from mice in sham

group. After eight weeks, the BMD of mice was detected to

evaluate the establishment of osteoporotic mouse models and

the relationship between BMD and blood cell counts of OVX-

related osteoporotic mouse models was analyzed at

this timepoint.
Measurement of hematological indices
in mice

For the duration of this study, the blood samples of mice

were collected from the caudal vena cava for analyzing the

hematological indices in mice. The hematological indices,

white blood cells (WBC), lymphocytes (LYMPH#), monocytes

(MONO#), neutrophils (NEUT#), red blood cells (RBC),

hematocrit (HCT), hemoglobin (HGB), red cell distribution

width (RDW), mean platelet volume (MPV), platelets (PLT)

and platelet distribution width (PDW) were measured using

Hematology Analyzer BC-2800VET (Mindray, China). The

hematology analyzer has been routinely checked to guarantee

that the hematological parameters of blood samples are within

the precision specifications.
Detection of BMD in mice

The whole-body BMD of mice was measured by using XR-

600 digital fast dual-energy X-ray scanning absorptiometer

(NORLAND, USA) in Bone Density Measuring Instrument

Sharing Platform of Shandong University and Health analysis

and test center of Shandong university. The mice from different

groups were placed on a specimen tray and kept them ventral

side down with each limb and tail maintained away from the

body. The full-body scans and data were obtained by the dual-

energy X-ray scanning absorptiometer and manufacturer

supplied software.
Establishment of iron overload-induced
osteoporotic mouse models

Twenty-four male C57BL/6J mice (about 8 weeks old, 18 to

20 g) were purchased from Beijing Vital River Laboratory

Animal Technology Co., Ltd. The mice were housed in the

condition mentioned above. After 1 week of acclimation to the

environment, all the mice were randomly divided to two groups:

control (CTL) group (n=12) and iron overload-induced

osteoporosis (OP) group (n=12). The mice from OP group

were injected with 0.016 mL/g of iron dextran (diluted by

normal saline to 10 mg/mL) every other day for eight weeks.

The mice from CTL group were injected with 0.016 mL/g of
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normal saline by intraperitoneal injection every other day for

eight weeks. After eight weeks, the BMD of mice was examined

to ensure the construction of osteoporotic mouse models and the

relationship between BMD and blood cell counts of iron

overload-induced osteoporotic mouse models was analyzed at

this timepoint.
Statistical analysis

Data were presented as mean values with standard

deviations (mean ± SD). Data were double recorded and

validated by using Excel spreadsheets before analysis was

performed using Graphpad Prism 8 software. Data were

validated for inconsistency, missing data and outliers to ensure

their accuracy and quality. Correlation analysis between

circulating blood cell counts and BMD was performed using

Pearson correlation and multivariate linear regression analysis.

P<0.05 indicated that the difference was considered

statistically significant.
Results

Comparison of the hematological
indices of osteoporotic patients and
healthy controls

To further analyze the hematological indices in osteoporotic

patients, we collected the general information and hematological

indices of clinical osteoporotic patients and healthy controls. In

this study, the information of 608 osteoporosis patients and 527

healthy control subjects were collected, and the baseline

characteristics of the study participants were shown in Table 1.

Among these participants in the study, the males respectively

accounted for19.23% in control group and 18.98% in

osteoporotic group, and there was no difference (p>0.05).

Besides, the mean age was 71.56 ± 8.90 years and 71.23 ± 8.57

years in control group and osteoporotic group, respectively. And

the results showed that there was no difference in age between

control group and osteoporotic group (p>0.05).

Next, the hematological indices in osteoporotic patients and

control group were compared. The results showed that the

counts of WBC, NEUT# and MONO# were much higher in

osteoporotic group than that in control group (Table 1). The

variables of WBC, NEUT# and MONO# between these two

groups were significant (p<0.001 respectively). And the results of

comparison of LYMPH#, EO#, BASO#, RBC, HGB, HCT, MCV,

MCH, RDW-CV, PLT, PDW, MPV, PCT showed that there was

no statistical difference in these hematological indices between

control group and osteoporotic group (p>0.05).

To investigate whether the alteration of hematological

indices in osteoporotic patients is related to the estrogen
frontiersin.org
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deficiency-related menopause, we further analyzed the

hematological indices in only male osteoporotic patients. The

results showed that the counts of WBC, NEUT# and MONO#

were much higher in male osteoporotic patients than that in

male controls (p=0.0394, 0.0019 and 0.0062 respectively)
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(Table 2). Other hematological indices showed no statistical

difference between the two group (p >0.05). These findings

indicated that the increased counts of white blood cells,

neutrophils and monocytes might be used as a novel

prognostic factor for osteoporosis.
TABLE 2 Comparison of hematological indices between osteoporotic patients and healthy controls (only male).

Characteristics Controls (n=85) Patients (n=97) P values

WBC 6.18 ± 1.50 6.69 ± 1.80 <0.001

NEUT# 3.87 ± 1.25 4.53 ± 1.53 <0.001

LYMPH# 1.66 ± 0.60 1.51 ± 0.58 >0.05

MONO# 0.43 ± 0.11 0.49 ± 0.18 <0.001

EO# 0.16 ± 0.16 0.15 ± 0.16 >0.05

BASO# 0.022 ± 0.016 0.03 ± 0.01 >0.05

RBC 4.30 ± 0.39 4.17 ± 0.53 >0.05

HGB 135.4 ± 10.77 134 ± 11.03 >0.05

HCT 39.60 ± 3.07 38.48 ± 5.41 >0.05

MCV 93.51 ± 4.56 93.13 ± 5.85 >0.05

MCH 31.55 ± 1.72 31.39 ± 2.31 >0.05

RDW-CV 12.80 ± 0.64 12.91 ± 1.53 >0.05

PLT 199.74 ± 51.10 209.67 ± 52.03 >0.05

PDW 12.86 ± 2.01 12.15 ± 2.63 >0.05

MPV 10.86 ± 1.00 10.04 ± 0.88 >0.05

PCT 0.22 ± 0.05 0.21 ± 0.05 >0.05
fron
WBC, white blood cells; NEUT#, number of neutrophils; LYMPH#, number of lymphocytes; MONO#, number of monocytes; EO#, number of eosinophils; BASO#, number of basophils;
RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; RDW-CV, red cell distribution width-CV; PLT, platelets;
PDW, platelets and platelet distribution width; MPV, mean platelet volume; PCT, platelet hematocrit.
TABLE 1 Characteristics and hematological indices of osteoporotic patients.

Characteristics Controls (n=527) Patients (n=608) P values

Age (years) 71.56 ± 8.90 71.23 ± 8.57 >0.05

Sex (male/female) 19.23%
(85/442)

18.98%
(97/511)

>0.05

WBC 5.86 ± 1.59 6.34 ± 2.02 <0.001

NEUT# 3.59 ± 1.39 4.12 ± 1.83 <0.001

LYMPH# 1.70 ± 0.55 1.64 ± 0.64 >0.05

MONO# 0.37 ± 0.12 0.42 ± 0.17 <0.001

EO# 0.12 ± 0.11 0.12 ± 0.10 >0.05

BASO# 0.024 ± 0.017 0.027 ± 0.015 >0.05

RBC 4.12 ± 0.42 4.06 ± 0.49 >0.05

HGB 126.8 ± 12.98 125.1 ± 19.29 >0.05

HCT 38.55 ± 13.47 37.93 ± 12.81 >0.05

MCV 92.22 ± 5.92 92.53 ± 6.11 >0.05

MCH 30.84 ± 1.72 30.77 ± 2.08 >0.05

RDW-CV 13.35 ± 12.41 13.43 ± 11.58 >0.05

PLT 224.88 ± 63.57 227.89 ± 69.77 >0.05

PDW 13.30 ± 9.05 12.89 ± 8.58 >0.05

MPV 10.86 ± 1.17 10.32 ± 1.10 >0.05

PCT 0.24 ± 0.06 0.23 ± 0.06 >0.05
WBC, white blood cells; NEUT#, number of neutrophils; LYMPH#, number of lymphocytes; MONO#, number of monocytes; EO#, number of eosinophils; BASO#, number of basophils;
RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; RDW-CV, red cell distribution width-CV; PLT, platelets;
PDW, platelets and platelet distribution width; MPV, mean platelet volume; PCT, platelet hematocrit.
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Construction and characterization of
osteoporotic mice

To gain insight into the relationship between hematopoiesis

and bone homeostasis in osteoporotic condition, two types of

osteoporotic mice, including estrogen deficiency-related

o s t eopo ro t i c mous e mode l s and i ron ove r l o ad -

induced osteoporotic mouse models, were used for analysis.

The estrogen deficiency-related osteoporotic mice were

constructed by using bilateral ovariectomy (OVX) operation

(Figure 1A). After 8 weeks, as the most clinically relevant factor,

the whole-body BMD of mice was measured by using dual-

energy X-ray scanning absorptiometer to quantify the

osteoporotic changes. As anticipated, compared with mice

from the sham group (n=32), the ovariectomized mice (n=32)

showed a significant reduction in BMD, which was regarded as

typical osteoporotic alterations (Figure 1B). Besides, iron

overload-induced osteoporotic mice were obtained via

intraperitoneal injection of iron dextran (Figure 1C). Then, the

BMD of mice was detected to evaluate the establishment of

osteoporotic mouse models. Similarly, compared to the control

group (n=12), the mice from overload-induced osteoporotic

mice (n=12) demonstrated an obvious reduction in BMD
Frontiers in Endocrinology 05
(Figure 1D). These results confirmed that the osteoporotic

mice were successfully established and the osteoporotic mice

displayed the obvious reduction in BMD.
Measurement of hematological indices
in estrogen deficiency-related
osteoporotic mice

According to the recent studies, there is a closed link

between osteoporosis and hematopoiesis (24–26). However,

the hematological indices in osteoporotic conditions have not

been fully explored. Thus, the blood samples of mice were

collected from the caudal vena cava and the hematological

indices were measured every four weeks. Among the

hematological indices, the numbers of WBC, MONO#,

LYMPH# and NEUT# in peripheral blood were much higher

at 4, 8, 12, 16 weeks after OVX surgery in the OVX-related

osteoporotic mice than the sham group (Figures 2A–D). And the

elevated numbers of WBC, MONO#, LYMPH# and NEUT# in

peripheral blood of osteoporotic mice were almost restored after

20 weeks of bilateral ovarian resection (Figures 2A–D).

However, compared with mice in the sham group, there was
A B

DC

FIGURE 1

Construction of osteoporotic mice and identification of BMD. (A) Estrogen deficiency-related osteoporotic mouse models were constructed via
bilateral ovariectomy (OVX) operation. (B) The whole body of BMD in estrogen deficiency-related osteoporotic mice was measured using dual
energy-ray absorptiometry. n = 32. (C) Iron overload-induced osteoporotic mouse models were established via intraperitoneal injection of iron
dextran. (D) Measurement of BMD in iron overload-induced osteoporotic mice. n=12. **p <0.01, ***p <0.001 versus sham or CTL. Sham, sham
operation group; OVX, ovariectomy operation group; CTL, control group; OP, overload-induced osteoporotic group. BMD, bone mineral density.
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no significant difference in the RBC, HCT, HGB, RDW, PLT,

MPV and PDW of OVX-related osteoporotic mice

(Figures 2E–K). These results suggested that WBC, MONO#,

LYMPH# and NEUT# in peripheral blood might be

correlated with the development of deficiency-related

osteoporotic mice.
Measurement of hematological indices in
iron overload-induced osteoporotic mice

To present a comprehensive investigation of the potential

relationship between osteoporosis and hematopoiesis, we then

detected the hematological indices in iron overload-induced

osteoporotic mice every four weeks. As show in Figures 3A–D,

compared with mice from CTL group, the numbers of WBC,

MONO#, LYMPH# and NEUT# in peripheral blood were

significantly elevated in the iron overload-induced osteoporotic

mice (Figures 3A–D). The increased numbers of WBC, MONO#,

LYMPH# and NEUT# in peripheral blood were gradually retrieved

after approximately 16 weeks (Figures 3A–D). Similarly, there was

no obvious alteration in the RBC, HCT, HGB, RDW, PLT, MPV

and PDW between CTL group and OP group (Figures 3E–K).

These findings confirmed that there was close correlation between

WBC, MONO#, LYMPH# and NEUT# in peripheral blood

and osteoporosis.
Frontiers in Endocrinology 06
Correlation of peripheral blood cell
counts with BMD in osteoporosis

The peripheral blood cell counts were altered in

osteoporosis, which suggested that there might be association

between peripheral blood cell counts and BMD. To verify this

hypothesis, we analyzed the correlation between BMD and the

hematological indices in the osteoporotic condition respectively

after 8 weeks of osteoporotic mouse model construction. The

peripheral blood cell counts were negatively correlated with

BMD in estrogen deficiency-related osteoporosis, including

WBC (p <0.001, r=-0.7249), MONO# (p <0.001, r=-0.7351),

LYMPH# (p <0.001, r=-0.6977) and NEUT# (p <0.001,

r=-0.7541) (Figures 4A–D).

To further comform the correlation between blood cell

counts and BMD in osteoporosis, we also analyzed this

correlation in iron overload-induced osteoporotic mice. As

expected, there were significant associations between

peripheral blood cell counts and BMD in these osteoporotic

mice (Figures 4E–H). The BMD of iron overload-induced

osteoporotic mice was respectively and negatively associated

with WBC (p <0.01, r=-0.7365), MONO# (p <0.01, r=-0.7210),

LYMPH# (p <0.01, r=-0.7799) and NEUT# (p <0.01, r=-0.7276).

These data indicated that peripheral blood WBC, monocytes,

lymphocytes and neutrophils counts were independently and

negatively associated with BMD in osteoporosis.
A B D

E F G

I

H

J K

C

FIGURE 2

Analysis of hematological indices in estrogen deficiency-related osteoporotic mice. (A–K) The counts of WBC (A), LYMPH# (B), MONO# (C),
NEUT# (D), RBC (E), HCT (F), HGB (G), RDW (H), PLT (I), MPV (J) and PDW (K) in deficiency-related osteoporotic mice were examined by
Hematology Analyzer. n = 32. *p <0.05, **p <0.01, ***p <0.001 versus sham. Sham, sham operation group; OVX, ovariectomy operation group;
WBC, white blood cells; LYMPH#, lymphocytes; MONO#, monocytes; NEUT#, neutrophils; RBC, red blood cells; HCT, hematocrit; HGB,
hemoglobin; RDW, red cell distribution width; PLT, platelets; MPV, mean platelet volume; PDW, platelet distribution width.
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Discussion

Although OP is a chronic and age-dependent bone disease,

its complications seriously affect the quality of life of

osteoporotic patients and bring huge economic burden to the
Frontiers in Endocrinology 07
society (27, 28). With the increased lifespan of the human

population, a higher proportion of the global population will

be susceptible to osteoporosis (29–31). It is the current challenge

to develop novel strategies to identify the high risk of

osteoporosis so that the patients receive the corresponding
A B D

E F G H

C

FIGURE 4

Correlation of WBC, lymphocytes, monocytes, neutrophils levels with BMD in osteoporotic mice after 8 weeks of osteoporotic mouse model
construction. (A–D) Analysis of the correlation between WBC (A), LYMPH# (B), MONO# (C), NEUT# (D) and BMD in estrogen deficiency-related
osteoporotic mice (E, F) Analysis of the correlation between WBC (E), LYMPH# (F), MONO# (G), NEUT# (H) and BMD in iron overload-induced
osteoporotic mice. Sham, sham operation group; OVX, ovariectomy operation group; CTL, control group; OP, overload-induced osteoporotic
group. BMD, bone mineral density; WBC, white blood cells; LYMPH#, lymphocytes; MONO#, monocytes; NEUT#, neutrophils.
A B D

E F G

I

H

J K

C

FIGURE 3

Detection of hematological indices in iron overload-induced osteoporotic mice. (A–K) The counts of WBC (A), LYMPH# (B), MONO# (C),
NEUT# (D), RBC (E), HCT (F), HGB (G), RDW (H), PLT (I), MPV (J) and PDW (K) were examined in iron overload-induced osteoporotic mice.
n=12. *p <0.05, **p <0.01, ***p <0.001 versus CTL. CTL, control group; OP, overload-induced osteoporotic group; WBC, white blood cells;
LYMPH#, lymphocytes; MONO#, monocytes; NEUT#, neutrophils; RBC, red blood cells; HCT, hematocrit; HGB, hemoglobin; RDW, red cell
distribution width; PLT, platelets; MPV, mean platelet volume; PDW, platelet distribution width.
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treatment as early as possible (32–34). In this study, we

demonstrated white blood cells level is dynamics and

negatively correlated with bone mineral density during the

progression of osteoporosis, supporting that routine complete

blood count is applied as a potential diagnostic and putative

marker for osteoporosis.

Accumulating evidences have indicated a close relationship

between bone marrow hematopoiesis and bone formation (35,

36). There have also been some studies of the relationship

between osteoporosis and indices of circulating blood cells. A

study of Chinese postmenopausal women showed that the

counts of RBC and HGB levels were much higher in

osteoporosis compared with non-osteoporotic patients (37).

While, in another study, the blood cell counts (including

WBC, RBC and platelets) were significantly reduced in

postmenopausal women from Seoul, Korea (38). On the

contrary, our results indicated that WBC counts were

increased in the peripheral blood from osteoporotic patients

and osteoporotic mice, but there is no difference on the other

indices of blood cells between osteoporosis and controls.

We also demonstrated that the counts of WBC were

dynamics and negatively correlated with BMD in osteoporotic

mice, which is consistent with a previous study in the

postmenopausal osteoporosis (37). However, two independent

investigations have also shown positive correlations or

undetectable correlations between blood cell counts and BMD

respectively (38, 39). These disparate findings may be due to the

distinct comparations. There are many factors accounting for

the inconsistent results from patients, including region, race, age

and sex osteoporotic patients and controls. Indeed, our clinical

data were collected from 97 male and 511 female osteoporotic

patients, while the previous studies were mainly based on

postmenopausal osteoporosis (37, 40). Furthermore, the

hematological indices in osteoporotic patients and controls

were separately determined in men, which showed that the

counts of WBC, NEUT# and MONO# were also much higher

in osteoporotic group than that in control group (Table 2). These

results suggested that the alteration of hematological indices in

osteoporotic patients was not limited to the estrogen deficiency-

related menopause.

White blood cells-to-lymphocyte ratio have been reported to be

independent predictors in many diseases including osteoporosis

(41–44). In this study, we also calculated the rations of neutrophil to

lymphocyte (NLR), platelet to lymphocyte (PLR) and monocyte to

lymphocyte (MLR) with all the colleced data. The levels of NLR,

PLR, andMLRwere all higher than those in healthy control subjects

(data not shown), which is consistent with the previous study (42).

Thees findings provied further evidence to surpport that the value

of NLR, PLR, and MLR might be used as novel potential predictors

of osteoporosis.

The negtive correlation of bone mineral density and

peripheral white blood cells indicated that the altered circulating

white blood cells play roles in the progression of osteoporosis. The
Frontiers in Endocrinology 08
WBC subpopulations were immediately increased after 4 weeks of

construction in both osteoporotic mouse model, which is earlier

than that of decrease of BMD. Indeed, it has been reported that

estrogen deficiency expands hemopoietic stem and progenitor

cells and mature blood lineages (41), and iron exerts an important

role on mature white blood cell differentiation (45). Ovariectomy

and iron overload may lead to the increase of peripheral white

blood cells in ther early stage of both osteoporotic mouse model

construction. In addition, immune cells have been shown to

directly or indirectly influence bone homeostasis via factors

including OPG/RANKL, inflammatory cytokines such as IL-6

and TNFa and other mediators secreted by immune cells (46, 47).

Osteoporotic bone microenvironment may also impact

hematopoietic lineage differentiaion to maintain the elevated

output of circulating blood cells. Hematopoietic stem cells

residing within the specialized bone marrow niche provide

continuous supply of circulating blood cells (48–50).

Disruption or perturbation of bone homestasis has a profound

and central role in defining the operational structure of the HSC

niche (24, 51, 52). However, hematopoiesis is also finely

regulated by many factors such as aging (53). With aging, a

chronic low-grade inflammatory phenotype is associated with

elevated white blood cell (54, 55). Consistent with this, we also

found that the levels of peripheral white blood cells were mild

increase in elder control mice (24-weeks-post construction),

which may account for the small difference beteen OP mice

and control ones at this time point. On the other hand, stessed

hemotopoiesis driven by osteoporosis may also be redressed by

other unclear factors in the long-term adaption, leading to the

decline of circulating white blood cell counts but still high in the

elder OP mice conpared to that of in control ones. The exact

mechanism of how hematopoiesis was regulated in osteoporosis

remains unclear and requires further investigation.

In summary, our study has demonstrated a causal link that

osteoporosis is accompanied by the altered circulating blood

cells, which may provide a potential diagnostic and putative

marker for osteoporosis. Due to the close interplay between

hematopoiesis and bone homeostasis, our study also provides

insights for the pathogenesis of elevated WBC-related diseases of

unknown etiology.
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