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The central dogma of molecular biology delineates a unidirectional causal flow, i.e.,

DNA → RNA → protein → trait. Genome-wide association studies, next-generation

sequencing association studies, and their meta-analyses have successfully identified

∼12,000 susceptibility genetic variants that are associated with a broad array of human

physiological traits. However, such conventional association studies ignore the mediate

causers (i.e., RNA, protein) and the unidirectional causal pathway. Such studies may not

be ideally powerful; and the genetic variants identified may not necessarily be genuine

causal variants. In this article, we model the central dogma by a mediate causal model

and analytically prove that the more remote an omics level is from a physiological

trait, the smaller the magnitude of their correlation is. Under both random and extreme

sampling schemes, we numerically demonstrate that the proteome-trait correlation test

is more powerful than the transcriptome-trait correlation test, which in turn is more

powerful than the genotype-trait association test. In conclusion, integrating RNA and

protein expressions with DNA data and causal inference are necessary to gain a full

understanding of how genetic causal variants contribute to phenotype variations.

Keywords: associations, causations, transcriptomics, proteomics, data integration, systems biology

INTRODUCTION

The central dogma of molecular biology, as first proposed by Francis Crick (Crick, 1958, 1970),
describes the transfer of sequence information during DNA replication, transcription into RNA
and translation into amino-acid chains forming proteins. There are only ∼23,500 predicted
protein-coding genes in humans. Such genes constitute only ∼2% of human DNA sequence.
Genetic studies of thousands of single-gene disorders have revealed a large set of mutations in
protein-coding regions, which appears to support the central dogma that the major output of
the genome is protein (Plomin and Davis, 2009). Advanced multi-omics technologies have led
to generation of genome-scale data sets at DNA, RNA, and protein levels. The multi-level data
sources are illustrated in the context of the central dogma in Figure 1. At DNA level, genomic
data uncover the information stored in the genomes of organisms. Variations at DNA level in
populations include single nucleotide polymorphisms (SNPs), copy number variations (CNVs),
and structural variations (SVs) (Koyutürk, 2010).

Identification of genetic causal variants for complex traits poses dramatically greater challenges
than that forMendelian traits, due to low penetrance, variable expressivity and pleiotropy, epistasis,
and locus heterogeneity (Nadeau, 2001; Glazier et al., 2002). Klein et al. (2005) pioneered a
genome-wide association (GWA) study and identified a SNP in CFH gene on age-related macular
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degeneration. GWA studies have proven successful to identify
susceptibility genetic variants for a range of complex traits
(Christensen and Murray, 2007; Stranger et al., 2011; Evangelou
and Ioannidis, 2013; Manolio, 2013). To date, at least 11,912
trait-associated SNPs from 1,751 curated publications have
been reported at NHGRI Catalog of Published GWA studies
(http://www.genome.gov/gwastudies/) (Welter et al., 2014). DNA
variants for a plethora of physiological traits have been revealed
by GWA studies, e.g., height (Weedon et al., 2008), body mass
index (Monda et al., 2013), bone mineral density (Estrada et al.,
2012), lipid levels (Willer et al., 2008), and hypertension (Kato
et al., 2011). In past decade, researchers have also extended
genetic association studies to rare genetic variants for a range of
complex diseases. Typical examples include extreme lipoprotein
cholesterol levels (Cohen et al., 2004; Haase et al., 2012), obesity
(Ahituv et al., 2007; Meyre et al., 2009; Coassin et al., 2010), type
1 diabetes (Nejentsev et al., 2009), bone mineral density (Kung
et al., 2010; Duncan et al., 2011). However, for a complex trait,
the identified genetic variants only account for a small portion of
phenotypic variation (Ruiz-Narváez, 2011).

A majority (88%) of trait-associated SNPs were found to
reside in intergenic or intronic regions (Hindorff et al., 2009),
suggesting that non-coding regions of the genome are responsible
for most of the disease risk (Kung et al., 2010; Duncan et al.,
2011) and some of this risk is likely to act through gene regulation
(Bossé, 2013). Based on the central dogma of molecular biology,
it is mechanistically very well understood how a gene get
transcribed, how an mRNA get processed and sequentially
translated into amino acid chains at the ribosome and
subsequently fold into functional proteins. Recently, remarkable

FIGURE 1 | Integration of Multi-Omics Data Sets in the Context of Central Dogma. The central dogma of molecular biology delineates a unidirectional causal flow from

genome to transcriptome, proteome, and phenome. Systems biology, the integration of multi-omics technologies, aims primarily at the universal detection of causal

genes, mRNAs, proteins, and causal pathways for phenotypes in a holistic manner.

advances of RNA-seq and mass spectrometry technologies
have rapidly improved global identification, quantification, and
analysis of transcriptome and proteome in same biological
samples. Correlations between mRNA and protein abundances
turn to be much stronger than that between genotype and
trait. In bacteria and eukaryotes, they often show a squared
Pearson correlation coefficient of ∼0.40, which implies that
∼40% of the variation in protein abundance can be explained
by knowing mRNA abundances. Emerging evidence shows that
many regulatory mechanisms occur after mRNAs are made, and
proteins exhibit a larger dynamic range of concentrations than do
transcripts (Jacobs et al., 2005; Vogel et al., 2010; Gonzàlez-Porta
et al., 2013; Schwanhäusser et al., 2013). A combination of post-
transcriptional, translational and degradative regulation, acting
through miRNAs (Mukherji et al., 2011) or other mechanisms
to fine-tune protein abundances to their preferred levels. For
example, miRNAs have been found to fine-regulate protein
expression levels, rather than to cause large expression changes
(Baek et al., 2008; Selbach et al., 2008). The combination of
association studies on RNA and protein expressions allows
systematic identifications of expression quantitative trait loci
(eQTLs) and protein QTLs (pQTLs).

Single-platform studies, although popular, often neglect
significant amount of genomic information. Under the central
dogma, the genetic variant is most remote from the physiological
trait; and the transcriptional and translational processes can
dramatically attenuate the genetic effect of the genetic variant.
Even if the sample size reaches several tens of thousands, the
power is very limited to detect common genetic variants of
modest effect sizes (Galvan et al., 2010). For example, Panagiotou
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et al. (Panagiotou et al., 2013) depicted the relationship
between the sample size and the number of trait-associated
loci of genome-wide significance (P < 5 × 10−8) in GWA
studies of height, lipid levels, and blood pressure. Conventional
genetic association studies ignore the mediate causers and
the unidirectional causal pathways; and the genetic variants
identified are not necessarily genuine causal variants, but are
only in close physical proximities to them (Kingsley, 2011).
Therefore, it is necessary to integratemulti-omics data andmodel
a unidirectional causal graph. In this article, through extensive
analytical explorations under the central dogma, we demonstrate
that proteome data have the greatest potential to enhance our
understanding of physiological traits, because protein is a direct
causer for physiological trait and has a stronger correlation with
trait than either genotype or transcriptome. We provide power
and sample size analyses under extreme phenotype sampling
(EPS) and random sampling schemes. EPS has been widely
employed to detect genetic causal variants for complex diseases
(Lander and Botstein, 1989; Abecasis et al., 2001; Xiong et al.,
2002). Herein, we extend this sampling strategy to a multi-omics
setting. The results would be helpful to design cost-effective
multi-omics studies as well as to develop novel multi-stage causal
association inference methods.

METHODS

Multi-Omics Causal Model (MCM)
A mediate causal graph may be suitable to model the
unidirectional causal flow delineated by the central dogma of
molecular biology. Assume the genuine data generating model
is as depicted in Figure 2: {Y = X3β3 + e4,X3 = X2β2 + e3X2 =

X1β1 + e2}, where X1 is the genotypic score (copy number of the
minor allele) at a causal SNP, X2 is RNA expression, X3 is protein
(PRT) expression, and Y is trait value of interest. Let exogenous
errors e2, e3, and e4 be independent.

FIGURE 2 | A Multi-omics Causal Model. In this system, X1 is the copy

number of the minor allele at a causal SNP, X2 is RNA expression level, X3 is

protein expression level, Y is trait value, and the e’s are exogenous errors. The

exogenous errors are mutually independent with each other.
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explorations, the minor allele frequency (MAF) of the causal SNP
was fixed at p = 0.25, r21 ranged from 0 to 15% (Schadt et al.,
2003; Morley et al., 2004; Dimas et al., 2009; Webster et al., 2009;
Bryois et al., 2014), r22 ranged from 0 to 50% (Guo et al., 2008; de
Sousa Abreu et al., 2009; Lundberg et al., 2010; Vogel et al., 2010).
Protein studies are based on extreme phenotype sampling (EPS)
with certain truncation levels α (e.g., α = 0.1 ∼ 0.2). In other
words, an identical number of samples are drawn from top and
bottom 100α% tails of trait distribution, respectively. Reported
fold changes between two tails of protein intensity ranged from
1.1 to 5 (Fields, 2001; Selbach et al., 2008; Cairns et al., 2009; Qiu
et al., 2012). Under the MCM and EPS with a truncation level
α = 0.2, a 5-fold change in protein intensity is equivalent to
r23 = 34% (Appendix A). Hence, we varied r23 from 0 to 34%,
and varied the SNP heritability level h2 from 0.0% to 2.5% for
numerical explorations.

Working Models and Null Hypotheses
Under the MCM, the genotype-phenotype association test can be
investigated under a simple additive genetic model (AGM), see
Appendix A. To be specific, we rewrite the MCM as

SNP : Y = X1β1β2β3 + (β2β3e2 + β3e3 + e4) . (1)

Under this AGM working model, we test for H0,SNP :β1β2β3 =

0. Meanwhile, the tests for the associations between a mediate
causal variable and the phenotype can be investigated under
respective single mediate causal variable models (SMCVMs). To
test for RNA-phenotype association, we rewrite the MCM as

RNA :

{

Y = X2β2β3 + (β3e3 + e4) ,
X2 = X1β1 + e2.

(2)

Under this SMCVMmodel, we test forH0,RNA :β2β3 = 0. To test
for protein-phenotype association, we rewrite the MCM as

PRT :

{

Y = X3β3 + e3,
X3 = X1β1β2 + (e2β2 + e3) .

(3)

Under this working model, we test for H0,PRT :β3 = 0. The
PRT and RNAmodels share one common indirect causal variable
(SNP genotype X1) and have respective mediate causal variables.
In the PRT model, protein expression X3 is taken as the mediate
causal variable; and in the RNA model, RNA expression X2 is
taken as the mediate causal variable.

Sampling Designs and Association Tests
Under simple random sampling (SRS), the classical t test for
slope is suitable for the association tests. Due to prohibitive
experimental costs, however, extreme phenotype sampling (EPS)
is often adopted for cost-effective multi-omics studies. In protein
studies, for example, EPS is often utilized to reduce experimental
costs and maintain statistical power of the two-sample t-tests.
In EPS protein studies, fold changes in intensity of promising
proteins are often reported. From major journals, however, we
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have not identified protein studies that reported correlation
coefficient between promising proteins and phenotypes. In
Appendix A, we establish theoretical foundation to numerically
evaluate powers of the SRS and EPS based t-tests for identifying
the three kind of associations. In addition, we establish a method
that converts a given fold change to corresponding correlation
coefficient under the MCM.

Software Package
Under the MCM, a freely available R package is developed
for implementing numerical computations and graphical
illustrations (https://github.com/HuaizhenQin/MCM/). It
consists of R functions for multi-level power analyses and
sample size evaluations under SRS and EPS. The function
MCVM.Power(.) compute powers whereas the function
MCVM.n(.) determines sample sizes to reach certain powers
of level-specific tests under each sampling design. Both of
the functions call corresponding functions for computing the
non-centrality parameters. All the functions adopt fast and
stable numerical algorithms without using any resampling
techniques. The package is particularly useful for designing
multi-omics studies and analyzing large-scale multi-omics data
from such studies.

RESULTS

In numerical power and sample size analyses, we use the
nominal significance level of 2.5e-6 to depict relative power and
sample size patterns of the widely used t-test under different
sampling schemes. This nominal significance level is suggested
in Goldstein et al. (2013) and often used for genome-wide gene-
based association tests, because there are approximately 20,000
protein-coding genes in the human genome (Dunham, 2018).

Numerical Power Comparisons
As illustrated by Figure 3, the power of each strategy increases
when the heritability of causal SNP increases (i.e., all the mediate
correlations increase), provided that all other parameters (i.e.,
MAF of the causal SNP, nominal significance level, and sample
size) are fixed (see Appendix B for a theoretical proof). Under
SRS, the PRT test (blue solid curve) appears strikingly more
powerful than the RNA test (blue dashed curve), and the RNA test
appears strikingly more powerful than the SNP test (blue dotted
line). The SRS-based single SNP test has little power to detect
a genuine genotype-phenotype association over a large range
of heritability levels. Under EPS, the PRT test (red solid curve)
appears strikingly more powerful than the RNA test (red dashed
curve), and the RNA test appears strikingly more powerful than
the SNP test (red dotted curve). The EPS based single SNP test
still has little power to detect the genuine genotype-phenotype
association over the large range of heritability levels.

The power of each test increases when the sample size
increases, provided that all other parameters (i.e., all the mediate
correlations and hence the SNP’s heritability, minor allele
frequency at the causal SNP, and nominal significance level) are
fixed (Figure 4). Under SRS, the PRT test appears strikingly more
powerful than the RNA test, and RNA test appears strikingly

FIGURE 3 | Power comparison at various heritability levels. Each overall

heritability level of the causal SNP in the MCM is determined by a set of

mediate effect sizes. All curves are numerically computed by setting minor

allele frequency at p = 0.25, nominal significant level at 2.5× 10−6, and total

sample size at n = 200. The truncation level is set at α = 0.2 in the EPS.

FIGURE 4 | Power comparison at various sample sizes. All curves are

numerically computed at nominal significant level 2.5× 10−6 for a fixed SNP

heritability level h2 = 1.0%, which is determined by a set of mediate effect

sizes (β1 = 0.5744, β2 = 0.7183, β3 = 0.4564) and minor allele frequency

p = 0.25. The truncation level is set at α = 0.2 in the EPS.

more powerful than the SNP test. The SRS-based single SNP
test has little power to detect the genuine genotype-phenotype
association over the range of sample sizes. Under EPS, the PRT
test appears more powerful than the RNA test, and RNA test
appears more powerful than the SNP test.
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FIGURE 5 | Sample sizes required to achieve 80% power. All curves are

numerically computed by setting minor allele frequency at p = 0.25, nominal

significant level at 2.5× 10−6, and fixing power at 80%. The truncation level is

set at α = 0.2 in the EPS.

TABLE 1 | Ranges in sample size to achieve 80% power.

Sampling SRS EPS

Test SNP RNA PRT SNP RNA PRT

h2 = 0.1% 30,409 1,540 245 16,129 795 127

h2 = 1.0% 3,055 317 102 1,744 172 57

For a given set of non-zero effect sizes in theMCM (Figures 3,
4), the EPS may provide much stronger evidence than does the
SRS to reveal genuine associations between study phenotype
and PRT expression (red vs. blue solid curves), RNA expression
(red vs. blue dashed curves) and SNP genotype (red vs. blue
dotted curves).

Sample Sizes Required to Achieve a
Certain Power
At each heritability level h2 > 0, to achieve 80% power, these
six strategies require very different samples sizes (Figure 5).
Under both EPS and SRS, the SNP test requires the largest
sample sizes, the RNA test requires much smaller sample sizes,
followed by the PRT test. For a given heritability level, the SRS-
based SNP test requires strikingly larger sample sizes than the
other five strategies; and the EPS-based PRT test requires the
smallest sample sizes among all the six strategies. The smaller the
heritability level, the larger the difference between sample sizes
required by the SRS-based and the EPS-based SNP tests. This
statement also applies to the RNA and PRT tests. Table 1 lists
the ranges in sample sizes of all these six strategies when SNP
heritability varies from 0.1% to 1.0%.

DISCUSSION

“Omics” technologies have advanced rapidly in the past
decade. Systems biology, the integration of multi-omics
technologies, aims primarily at the universal detection of genes
(genomics), mRNAs (transcriptomics), proteins (proteomics)
and metabolites (metabolomics) in a holistic manner. Separate
omics technologies and systems biology have generated and
will continue to generate huge amounts of high dimensional
multilevel data. The central dogma of molecular biology (Crick,
1958, 1970) delineates a unidirectional causal flow from DNA to
mRNA, protein, and metabolite (physiological trait). Separate
single-platform correlation tests are useful to understand
causes of phenotype variation. We theoretically compared three
single-platform tests under both random sampling and extreme
phenotype sampling scenarios. The proteome-trait correlation
test is more powerful than transcriptome-trait correlation test,
which in turn is more powerful than genotype-trait association
test. The sample size required to detect a causal gene is the
smallest at proteomics level and the largest at the genomics level.
A direct relationship between protein expression profiles and
physiological traits implies that a smaller sample size can yield
more meaningful insights than relating RNA expression profiles
with traits.

RNA and protein expression levels can be mapped to
chromosomal loci to identify functional DNA variants of a
physiological trait. RNA and protein expression levels can
be considered as intermediate phenotypes, as DNA variations
contribute to the physiological trait by perturbing RNA and
protein expressions (Civelek and Lusis, 2013). Gene expression
levels are highly heritable (Morley et al., 2004; Lappalainen
et al., 2013), and specific genetic variants that influence
gene expressions are known as eQTL. Multiple studies have
provided strong evidence that GWA signals are enriched with
eQTLs in a tissue-specific manner (Dimas et al., 2009; Nicolae
et al., 2010), highlighting their utility in understanding the
mechanisms underlying GWA hits. Many resources, including
online databases such as GeneVar (Yang et al., 2010), are now
available for eQTL analyses. It is estimated that 50–90% of eQTLs
are tissue-dependent (Dimas et al., 2009; Nica et al., 2011), and
trait-associated variants tend to exert more tissue-specific effects
(Fu et al., 2012; Brown et al., 2013). Most identified eQTLs are
cis-acting, arbitrarily defined as regulation of genes within 1Mb,
given that their effect sizes are usually relatively large and can
be detected with smaller sample sizes (Cheung and Spielman,
2009). However, genetic variants can also affect the expression of
genes that reside further away or are on different chromosomes
(trans-eQTL) (Westra et al., 2013), but the effect sizes of trans-
eQTLs are generally small, and they require larger sample sizes
to detect them (Cookson et al., 2009; Grundberg et al., 2012).
As a result, the number of reported trans-eQTLs has remained
small (Heinig et al., 2010; Consortium, 2011; Fehrmann et al.,
2011; Innocenti et al., 2011; Fairfax et al., 2012). For example,
the first GWA study of asthma was published in 2007 by the
GABRIEL consortium (Moffatt et al., 2007), in which 317,000
SNPs in 994 patients with childhood-onset asthma and from 1243
nonasthmatics were genotyped using family and case–control
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panels. This association was then replicated in 2320 individuals
from a cohort of German children and in 3301 individuals
from the British 1958-birth cohort. The 17q21 region is the
most consistent locus associated with asthma. Further, the most
compelling eQTL associated with GSDMA expression in the lung
tissues was found to reside in the same locus, suggesting that the
risk allele at this locus mediate its effect by modulating GSDMA
expression. The strongest eQTL SNP on 17q was rs3859192
located in intron 6 of GSDMA, which is associated with asthma
(Moffatt et al., 2007, 2010). This example demonstrates the value
of eQTLs (lung-specific) to refine (i.e., to fine-map) previous
GWA hits for asthma. Shared eQTLs across multiple cell types
and tissues also have larger effect sizes and tend to cluster around
the transcriptional start site (TSS) (Dimas et al., 2009; Grundberg
et al., 2012). In contrast, cell- and tissue-specific eQTLs have
smaller effects and are more widely distributed around the TSS.
The directions of the allelic effects for eQTLs shared in different
cell types are usually consistent (Dimas et al., 2009), but cell
type-dependent and tissue-dependent direction effects were also
observed (Fairfax et al., 2012; Fu et al., 2012).

For protein-coding genes, functionally important changes in
mRNA expression are expected to be reflected by corresponding
protein changes. However, a weak correlation between transcript
and protein levels in yeast shows that various other mechanisms
of post-transcriptional regulation can lead to changes in protein
abundance in the absence of a corresponding transcript effect
(Gygi et al., 1999). Variation in protein expression levels
have recently been shown to be heritable (Wu et al., 2013;
Parts et al., 2014). In humans, pQTL mapping has lagged
behind eQTL mapping. To date, only a few studies have
explored association between SNPs and protein abundance
levels (Lourdusamy et al., 2012; Hause et al., 2014). Those
pQTLs that overlap with SNPs associated with physiological
traits support previously identified mechanistic relationships and
provide testable hypotheses of functional relationships. pQTL
analyses may be helpful for gaining additional mechanistic
insights into molecular underpinnings of physiological traits that
is separate from eQTLs. For example, rs3865444 on chromosome
19q13.3 is strongly associated with Alzheimer’s disease (AD) in
a meta-analysis of several case–control studies (OR = 0.91, P
< 1.9 × 10−9). The effect allele A of rs3865444 reduces the
protein abundance of CD33 (beta = 20.45, FDR <5.06 × 10−9)
indicating that this pQTL might influence AD susceptibility
through a mechanism of altered protein abundance. CD33 is
a member of sialic acid-binding immunoglobulin-like lectin
(Siglec) family, which regulates functions of cell in the innate and
adaptive immune systems (García-Domingo et al., 1999). Thus,
discoveries of eQTLs and pQTLs across multiple populations, cell
types, and tissues will facilitate the identification of regulatory
variation in complex traits and diseases.

Pairwise association studies often neglect a significant amount
of causality information. Under the central dogma, the DNA
variant is most remote from the trait; and as we illustrated,
the transcriptional and translational processes can dramatically
attenuate the association between the DNA variant and the
trait. In practical scenarios, inconsistent and/or non-replicable
findings among separate GWA studies are quite common, which

posing the critical question as to how to properly interpret the
incongruences of these results. Meta-analysis is a popular tool
for combining multiple independent genetic association studies
to identify associations with small genetic effect sizes. In the
presence of genetic heterogeneity, interpreting the meta-analysis
results is an important but often difficult task (Han and Eskin,
2012). Indeed, human disease is characterized by marked genetic
heterogeneity, far greater than previously anticipated (McClellan
and King, 2010). Such heterogeneities can greatly reduce the
power of conventional association methods. Through extensive
simulation studies, Pei et al. (2014) demonstrated that (i) in the
presence of between-study heterogeneity, the true genetic effect
might be diluted, and meta-analysis (even with the random-
effects model) may particularly introduce elevated negative rates,
and (ii) replicability between meta-analyses and independent
individual studies is limited, and thus inconsistent findings are
not unexpected. The presence of a substantial between-study
heterogeneity could lead to a power loss in meta-analyses,
implying that aggregating genetically heterogeneous samples into
a meta-analysis may reduce power. Meta-analyses should not
and cannot be used as a gold standard to evaluate the results
of individual GWA studies (Liu et al., 2013). Conventional
genetic association studies ignore the essential mediate causers
(RNA, protein) and the unidirectional causal pathway. Thus,
such studies are often underpowered, and may not necessarily
discover genuine causal variants.

The central dogma of molecular biology indicates that the
transcription of mRNA from DNA and subsequent translation
of mRNA into protein transform genetic blueprints into cellular
functions (Crick, 1958, 1970). However, epigenetic factors
represent an additional layer of complexity to our understanding
of gene regulation. Epigenetic changes, i.e., reversible, heritable
changes in gene regulation that occur without a change
in DNA sequence, include DNA methylation and histone
modification (Baccarelli and Bollati, 2009), as well as microRNA
and long non-coding RNA regulation (Gomes et al., 2013).
Therefore, epigenetic regulation constitutes a key regulatory
mechanism in the etiology of human complex diseases (Soejima,
2009). Further, high-order epistatic interactions of genes
within-/across-pathways, environmental risk factors, and gene-
environment interactions contribute to attenuations of genome-
trait correlations. Systems biology, the integration of multi-omics
techniques, aims at the universal detection of causers for diseases
and understanding of newly emerging properties revealed by
holistic analyses of high-dimensional multi-omics data. It relies
on an interplay between hypothesis- and discovery-driven
investigations, and offers significant promises in identifying
intermediate causers and causal pathways for complex traits.
Existing single-platform association studies, even if helpful and
successful for some scenarios, are clearly incompetent to decipher
the systems pathology of complex diseases.

In this article, we formulate the central dogma of molecular
biology using a multi-omics model. Under this model, we
inspect the power of combination of the extreme phenotype
sampling scheme and the widely-used t-test, providing power
and sample size analyses. These results would be helpful
to design cost-effective studies as well as to develop novel
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multi-stage causal association inference methods. As proven,
detecting associations between the more proximal variables
(protein and gene expression) and the trait is more powerful
than detecting the genotype-trait association. Thus, it would
be effective to unravel the unidirectional causal pathways
from DNA to the endpoint trait using a multi-stage strategy.
The first stage identifies candidate proteins by testing trait-
protein associations. The second stage identifies candidate
RNAs for each candidate protein identified at the first stage
by testing protein-RNA associations. The third stage identifies
candidate SNPs for each RNA identified at the second stage
by testing RNA-SNP associations. Each stage would remove
massive non-significant variables and thus essentially reduce
multiple testing burden. This strategy would effectively identify
candidate genetic instruments and vertical pleiotropy pathways
for further causal inferences, i.e., Mendelian randomization
inferences (Smith and Ebrahim, 2003; Davey Smith and Hemani,
2014). We acknowledge that reverse causations would exist
although we do not model them herein. For example, over-
abundance of protein may trigger reduction in mRNA through
signaling mechanism. It is instructive to examine reverse
causal effects and inspect performance of existing modern
multi-omics methods under extreme sampling. Systems biology
offers promises in identifying intermediate causers as well as
unidirectional and multidirectional causal pathways. Innovative

graphical inference methods and efficient computational toolkits
are in crucial demands to holistically exploit high-dimensional
multi-omics data.
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