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Single-photon-based head-mounted microscopy is widely used to record the brain

activities of freely-moving animals. However, during data acquisition, the free movement

of animals will cause shaking in the field of view, which deteriorates subsequent neural

signal analyses. Existing motion correction methods applied to calcium imaging data

either focus on offline analyses or lack sufficient accuracy in real-time processing

for single-photon data. In this study, we proposed an open-source real-time motion

correction (RTMC) plug-in for single-photon calcium imaging data acquisition. The RTMC

plug-in is a real-time subpixel registration algorithm that can run GPUs in UCLAMiniscope

data acquisition software. When used with the UCLA Miniscope, the RTMC algorithm

satisfies real-time processing requirements in terms of speed, memory, and accuracy.

We tested the RTMC algorithm by extending a manual neuron labeling function to extract

calcium signals in a real experimental setting. The results demonstrated that the neural

calcium dynamics and calcium events can be restored with high accuracy from the

calcium data that were collected by the UCLA Miniscope system embedded with our

RTMC plug-in. Our method could become an essential component in brain science

research, where real-time brain activity is needed for closed-loop experiments.

Keywords: calcium imaging, motion correction, single-photon microscopy, real-time, open-source

1. INTRODUCTION

In neuroscience research, the efficient recording and decoding of neural signals is essential.
Although multielectrode extracellular recordings can continuously record hundreds of neurons
(Buzsáki, 2004), the spatial relationships between the recorded samples cannot be captured (Gobel
and Helmchen, 2007). Of the newly developed recording techniques, optical recording methods
provide high-resolution image features and can be used with awake animals (Denk et al., 1990;
Garaschuk et al., 2006). Among them, head-mountedmicroscopy (Ghosh et al., 2011)-based single-
photon calcium imaging has been widely adopted as a tool for observing large neural populations
in free-moving mice to explore neural coding mechanisms, such as how the anterior cingulate
cortex mediates effort-based decisions (Hart et al., 2020), how the brain links memories across
time (Cai et al., 2016) and how spatial coding breaks down in epilepsy (Shuman et al., 2020).
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However, when used with freely-moving mice, the activities of
the animals can induce shaking in the imaging field of view
(FOV), interfering with subsequent analyses of neuronal activity.
Most current solutions to this issue involve postprocessing the
acquired data with offline processing algorithms or toolboxes.
For example,MIN1PIPE (Lu et al., 2018) is a single-photon-based
calcium imaging signal extraction pipeline with high motion
correction precision. This method scores the overall data, then
divides the data into several groups for motion correction. As
a result, parallel processing can be applied to multiple sections.
This hierarchical approach can reduce the required time due
to the balanced assignment of processing tasks. However, the
motion correction module in MIN1PIPE still consumes most
of the processing time and therefore cannot be used for real-
time analysis. Other postprocessing toolboxes, such as CAVE
(Tegtmeier et al., 2018), Suite2p (Pachitariu et al., 2017) and
EZcalcium (Cantu et al., 2020), also include motion correction
modules. Similar to MIN1PIPE, these toolboxes can only be
used for post hoc analysis and cannot be used in closed-loop
experiments that require real-time processing of the video stream
during head-mounted microscopy.

The first requirement of real-time processing is that the
flow of the algorithm satisfies the requirements of online
processing. NoRMCorre (Pnevmatikakis and Giovannucci, 2017)
is an online nonrigid subpixel registration method. It divides
the imaging field into several overlapping patches and calculates
the displacement of each patch. However, this method requires
that all patches contain some salient image features after
segmentation. In addition, because of the translation estimates
for the patches and the overlap regions, the computation cost is
higher than that of the rigid method; thus, its speed cannot meet
the requirements of real-time processing. Although NoRMCorre
also provides a rigid version for online processing, its speed is
limited to real-time processing for small images or low frame
rates. In terms of speed, Mitani (Mitani and Komiyama, 2018)
provided a real-time motion correction tool for two-photon
calcium imaging data. This was the first reported real-time
calcium data processing pipeline to be used in closed-loop
experiments. This method first shrinks the input frames, then
registers them with the OpenCV template matching method
before amplifying the detected translation to the original scale
as the true translation. This method can process a 512 × 512
× 1,000 movie in less than 3 s. However, its accuracy on single-
photon calcium imaging data is less reliable, most likely due to
light scattering at the focal plane (Grienberger and Konnerth,
2012) and the fact that it includes fewer spatial features than the
two-photon imaging data. Therefore, no algorithm or software
can meet the requirements for acquiring single-photon calcium
imaging videos without movement artifacts in real time.

To address this issue, we propose a real-time motion
correction (RTMC) plug-in for single-photon calcium imaging
of head-mounted microscopy that focuses on rigid translation
correction. The RTMC algorithm can be embedded in UCLA
Miniscope data acquisition (DAQ) software and used to directly
capture stable single-photon calcium imaging videos on a
microscope by running an online registration algorithm on a
GPU. We show that the RTMC algorithm can correct a single

frame with high accuracy in approximately 15 ms, and that it can
be used in real-time experiments with behaving mice.

2. MATERIALS AND METHODS

2.1. Algorithm Description
The workflow of the motion correction algorithm is shown
in Figure 1, with the procedures in the red dotted box being
GPU accelerated. Before running the RTMC algorithm, the
plug-in generates a template by determining the mean image
of a prerecorded video of the experimental animal. Next, each
frame is continuously filtered and aligned with the template.
The corrected filtered frames are stored in a buffer that can
hold a maximum of k frames (e.g., k = 200). When the number
of frames in the buffer reaches k, the template is updated by
averaging the previous template and the mean value of the buffer
content. As a result, the spatial features in the FOV that do not
change over time, such as blood vessels, can be preserved to
the maximum extent, improving the reliability of the template
throughout the experiment. During the registration step, only the
current frame and a subset of the previously registered frames
are used. Therefore, the algorithm satisfies the online registration
requirements of calcium data streams. The specific operation of
the workflow is implemented by PyTorch. When applied to real-
time experiments, the motion correction function is embedded
in UCLA Miniscope DAQ software with Python/C API. The
RTMC algorithm receives the frame sent by the hardware and
outputs the corrected frames to the DAQ software for display
and saving. The Python version of the algorithm and the
implementation of RTMC plug-in are available at https://github.
com/ChanghaoStudy/Real-time-Motion-Correction-Plug-In.

2.1.1. High Pass Filter
Due to light scattering from different focal planes, the high-
frequency structure of the spatial information is significantly
suppressed. Therefore, we used a high-pass spatial filter
(Pnevmatikakis and Giovannucci, 2017; Zhou et al., 2018)
to enhance the spatial features and contrast. The kernel was
generated from a Gaussian filter,

h(x, y) = e
−

(x−x0)
2+(y−y0)

2

2l2 (1)

h̃(x, y) = h(x, y)− h̄(x, y) (2)

where h(x, y) is a Gaussian convolution kernel used for
background removal and (x0, y0) is the center of the kernel. The
standard deviation of the Gaussian kernel is the width of neuron.
For the data captured by the UCLA miniscope, we observed that
the diameter of a neuron in the FOV is usually around 10 pixels.
Based on empirical evidence, the size of the kernel should be three
times the size of the neuron. Then, the kernel subtracts its spatial

mean value h̄(x, y) to generate a new kernel h̃(x, y) for filtering.
In addition to removing the blurred background and increasing
the image contrast, the component of the filter kernel with a
positive value approximates the size of the cells, thus retaining the
neuron shape and calcium fluorescence during the subsequent
signal extraction.
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FIGURE 1 | Flow chart of the RTMC algorithm. The initial template is generated based on a prerecorded video. Next, the input frame is copied and filtered. Each

filtered frame is aligned with the template and translated with the raw frame. The colored procedures in the chart represent the specific processing in single frame

registration. Then, the fixed filtered frame is stored in a buffer to update the template. Finally, the fixed raw frame is output, displayed and saved. The procedures in the

red dotted box run on the GPU.

2.1.2. Normalized Cross-Correlation Calculation
To efficiently calculate the similarity between each frame and
the template during frame alignment, we adopted the method
proposed by Padfield (2010), which reduces the computational
complexity by calculating the normalized cross-correlation
(NCC) in the Fourier domain. Assume a reference image f1(x, y)
and amoving image f2(x−u, y−v), with f2 shifted by (u, v). Then,
the spatial form of the NCC can be defined as

NCC(u, v) =
∑

D(u,v)

[(f1(x, y)− f1,u,v) · (f2(x− u, y− v)− f2,u,v)]

√

∑

D(u,v)

(f1(x, y)− f1,u,v)2 ·
√

∑

D(u,v)

(f2(x− u, y− v)− f2,u,v)2

(3)

where D(u, v) is the overlap region of the two images and f1,u,v
and f2,u,v represent the mean intensity of f1 and f2 in D(u, v).
Since the cross-correlation of two images can be calculated in the
Fourier domain by CC(f1, f2) = F

−1(F1 · F
∗
2 ), we can also infer

the components in Equation (3) in the Fourier domain. The two
images can be represented as F1 = F(f1) and F∗2 = F(f2

′), where
F(·) represents the FFT operation, F∗2 is the complex conjugate of
the Fourier transform and f2

′ is f2 is rotated by 180◦. In addition,
assuming that i1 and i2 are images of ones with the same size as
f1 and f2, respectively, we can define I1 = F(i1) and I∗2 = F(i2

′).
Based on the results of Padfield (2011), the Fourier version of the
NCC can be represented as

NCC(u, v) =

F
−1(F1 · F

∗
2 )−

F
−1

(F1 ·I
∗
2 )·F

−1
(I1 ·F

∗
2 )

F
−1

(I1 ·I
∗
2 )

√

F
−1(F(f1 · f1) · I

∗
2 )−

(F
−1

(F1 ·I
∗
2 ))

2

F
−1

(I1 ·I
∗
2 )

·

√

F
−1(I1 ·F(f2 ′ · f2 ′))−

(F
−1

(I1 ·F
∗
2 ))

2

F
−1

(I1 ·I
∗
2 )

(4)

The motivation for using this approach is that computations
in the Fourier domain have lower order complexities (O(n ·

log(n))) than those in the spatial domain (O(n2)), where n
indicates the number of pixels in the computation. In addition,
because of the normalization, NCC can be invariant to the
linear gray value changes (Emmenlauer et al., 2009; Yu and
Peng, 2011), which can reduce the influence of the illumination
changes caused by the mice movements, out of focus brightness
as well as wires poor contact at different time steps in the
real-time experiments.

The displacement estimated by the NCC only has pixel-level
accuracy. To further improve the accuracy, subpixel registration
is necessary. The most commonly used subpixel registration
methods include upsampling with different interpolation
methods and curve fitting (Shimizu and Okutomi, 2002;
Debella-Gilo and Kääb, 2011). Although some upsampling
methods may be more accurate, the number of pixels used in
the computation will be greatly increased, whereas the parabolic
curve fitting method can be computed more efficiently. In
parabola fitting, the matching integer pixel point (x0, y0) can be
obtained through the NCC map. The subpixel location can be
calculated by independently fitting a one-dimensional quadratic
function based on the position with the highest correlation
and its adjacent location in the NCC map: (x0 − 1, y0) and
(x0 + 1, y0) in the X-direction and (x0, y0 − 1) and (x0, y0 + 1)
in the Y-direction. The subpixel position can be estimated by
Equations (5) and (6):

1x =

NCC(x0 − 1, y0)− NCC(x0 + 1, y0)

2× NCC(x0 − 1, y0)− 4× NCC(x0, y0)+ 2× NCC(x0 + 1, y0)

(5)
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1y =

NCC(x0, y0 − 1)− NCC(x0, y0 + 1)

2× NCC(x0, y0 − 1)− 4× NCC(x0, y0)+ 2× NCC(x0, y0 + 1)

(6)

where NCC(x0, y0), NCC(x0 − 1, y0), NCC(x0 + 1, y0),
NCC(x0, y0 − 1) and NCC(x0, y0 + 1) indicate the integer
matching locations and their adjacent points in the NCC map.
Finally, the offsets can be estimated by adding the detected
subpixel displacements to the integer offsets.

2.2. Accuracy Assessment
To illustrate the performance of the RTMC registration
algorithm, the rigid NoRMCorre and OpenCV template
matching methods were selected for comparison. Since OpenCV
template matching has previously been mainly used for two-
photon data registration, we modified it to make it more suitable
for single-photon registration by adding the high-pass filtering
and template updating functions used in the RTMC algorithm. In
addition, we skipped the step of shrinking the image to improve
the accuracy and implemented the above method by Python.
On the other hand, NoRMCorre has already been utilized for
online processing in CaImAn (Giovannucci et al., 2019) which
integrates NoRMCorre with high-pass filter for single photon
data. Hence, we adopt the above integrated method in the online
version of CaImAn for comparison.

2.2.1. Assessment on Simulated Data
To quantitatively analyze the accuracy, we generated a simulated
video by shifting a single frame 5,000 times. The artificial offset
at each time step was random and within 10 pixels. Then,
we investigated the impact of applying a high-pass filter on
the registration precision. Next, we used OpenCV template
matching, rigid NoRMCorre and RTMC to detect offsets in
the simulated video and calculated the deviations for statistical
analysis. In this step, we focused on evaluating how each
algorithm detected random rigid translations.

2.2.2. Assessment on Real Data
Although simulated data can provide the ground truth for
quantitative analyses of registration performance, this data does
not reflect all the characteristics of the calcium imaging data.
Therefore, we also collected single-photon calcium data from
the mouse motor cortex in vivo. We used the mean (CM)
metric (Pnevmatikakis and Giovannucci, 2017; Tegtmeier et al.,
2018) to quantify the motion correction performance of the
different algorithms on real data. The CM metric is based on
the correlation coefficients (CC) between the mean image of
a video and each individual frame after motion correction. A
higher CC score indicates a better match between the current
frame and the template; thus, this metric can be used to compare
the performance of different algorithms at the single-frame level.
In addition, to eliminate the influence of different interpolation
methods on the CC score when a frame is translated, all the
interpolation methods used in the testing approaches were
bilinear interpolations. Prior to performing the analysis, we

removed the black border generated by shifting the frames
during registration.

2.3. Speed and Memory Assessment
For real-time experiments, as the workflow of the algorithm
needs to satisfy the requirements for online processing, the
registration time of a single frame should not exceed the interval
between two frames. We used a PC running Windows 10 64-
bit with an Intel Core i7-8700 processor, 64 GB RAM and
an NVIDIA GeForce RTX 2080 TI graph card to compare
the processing speeds of the OpenCV template matching, rigid
NoRMCorre and RTMC algorithms. To assess the long-term
stability, we used the RTMC algorithm to perform real-time
acquisition and motion correction on calcium imaging data
from freely-moving mice while monitoring the memory usage of
the software.

2.4. Real-Time Experimental Design
2.4.1. Calcium Imaging Procedure
All the equipment and surgical procedures used for data
acquisition were described in our previous study (Wang et al.,
2019). In brief, the UCLAMiniscope was used to capture the data,
and a 1.5 mm-diameter glass coverslip was pressed against the
brain tissue through a skull hole. The imaging data were acquired
at a rate of 20 frames per second with custom DAQ software.

2.4.2. Comparison of Traces With and Without

Applying RTMC
First, to illustrate the importance of motion correction, we
manually labeled some neurons. The spatial calcium fluorescence
intensity of each observed neuron was modeled as the neural
spontaneous fluorescence plus the background fluorescence
fluctuation (Pnevmatikakis et al., 2016). In single-photon calcium
imaging data, the background can be decomposed into the
global background and the local background, with the local
background fluctuation more noticeably affecting the observed
neuronal fluorescence (Zhou et al., 2018). Therefore, the neural
calcium signal was calculated by subtracting the mean value of
the region covered by the neuron from the fluorescence value of
the local background, where the local background was an annular
region with a radius slightly larger than the neuron. Thus, small
differences in the neurons before and after registration could
be compared. Furthermore, in most cases, neuroscientists use
deconvolution to extract the spike activities from the calcium
fluorescence traces. In our experiment, we used OASIS (Friedrich
et al., 2017) to deconvolve the traces to illustrate the influence of
motion correction on spike extraction.

2.4.3. Comparison of Calcium Events Between Online

and Offline Detection
To further demonstrate the performance of RTMC in real-time
experiments, we designed a real-time neuronal calcium event
detection task. When the calcium signal exceeded a specific
threshold, such as 3 standard deviations from the fluorescence
intensity of the target neuron, and then returned to this
threshold, a calcium event was recorded (Yaksi and Friedrich,
2006; Mukamel et al., 2009). For real-time experiments, we used
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FIGURE 2 | Influence of applying the high-pass filter. (A,B): Raw calcium image (A) and filtered calcium image (B). (C,D): The NCC map calculated by 2 raw calcium

images (C) and 2 filtered calcium images (D). (E,F): The deviations of a subset of a simulated video (E) and the box-plot of the deviations (F) with and without a

high-pass filter during RTMC registration. (***p < 0.001, Wilcoxon test).

a prerecorded video to label the target neurons and generate
the thresholds. After collecting all the data for the real-time
experiment, we processed the recorded videos with MIN1PIPE
and determined the number of calcium events of the labeled
neurons using the same method, then compared the results
with those of the real-time experiment. MIN1PIPE is an offline
processing pipeline that uses a neural enhancement function
to remove the background of each frame and a deconvolution
function to denoise the traces before and after motion correction.
As a result, MIN1PIPE can protect the calcium traces from the
effects of fluctuating background fluorescence and noise. The
MIN1PIPE result can be regarded as the offline ground truth.
In addition, during the experiment, we counted the number of
motion-corrected frames output from the GPU and computed
the equivalent output frame rate. In theory, if the system has no
delay and motion correction is used, the equivalent output frame
rate should be equal to the acquisition frame rate of the scope.

3. RESULTS

3.1. Accuracy Assessment of Motion
Correction
3.1.1. Assessment of Simulated Data
We first investigated the impact of high-pass filtering on motion
correction. Light scattering from outside the focal plane blurs
the whole background (Figure 2A), while high-pass filtering can
produce visible textures such as mark points (Figure 2B). When
calculating the similarity between each frame and the template
during motion correction, the fuzzy background causes relatively

high correlations in the region around the matching point in the
NCC map (Figure 2C). In contrast, the NCC map has a more
concentrated peak when using filtered frames (Figure 2D). After
verification with the simulated data, the deviations in the frame
offsets calculated after high-pass filtering can be as low as 0.1
pixels, while those calculated using raw frames for registration
can reach 1.2 pixels (Figures 2E,F, p <0.001, Wilcoxon test, n =
500 frames).

Next, we used the OpenCV template matching, rigid
NoRMCorre and RTMC algorithms to register the simulated
data to compare the precision of the three methods on single
photon data. Figure 3A shows that RTMC has the smallest error
and performs significantly better than the other two methods
(RTMC vs. OpenCV, p <0.001; RTMC vs. NoRMCorre, p <0.001,
Wilcoxon test, n = 5,000 frames). In terms of detecting offsets,
RTMC produces a more accurate match between the frames and
the template. The same result can be observed from the histogram
of the deviations (Figure 3B). The deviations of RTMC and
NoRMCorre were less than 0.2 pixels, while the error distribution
of the OpenCV-based approach ranged from 0 to 1.2 pixels.

3.1.2. Assessment of Mouse Motor Cortex Data
Since the simulated data only reconstruct the offsets in the FOV,
we also needed to evaluate the accuracy of our method with
real data. Figure 4 demonstrates the CM metric of the OpenCV
template matching, rigid NoRMCorre and RTMC algorithms on
three 5,000-frame mouse motor cortex videos from layer 2/3
and layer 5 of different animals. RTMC performs consistently
well on datasets with different spatial characteristics such as
blood vessels, illumination distribution, exposure intensity, etc.
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FIGURE 3 | Precision comparison of the OpenCV template matching, rigid NoRMCorre and RTMC algorithms applied on a simulated video with 5,000 frames. (A):

Box plot of the deviations of the above 3 methods (RTMC vs. OpenCV, ***p < 0.001; RTMC vs. NoRMCorre, ***p < 0.001, Wilcoxon test). (B): Histogram of the

deviations. The shadowed area indicates an enlarged range from 0 to 0.1 pixels.

(Figure 4A). Figure 4B shows the CM metric for a subset
of frames in each dataset; the OpenCV-based method had
the lowest correlations for almost all the frames, while the
other two methods had very close correlations. The scatter
diagrams (Figures 4C,D) show the same trend: the correlation
coefficients of RTMC were not significantly different from those
of NoRMCorre (p >0.05, Wilcoxon test, n = 5,000 frames),
while both significantly exceeded those of OpenCV template
matching (p <0.01, Wilcoxon test, n = 5,000 frames) on nearly
every frame. By observing the video (Supplementary Video S1)
after motion correction, we found that there are still obvious
motion residues in the FOV corrected by OpenCV template
matching, whereas no visible motion artifacts in the videos
corrected by the other two methods. In contrast to the results on
the simulated data, there was no significant difference between
the CM scores of RTMC and NoRMCorre. This is most likely
because the pixel-shift difference between the two methods was
approximately 0.2 pixels, which had little effect on the overall
FOV. Moreover, fluctuations in the neuron population activity
and local background fluorescence can lead to differences in
the spatial features of the frames and the template. For the CM
metric, the correlation between the frames and the template is
more sensitive to changes in spatial features with hundreds of
pixels than the difference between the 2 well-behaved methods.
In addition, we also tested the effect of buffer size for updating
template. We tested different buffer sizes ranging from 50 to 200
and found no difference in the accuracy of motion correction
(Supplementary Figure S1). Therefore, we can set this parameter
to 200, the same as the value used in CaImAn.

3.2. Evaluation of Speed and Memory
In addition to the satisfaction of accuracy requirements, the
computational performance of the RTMC algorithm should
satisfy the requirements of real-time processing. According to
Figure 5A, RTMC consumes the least amount of time (15 ms)
for single-frame registration, which has no delay at a frame rate of

20 Hz, while rigid NoRMCorre requires approximately 62 ms for
one frame. In addition, although OpenCV template matching has
a much faster rate of 23 ms per frame, its accuracy is significantly
lower than that of the other two methods (Figures 3, 4). Due to
GPU acceleration, the three key steps of the RTMC algorithm
can be improved to varying degrees, with 228 times, 20 times
and 9.9 times faster speeds achieved for high-pass filtering, the
NCC calculation and applying shifts, respectively (Figure 5B).
On the other hand, data transmission between the RAM and
GPU adds extra processing time, which accounts for the second
largest proportion (33.9%) of the process. Next, we used the
RTMC algorithm to process a 5,000-frame video and counted the
total processing time and memory occupation every 500 frames
(Figure 5C). The cumulative time increased almost linearly at a
rate of 15 ms per frame, which is consistent with the result shown
in Figure 5A. Furthermore, the memory usage during the 5,000
frame registration is nearly constant (approximately 2,110 Mb),
which demonstrates that high-throughput data streams can be
processed by the RTMC algorithm.

3.3. Application to Signal Extraction With
Freely-Moving Mice
3.3.1. RTMC Leads to Better Calcium Trace Quality
When applied to a freely-moving mouse, RTMC can improve
the quality of the extracted traces (Figure 6). The calcium traces
of the labeled neurons with motion correction (Figure 6A)
have larger amplitudes and lower noise values than the traces
extracted without motion correction (Figures 6B,D). These
traces were calculated based on the mean intensities of the
areas covered by the labeled ROIs, and these amplitudes
are reduced when the actual neuron coverage area deviates
from the labeled area. When the deviation between the two
coverage regions changes frequently, the calculated fluorescence
fluctuates frequently, resulting in noise. The movement-induced
fluctuations in fluorescence also increase the energy of the
traces, which is reflected in the power spectra and is consistent
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FIGURE 4 | Accuracy comparison of OpenCV template matching, rigid NoRMCorre and RTMC applied to three in vivo mouse motor cortex datasets from layer 2/3

and layer 5, with 5,000 frames in each dataset. (A): Temporal mean projection images of three datasets (B): Correlation with mean (CM) metric for a subset frames in

each dataset. (C,D): Scatter plots of frame-by-frame CM from 3 datasets of RTMC vs. OpenCV (C) and RTMC vs. NoRMCorre (D). RTMC has no significant

difference with NoRMCorre and they both improve over OpenCV template matching (RTMC vs. OpenCV, p <0.01; RTMC vs. NoRMCorre, p >0.05, Wilcoxon test).

with the results of Victoria (Griffiths et al., 2020) (Figure 6C).
Furthermore, since measurable calcium fluorescence is induced
by neural action potentials (or spikes), the extracted traces
influence the detection of action potentials (or spikes). Therefore,
the transient response in the calcium traces can be evoked by
the movement artifacts in the FOV, resulting in additional false
positive spikes. After thresholding with 3 standard deviations of

the spike activities, the inferred spikes in the motion-corrected
traces are sparser and more concentrated (Figure 6E), which is
consistent with the calcium dynamics model proposed in OASIS.
The total number of spikes in the traces (mean±SD=118±44.6,
n=15) was significantly less than that in the uncorrected
traces (152±32.9, n=15), indicating that movement-induced false
positive spikes were highly suppressed (Figure 6F). Therefore,
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FIGURE 5 | Computing speed and resources of RTMC. (A): Time to process one frame with OpenCV template matching, rigid NoRMCorre and RTMC. (B): The

proportion of time consumed by each step while registering one frame in the RTMC workflow. The parentheses indicate the speed enhancement of the GPU over the

CPU. (C): Cumulative time consumption (blue, square dots) and memory occupation (red, triangle dots) of RTMC, measured per 500 frames. The dashed lines

indicate the linear fit.

the traces acquired by RTMCmore accurately reflect the calcium
fluorescence induced by neuronal spikes.

3.3.2. Real-Time Calcium Event Detection Using

RTMC in Comparison With Offline Detection Using

MIN1PIPE
For real-time calcium event detection, RTMC also has high
performance. Figure 7 shows the results of RTMC on a real-time
calcium event detection task with a target neuron (Figure 7A).
The real-time detection results were the same as those of offline
detection extracted by MIN1PIPE (Figure 7B). Moreover, at a
frame rate of 20 Hz with motion correction, the cumulative
received frame number at each 5 s timestep was nearly equal
to the theoretical number, despite the occasional frame drop
(Figure 7C). After linear fitting, the growth rate of the received
frame number was 20 frames per second, which is consistent
with the acquisition frame rate, ensuring that RTMC can align
frames during real-time data acquisition. Further analysis of
these results revealed that all the traces in the 5 sessions
of the 2 scenarios had similar shapes, including the peaks
in each session (Figure 7D). Furthermore, the onset times of
the calcium events extracted by RTMC matched the offline

ground truth (Figure 7F). However, the directly extracted traces
during real-time acquisition had more noise due to background
fluctuations, resulting in a lower peak signal-to-noise ratio
(PSNR) (Figure 7E), whileMIN1PIPE dramatically improved the
PSNR with its complex signal enhancement and deconvolution
algorithms. In other words, although RTMC provides a real-
time signal extraction approach for single-photon calcium data,
motion correction is not the only factor that can influence the
calcium signal quality. For example, background removal and
deconvolution can improve the signal quality before and after
signal extraction. To obtain higher PSNR signals, the above
preprocessing and postprocessing are necessary, which is another
challenge for real-time calcium signal extraction.

4. DISCUSSION

In this study, we demonstrate an open-source real-time motion
correction plug-in for single-photon calcium imaging data. To
meet the real-time requirement, we used rigid motion correction
and GPU acceleration, which had a similar or better accuracy
to other rigid registration methods. In the real-time calcium
event detection experiment, RTMC extracted neuron activities
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FIGURE 6 | Traces comparison when RTMC is on and off. (A): Positions of the 5 observed neurons (red dots) and the local background (white circles). The trace of

each neuron is obtained by subtracting the mean fluorescence values of the regions covered by the neuron from the local background. (B): The traces of the 5

neurons in (A). The black traces were extracted without motion correction, while the red traces were extracted with motion correction using RTMC. (C): Mean power

spectrum of the traces with (red) and without (black) motion correction from 3 mice (15 neurons). The shaded area indicates the s.e.m. (D): Enlarged example trace of

the third neuron in (A) before and after motion correction. (E): Spikes of the third neuron in (A) extracted by OASIS before and after motion correction. The spikes

were thresholded by 3 SD of the inferred spikes activities. (F): Mean number of spikes from the neurons in (C) extracted by OASIS. The error bar indicates the SD.

and achieved the same results as offline processing. Although
the PSNR of the real-time extracted signals was lower than
those of the offline analysis, this was due to the absence of
signal enhancement and deconvolution functions rather than
registration errors. Thus, RTMC can provide motion correction
for signal extraction, but additional algorithms for higher signal
quality need to be developed.

The OpenCV-based method of Mitani et al. performed
well in two-photon calcium image registration and has been
used in real-time closed-loop experiments. Because two-photon
absorption is a nonlinear process, fluorophores are only excited
in a diffraction-limited focal volume. Thus, the out-of-focus
excitation and bleaching were significantly lower than those in
one-photon data (Svoboda and Yasuda, 2006). In addition, the
wavelengths of the extraction light in two-photon microscopy
are in the near-IR spectrum, which has better tissue penetration
than the visible light used in single-photon microscopy

(Oheim et al., 2001). However, the above features do not exist
in single-photon imaging data, whose spatial information is
affected by light scattering. Hence, due to the difference between
two-photon and single-photon calcium data, the OpenCV-based
method does not account for the complexity of the data and thus
cannot accurately detect displacements between frames. Because
of the unique nature of single-photon imaging data, different
processing methods are required. In this study, we incorporated
high-pass filtering to improve the registration accuracy of
single-photon data. We anticipate that our current pipeline
can be further improved by using adapted filtering, adapted
region/feature selection as well as morphological operations as
the preprocessng steps before motion correction, which can also
be accelerated and will be implemented in future work.

To a large extent, the presence of nonrigid artifacts in a frame
during two-photon imaging is related to varying motion during a
period of raster scanning. However, due to the different imaging
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FIGURE 7 | Calcium event detection in real-time with RTMC and offline with MIN1PIPE. The data were collected at 20 Hz. (A): The target neuron (red dot) and local

background (white circle). (B): Number of detected calcium events in 5 sessions (each session lasts 250 seconds). Real-time detection was implemented by RTMC

and manual labeling (red square and solid line), while offline detection was implemented by MIN1PIPE (blue triangle and dashed line). (C): Cumulative number of

frames received every 5 seconds while RTMC is running with motion correction enabled. The linear fit represents the equivalent frame rate. (D): The traces extracted in

real-time by RTMC and offline by MIN1PIPE in 5 sessions. (E): The peak signal-to-noise ratio (PSNR) of the traces extracted in real-time by RTMC and offline by

MIN1PIPE. (F): Enlarged example of the trace of the first session in (D). The dotted line indicates the threshold for calcium events, and the arrows indicate the

temporal position of the events.

methods, this type of nonrigid artifact cannot be observed in
single-photon calcium data. On the other hand, although elastic
brain deformation within the FOV can also lead to nonrigid
artifacts, the lens is in direct contact with the brain tissue, which
results in synchronous movement between the lens and the tissue
and thus reduces nonrigid motion in the FOV to some degree.
Finally, the most obvious motion artifacts in single-photon data
are translations. When the lens is firmly anchored to the micro
camera, other transformations, such as rotations and shears, are
relatively rare. Some researches (Gauthier et al., 2018; Bollimunta
et al., 2021) also adopted translation correction methods to
process their single photon data before the experiments or
analyses. Therefore, rigid translation correction can provide

satisfactory results in most cases. In the future, we will integrate
fast and accurate nonrigid registration algorithms into the
software to handle more complex deformation and satisfy the
demands of real-time processing.

RTMC, an open-source plug-in for capturing single-photon
calcium imaging videos without movement artifacts in the
FOV, has a wide range of applications in real-time closed-
loop experiments. By manually labeling neurons and extracting
their signals in real time, researchers can target specific
neurons in experimental animals and extract their activities
in response to specific behaviors. For example, RTMC can
be used in brain-computer interface experiments to extract
neural activities in real time and provide feedback to the
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experimental object (Clancy et al., 2014). Currently, at a
capture frame rate of 20 Hz, the RTMC algorithm only takes
approximately 15 ms; thus, we can perform more operations
between two frames. For example, RTMC can be used together
with online deconvolution algorithms, such as OASIS, to
infer spikes from fluorescent calcium signals of the target
neurons in real time and to denoise the fluorescent signals,
providing higher quality signals for real-time experiments.
RTMC can also be used as a preprocess step of real-time
automatic neuron extraction algorithm, such as ONACID-
E (Friedrich et al., 2021). We look forward to ONACID-E
to be implemented on GPU in order to achieve real-time
automatic extraction of neuron signals from single-photon
calcium imaging data together with RTMC, thus providing a
platform for closed-loop experiments based on single-photon
calcium imaging.
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