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Abstract I completed my medical studies at the Karolinska Institute in Stockholm but have always

been devoted to basic research. My longstanding interest is to understand fundamental DNA repair

mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA.

I initially measured DNA decay, including rates of base loss and cytosine deamination. I have dis-

covered several important DNA repair proteins and determined their mechanisms of action. The

discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized

for different types of DNA damage. The base excision repair pathway was first reconstituted with

human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA

was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells,

and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mam-

malian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was

altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct

O6-methylguanine (O6mG) is repaired without removing the guanine from DNA, identifying a sur-

prising mechanism by which the methyl group is transferred to a residue in the repair protein itself.

A further novel process of DNA repair discovered by my research group is the action of AlkB as an

iron-dependent enzyme carrying out oxidative demethylation.
In my early research career, I observed that Epstein-Barr virus
DNA is present as nonintegrated covalently-closed circles, as

well as integrated viral DNA fragments, in virus-transformed
cells from Burkitt lymphoma and nasopharyngeal carcinoma
patients in 1975/1976 [1–23]. This work was surprising because

it preceded similar studies on papilloma virus in other
laboratories.
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A main achievement has been to characterize and quantify
spontaneous, endogenously-produced DNA damage during

the 1970s and 1980s [24–44]. Surprisingly, main events, such
as hydrolytic depurination, deamination of cytosine residues,
oxidation of guanine and pyrimidine residues and methylation

of adenine residues to 3-methyladenine, amount to 10,000
potentially mutagenic and cytotoxic changes per day in a hu-
man genome. These results strongly indicate that special
DNA repair enzymes and mechanisms must exist to counteract

endogenous DNA damage.
I thus became enthusiastic about understanding fundamen-

tal DNA repair mechanisms (Figure 1). A review of my work

on endogenous DNA damage and its repair was published in
Nature [45]. I discovered the base excision-repair pathway,
the major cellular defense against endogenous DNA damage

[46–57]. Later on, the two variants of base excision repair
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Figure 1 Overview of mechanistic models for enzymatic reactions

A. (I) DNA glycosylases catalyze the cleavage of base-sugar bonds; (II) AP endonucleases incise double-stranded DNA at base-free sugar-

phosphate residues; (III) FEN1 removes overhangs and flaps from DNA and (IV) eukaryotic DNA ligases ligate DNA ends. B.

O6-methylguanine-DNA methyltransferase (MGMT) transfers irreversibly a promutagenic methyl group from alkylated DNA to a

specific cysteine residue in the transferase itself. C. DNA dioxygenases remove certain cytotoxic methyl groups from alkylated base

residues by oxidative demethylation in the presence of iron and oxoglutarate. D. FTO and ALKBH5 demethylate RNA m6A as a novel

epigenetic marker in a-ketoglutarate (a-KG) and Fe2+-dependent manner. E. TREX1 is a 30 to 50 exonuclease with preference for single-

stranded DNA.
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(short-patch vs long-patch repair) were reconstituted with
purified proteins. I unveiled several DNA repair enzymes of

previously-unknown modes of action, including (i) DNA
glycosylases that catalyze the cleavage of base-sugar bonds
(uracil-DNA glycosylase) [58–67], 3-methyladenine–DNA gly-

cosylase [68–70] and DNA glycosylases that release oxidised
base residues (Figure 1A-I) [29,35]; (ii) AP endonucleases that
incise double-stranded DNA at base-free sugar-phosphate res-

idues (in parallel with Prof. Walter Verly) (Figure 1A-II)
[46,71–75]; (iii) the O6-methylguanine-DNA methyltransferase
(MGMT, Ada protein that transfers irreversibly a promuta-
genic methyl group from alkylated DNA to a specific cysteine

residue in the transferase itself) (Figure 1B) [27,31,32,76–83];
(iv) DNA dioxygenases (AlkB protein and its homologs) that
remove certain cytotoxic methyl groups from alkylated base

residues by oxidative demethylation in the presence of iron
and oxoglutarate (together with Dr Barbara Sedgwick and
Prof. Erling Seeberg) (Figure 1C) [84–89]. This DNA repair
mechanism also resulted in the discovery of new group of en-

zymes FTO and ALKBH5 that demethylate a novel epigenetic
marker RNA m6A (Figure 1D) [90,91].

It is worth mentioning that I found a complex and chemi-

cally-stable oxidative DNA lesion, cyclopurine deoxynucleo-
side, which is exclusively repaired by nucleotide excision
repair in contrast to other oxidative DNA lesions (in collabo-

ration with Prof. Jean Cadet) [92]. Moreover, I established a
human cell-free system for ATP-dependent nucleotide excision
repair (together with a senior postdoctoral fellow, Dr Rick
Wood) [93]. This assay system allowed for purification of pro-

teins such as XPA, which is missing in repair-defective xero-
derma pigmentosum (XP) cells, by in vitro complementation.

It was interesting for me to identify and characterize the

DNA ligases in eukaryotic cells, which require ATP rather that
NAD as cofactor, in contrast to most bacterial ligases
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(Figure 1A-IV) [94–96]. The main DNA ligases that function
in mammalian cells include DNA ligase I (DNA replication
and repair) [97,98], DNA ligase III (base excision repair) [62]

and DNA ligase IV (non-homologous end joining) [99–101].
The human DNA ligase I cDNA was cloned and sequenced
in 1990 (in collaboration with Dr Lee Johnston) [102], which

allowed for the localization of the active site for enzyme-aden-
ylate complex formation. Early observations on alterations of
DNA ligase I in human diseases prior to that year were only

partially confirmed.
Furthermore, I discovered and characterized the two major

DNA-specific exonucleases in mammalian cell nuclei, origi-
nally termed DNase III and IV, now called TREX1 and

FEN1 (Figure 1A-III, 1E) [55], respectively. The FEN1 en-
zyme was shown to be a 5’ to 3’exonuclease, a replication
and repair factor that removes overhangs and flaps from

DNA (in parallel with Dr Michael Lieber) [55,103]. TREX1
was shown to be a 3’ to 5’ exonuclease with preference for sin-
gle-stranded DNA. More recent studies established that loss of

TREX1 in human cells results in a form of inherited systemic
lupus erythematosus (SLE) called Aicardi-Goutières syndrome
(AGS) (in collaboration with Dr Yanick Crow) [92,104–106].

In 2007, TREX1-negative cells were shown to accumulate sin-
gle-stranded DNA and exhibit persistent checkpoint activation
(together with coworkers, Drs Yun-Gui Yang and Deborah
Barnes) [107].

Besides my discovery of several DNA repair enzymes, I also
observed that self-methylation of the Ada protein
[27,32,37,80–83,108], with methylation of a cysteine residue

within the regulatory domain, as a consequence of DNA phos-
photriester repair, converts Ada to a transcription factor. This
work, published in 1986, was the first example of activation of

a transcription factor by a posttranslational modification
event.

Beyond my own scientific research, I also spent time to

manage research laboratories, and still provide advice for their
individual research concepts and directions. As the former
director of the Clare Hall Laboratories at ICRF and Cancer
Research UK, I was pleased to see that Clare Hall Laborato-

ries became an internationally-renowned center of research
into DNA processing. I am also very glad to see that many
of my former colleagues succeed in their academic careers.

I still enjoy very much doing science. It is pleasure, it is very
interesting and it is stimulating. It changes all the time. I would
like to be here around hundred years to see how science

develops.
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