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Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles,
mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs
are increasingly recognized as a tool to mediate the intercellular communication and
are closely related to human health. Viral infection is associated with various diseases,
including respiratory diseases, neurological diseases, and cancers. Accumulating
studies have shown that viruses could modulate their infection ability and pathogenicity
through regulating the component and function of EVs. Non-coding RNA (ncRNA)
molecules are often targets of viruses and also serve as the main functional cargo
of virus-related EVs, which have an important role in the epigenetic regulation of
target cells. In this review, we summarize the research progress of EVs under the
regulation of viruses, highlighting the content alteration and function of virus-regulated
EVs, emphasizing their isolation methods in the context of virus infection, and potential
antiviral strategies based on their use. This review would promote the understanding of
the viral pathogenesis and the development of antiviral research.
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INTRODUCTION

Extracellular vesicles (EVs) can be produced by cells and released into the extracellular
environment. In the past, the role of EVs had been ignored because they were generally viewed
as the waste of host cells. Accumulating studies have demonstrated that EVs could transmit cargo
including nucleic acids, proteins, and lipids to mediate the intercellular communication and affect
disease physiology (Raposo and Stoorvogel, 2013).

According to their size and origin, EVs are classified mainly into three subpopulations, namely,
exosomes, micro-vesicles (MVs), and other vesicles. Exosomes, about 30–150 nm in diameter,
are formed through the MVB pathway (Hafiane and Daskalopoulou, 2018). MVs, about 100–
1,000 nm in diameter, are produced directly by plasma membrane budding. Other vesicles, such
as apoptotic bodies originating from apoptosis cells, are mostly in the micron range (Nagano
et al., 2019; Zarà et al., 2019). In general, some molecules, such as CD81, CD9, and annexins, are
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thought of as the special markers of EVs, including exosomes
and MVs (van Niel et al., 2018). However, a recent research has
argued about the different components between exosomes and
MVs (Jeppesen et al., 2019). Jeppesen et al. (2019) demonstrated
that CD63, CD81, and CD9 were the special markers of exosomes.
Meanwhile, they emphasized that Annexin A1 existed in MVs,
not in exosomes. Therefore, Annexin A1 could be used as a
special marker for MVs, filling the gap in the identification
of MVs (Jeppesen et al., 2019). Moreover, argonaute proteins,
glycolytic enzymes, and cytoskeletal proteins may not be part of
exosomes, as described earlier (Ronquist et al., 2013; Melo et al.,
2014; McKenzie et al., 2016; Manek et al., 2018; Jeppesen et al.,
2019). Thus, further studies about that are needed. Although
the size is different between exosomes and MVs, it is relatively
difficult for most researchers to separate them completely.
Therefore, when exosomes or MVs are isolated from samples,
it is more likely to get a mixture of the two (Jeppesen et al.,
2019). Meanwhile, the extracellular vesicles 2018 (MISEV2018)
guidelines emphasized that the term “EVs” should be used to refer
to membrane vesicles isolated by conventional methods (Théry
et al., 2018). To be more accurate, exosomes and MVs are referred
to as EVs in this review.

Various technologies have been applied to identify the
components of EVs and confirmed the presence of proteins,
lipids (Schorey et al., 2015), and nucleic acids (Ouyang et al.,
2016; Tahamtan et al., 2016). More and more studies have
indicated that EVs played a predominant role in regulating
the development of diseases by mediating the intercellular
transmission of special components. For example, the EVs
derived from tumors could limit the immune response (Chen
et al., 2018; Gabrusiewicz et al., 2018) or affect the metabolism
regulation of the neighborhood cells (Zhang et al., 2017), to
remodel the tumor microenvironment.

Viral infection regulates the expression profile of mRNAs,
ncRNAs, and proteins in host cells (Kuchipudi, 2015; Tahamtan
et al., 2016; Wang, 2019), which affects the gene expression
and epigenetic modifications, thus influencing the regulation of
the immune response or metabolism (Kuchipudi, 2015; Ouyang
et al., 2016; Powdrill et al., 2016). These components can be also
packaged into EVs to enhance the intercellular communication
of the host system (Raposo and Stoorvogel, 2013); it is not
surprising that viruses can take advantage of EVs to promote their
infectivity and pathogenicity.

Here, we provide a state of the art regarding the virus-induced
modification of EV content and properties. In addition, we also
emphasize the isolation methods of these EVs and shed light on
their function and the potential antiviral strategies based on EVs.

THE ALTERATION OF EXTRACELLULAR
VESICLES IN COMPONENTS AND
NUMBER CAUSED BY VIRUS

The Altered Host Proteins
Many viruses can dramatically alter the spectrum of host proteins
in EVs, and these proteins are mainly related to cellular signaling,

immune regulation, metabolism, or autophagy (Meckes et al.,
2013; Kalamvoki et al., 2014; Zhao et al., 2014; Shrivastava et al.,
2015). In recent years, there have been many other novel finds.
The human immunodeficiency virus (HIV) infection of T cells
or monocytes and the Ebola virus (EBOV) infection of myeloid
cells have also been shown to upregulate certain proteins in
EVs; the former could enhance the level of certain cell cycle-
related proteins [e.g., cyclin-dependent kinases (CDKs) or high
mobility group box 1 (HMGB1) in EVs (Barclay et al., 2019)],
and the latter could induce a large number of immune-related
molecules [e.g., ribonucleic binding proteins (RBP) and cytokines
(Pleet et al., 2018)]. Herpes simplex virus 1 (HSV-1)-infected cells
secrete EVs containing stimulator of interferon genes (STING),
an innate immune sensor (Deschamps and Kalamvoki, 2018).
In addition, hepatitis C virus (HCV) infection could change
the expression of transforming growth factor-β (TGF-β) in EVs,
thereby promoting the formation of an immunosuppressive
environment (Cobb et al., 2018).

The Altered Host NcRNA
Cell fate is mainly controlled by epigenetics (Li et al., 2019),
and ncRNA is one of the classic regulators (Yang et al., 2020).
NcRNAs mainly include microRNAs (miRNAs), long non-coding
RNAs (lncRNAs), and circular RNAs (Razavi et al., 2021), which
play an important role in controlling cell fate (He et al., 2018)
and affect the physiology of diseases (Ren et al., 2019; Xie et al.,
2019). MiRNAs in EVs are one of the most common targets
regulated by viruses, which could assist these viruses to modify
the immune response, cause damage to the nervous system, and
promote pathological disorders in the body. After the rabies
virus (RABV) infection, the expression of miR-423-5p in EVs is
upregulated to regulate the interferon (IFN) signaling pathways
(Wang J. et al., 2019). MiR-146a (Fu et al., 2017; Santangelo
et al., 2018; Wang X. et al., 2019), or miR-148a (Mishra et al.,
2020) can also be hijacked by multiple viruses into EVs and
contribute to the inflammatory response. The hepatitis B virus
(HBV) or HCV infection of hepatocytes could upregulate the
level of several miRNAs (e.g., miR-21, miR-29a, miR-19a, miR-
192) in EVs to mediate the immunoregulation or hepatic fibrosis
(Kouwaki et al., 2016; Devhare et al., 2017; Kim et al., 2019). In
addition, HIV can stimulate astrocytes to release EVs containing
miR-9, which causes the migration of microglia and neurological
disorders (Yang et al., 2018). Japanese encephalitis virus (JEV)
infection to microglial cells also increases the expression of let-
7a and let-7b in EVs to cause neuronal death (Mukherjee et al.,
2019). Moreover, miR-590-5p, an anti-apoptotic molecule, can
be more secreted into EVs under the Coxsachie virus B (CVB)
infection to play a pro-viral role (Germano et al., 2019).

The Additional Viral Components
Viruses are so smart that EVs become their tools to transmit
their own components. Some viruses, such as HIV, human
T-cell leukemia virus (HTLV), Epstein–Barr virus (EBV), or Rift
Valley fever virus (RVFV), have been reported to transmit viral
proteins into recipient cells through EVs (Meckes et al., 2010;
Arenaccio et al., 2014; Jaworski et al., 2014; Ahsan et al., 2016;
Arakelyan et al., 2017). Of course, viral nucleic acids are no
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exception. Interestingly, self-replicating viruses seem to prefer
to enclose their genomic RNA into EVs (Ramakrishnaiah et al.,
2013; Fu et al., 2017), but retroviruses tend to package their
own RNA transcripts (Jaworski et al., 2014; Barclay et al., 2019).
Meanwhile, some DNA viruses also take advantage of EVs to load
their viral DNA (Mata-Rocha et al., 2019; Sukriti et al., 2019),
viral miRNA, or viral mRNA (Meckes et al., 2010; Kalamvoki
et al., 2014). Moreover, virus particles can be also wrapped into
EVs, which is a common phenomenon for enveloped viruses.
Early in 2013, an HCV particle was found in the EVs derived
from these virus-infected cells, as determined by transmission
electron microscopy (Ramakrishnaiah et al., 2013), and a similar
phenomenon was followed by the result of HSV-1 research in
the next year (Kalamvoki et al., 2014). Generally, naked viruses
spread their virions through dissolving host cells. However,
recent studies have also documented that those naked viruses
could be transmitted in a non-lysis manner. Santiana and Altan-
Bonnet (2019) has revealed that JC polyomavirus (JCPyV) could
be released from host cells through the EV pathway. Enterovirus,
such as enterovirus 71 (EV71) or echovirus 16 (EV16), also spread
their virions in this way (Gu et al., 2020; Netanyah et al., 2020).
Therefore, EVs are also one of the effective weapons of naked
virus to achieve non-lytic spread and infection.

The Altered Extracellular Vesicle Number
In addition to the alteration of components in EVs, certain virus
infection could also induce the alteration of EV number. Fu
et al. (2017) isolated EVs from the supernatants of the mock,
EV71, heat-inactivated EV71-infected cells, and determined
the EV number; they found that compared with the heat-
inactivated EV71 or mock infection group, EV71 infection
promoted the EV secretion. Zika virus (ZIKV) usually causes
fetal brain abnormalities, but the specific pathogenesis is unclear.
A recent study indicated that ZIKV could specifically infect
primary human fetal astrocytes and promote the EV release
of these cells. After treatment with GW4869, the EV level
was decreased and thereby suppressed the ZIKV infection of
astrocytes (Huang et al., 2018). In addition, HSV-1 infection
could also induce a significant increase of CD63-positive EVs
to remodel the extracellular microenvironment (Dogrammatzis
et al., 2019). In the study to explore the mechanism of HIV-
related central nervous system (CNS) damage, Guha et al. (2019)
showed that HIV-positive individuals had more EVs derived
from the cerebrospinal fluid, which was positively correlated with
neuronal damage biomarkers. Meanwhile, Hinata et al. (2020)
also found that EV secretion was upregulated in EBV-infected
gastric cancer cell lines.

THE EXTRACELLULAR VESICLE
ISOLATION FROM VIRUS-INFECTED
SAMPLES

The EV size in diameter has been measured and calculated in
many studies, which was 30–150 nm for exosomes (Hafiane and
Daskalopoulou, 2018) and 100–1,000 nm for MVs (Nagano et al.,
2019; Zarà et al., 2019). However, many enveloped and non-
enveloped viruses have the same size of that exosome (McNamara

and Dittmer, 2020). In addition, EVs and viruses are also similar
in density (McNamara and Dittmer, 2020). Therefore, in order
to avoid virus contamination, the separation of EVs from virus-
infected samples requires more precise separation methods,
which is not only a challenge task but also a necessary and critical
step for the followed functional studies of these EVs.

Classically, there are five methods based on different theories
to isolate EVs from uninfected cells or tissues. There are
ultracentrifugation techniques based on the sedimentation rate or
density of EVs (e.g., differential ultracentrifugation and density
gradient ultracentrifugation), the size-based techniques [e.g.,
ultrafiltration, size exclusion chromatography (SEC), hydrostatic
filtration dialysis], the precipitation-based techniques (e.g.,
polyethylene glycol (PEG) precipitation and lectin-induced
agglutination), the immuno-affinity capture-based techniques,
and the microfluidic-based isolation techniques (Li et al., 2017;
Doyle and Wang, 2019). Of course, the potential advantages and
disadvantages of these techniques have widely been discussed
in previous papers, mainly considering the cost of time and
expense, the complexity of the procedure, and the yield
and purity of EVs (Li et al., 2017; Théry et al., 2018). In
recent years, the emergence of commercial kits based on
those classical methods has also promoted the development
of EV studies. However, Tian et al. (2019) speculated that
the EV isolation by commercial kits could result in more
non-vesicular contaminants and lower quality compared with
differential ultracentrifugation, although a high concentration
would be obtained. Therefore, we should take consideration
into the quality of EVs when commercial kits are used
to isolate EVs. In addition, if EVs are to be functionally
verified, highly specific separation methods such as density
gradient centrifugation should be applied to separate these EVs
(Théry et al., 2018).

Given the truth of similar size and density between virus and
EV, it is more difficult and complicated to acquire high-quality
EVs from virus-containing samples. Usually, a combination
of some methods described above is required for isolating
these EVs. Based on the difference of the membrane/capsid
composition between virus and EV, affinity purification is a
popular manner to further purify EVs following the other
isolation methods (e.g., precipitation, commercial EV isolation
kit, SEC) (Fu et al., 2017; McNamara et al., 2019; Jung et al.,
2020). In addition, the virus-free EVs could be also obtained after
applying nanoscale flow cytometry (McNamara and Dittmer,
2020). Adding antigen/substrate specific fluorophores into the
mixture of EVs and viruses, and combining with SEC, it is
possible to identify and sort EVs specifically (McNamara and
Dittmer, 2020). For some researchers with lack of gradient
centrifugation and immune-affinity technologies, they can first
eliminate the virus from samples based on the different thermal
stabilities between some virus and EVs and then purify the EVs
through precipitation techniques, just as the isolation of EVs
derived from West Nile virus (WNV)-infected cells (Slonchak
et al., 2019; Figure 1).

In general, there is currently no uniform method to eliminate
the interference of viruses and obtain high-purity EVs. According
to the relevant characteristics of the virus, it is wise to combine a
variety of separation methods to isolate EVs.
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FIGURE 1 | The EV isolation from virus-infected samples. Based on published
literature, a synthetic scheme to isolate EVs from virus-infected samples (such
as plasma, serum, cell supernatant) is shown here. Generally, there are two
steps, namely, enrichment, and purification. First, the mixture of virus and EVs
can be obtained through several methods, such as precipitation,
ultracentrifugation, and kit isolation. Then, the mixture is purified by applying
mainly four strategies, immune-affinity with CD63, heating, nano-FACS, and
iodixanol/sucrose discontinuous gradient centrifugation.

THE MULTIPLE EFFECTS OF
VIRUS-REGULATED EXTRACELLULAR
VESICLES

The Effect of Viral Immune Evasion
Some viruses take advantage of EVs to impair the activity
of immune cells. It has been shown that some EVs with
some RVFV proteins can promote T-cell and monocytic cell
apoptosis through PARP cleavage and caspase 3 activation
(Ahsan et al., 2016). Furthermore, the EVs carrying EBOV
VP40 also cause the apoptosis of T cells (Pleet et al., 2016).
A number of studies have also indicated that EV71, HCV, and
HBV could force EVs to repress the activation of the type
I-IFN pathway in immune cells (Fu et al., 2017; Grünvogel
et al., 2018; Shi et al., 2019). In addition, EVs from HBV-
infected samples with increased immunosuppressive miRNAs
(miR-21, miR-29a) could downregulate IL-12 expression of
macrophages and repress the activation of NK cells (Kouwaki
et al., 2016), which both weaken the antiviral immune response
and accelerate the viral replication. Secondly, some viruses
promote the proliferation of immunosuppressive cells and the
production of immunosuppressive cytokine. In particular, HCV-
infected hepatocytes release the EV packaging with TGF-β to
exacerbate the expansion of T follicular regulatory (Tfr) cells,
which suppresses the amplification of T follicular helper (Tfh)
cells, and the generation of high-affinity antibody-producing B
cells (Cobb et al., 2018). In addition, virus particles or viral

antigens could be hidden in EVs to avoid to be recognized by
the viral specific antibody, which is conducive to the spread of
the virus (Ramakrishnaiah et al., 2013; Bello-Morales et al., 2018;
Wang T. et al., 2018; Deng et al., 2019; Figure 2).

The Effect of Viral Infection to
Non-permissive Cells
In addition to immune regulation, viruses also utilize EVs to
infect the cells without viral receptors, promoting viral spread.
Resting CD4+ T lymphocytes are resistant to the infection of
HIV but become susceptible if they receive the EVs containing
HIV Nef (Arenaccio et al., 2014). Meanwhile, it is difficult for
HSV-1 to infect Chinese hamster ovary (CHO) cells, but the EVs
containing the virus can overcome this problem (Bello-Morales
et al., 2018). There is still a gap concerning how JCPyV enters
into human brain cells. Recently, two studies have shown that
this virus could take advantage of EVs containing JCPyV particles
to transmit their infection to cells lacking the virus receptors,
thus enlarging virus spread for the development of neurological
diseases (Morris-Love et al., 2019; O’Hara et al., 2020; Figure 2).

The Effects of Host Antiviral Immune
Response
As early as in 2012, Dreux et al. (2012) viewed EVs containing
HCV-RNA as double-dealers. On the one hand, it is a viral
strategy to evade host pathogen sensing. On the other hand,
host cells can utilize EVs to activate plasmacytoid dendritic cells
(pDC) and induce innate immune response (Dreux et al., 2012).
A follow-up study also supported this phenomenon, suggesting
that EVs extracted from the supernatant of HBV-infected liver
cells were important for NK cell activation, promoting the
expression of NKG2D ligands in macrophages and thereby
indirectly upregulating the production of IFN-γ in NK cells
(Kouwaki et al., 2016). There are innate immune components
(e.g., STING) in some EVs regulated by virus, which stimulate
the expression of M1-type markers on macrophages to induce the
innate immune response and repress viral infection (Deschamps
and Kalamvoki, 2018). Moreover, the cells infected with RABV
could release miR-423-5p into EVs to upregulate the expression
of IFN-β and inhibit RABV replication in turn (Wang J. et al.,
2019). Immune cells are very powerful against viral infection,
and they can also play an important role with the help of
neighborhood cells. For example, when macrophages are infected
by dengue virus-2 (DENV-2), they can release EVs containing
viral NS3 protein and several special miRNAs to regulate virus-
free cells (e.g., endothelium) and to induce their early defense
program against viral infection, which could be an alternative
strategy for macrophage cells to achieve their immune function
(Velandia-Romero et al., 2020; Figure 2).

The Microbial Communication Effects
In addition to having an influence on themselves, some
viruses also further exploit EV function to promote microbial
communication. Chen et al. (2020) have shown that HIV-related
EVs could enhance the Kaposi’s sarcoma-associated herpesvirus
(KSHV) infectivity to human oral epithelial cells. Meanwhile,
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FIGURE 2 | The multiple effects of virus-regulated EVs. The EVs derived from virus-infected cells are endowed with various functions. For virus, these EVs not only
contribute to viral immune evasion but also help viruses to infect non-permissive cells. For the host cell, these EVs are also the powerful weapons to achieve antiviral
immunity. In addition, the EVs also have an influence on other viral or bacterial infections, thereby contributing to microbial communication.

Hendricks et al. (2021) also reported that the EVs derived
from epithelial cells with respiratory syncytial virus (RSV)
infection served as the nutrient source of second bacteria (e.g.,
Pseudomonas aeruginosa) and supported their growth (Figure 2).
Therefore, these above results indicate that the virus also regards
EVs as an effective tool for microbial communication.

THE PATHOGENESIS OF
VIRUS-REGULATED EXTRACELLULAR
VESICLES

With the expansion of human activity, more and more viruses
become factors leading to human disease, as far away as
smallpox caused by poxvirus (Thèves et al., 2014) and as near as
coronavirus disease 2019 (COVID-19) caused by SARS-COV-2
(Lai et al., 2020), which usually brings great negative influence
on human health and economy. Therefore, it is essential to
understand the viral pathogenesis so as to develop antiviral
strategies. The role of EVs in the development of virus-related
diseases has been widely discussed in recent years, including their
influence on neurological disorders, liver fibrosis, cancers, and
inflammation (Figure 3).

Virus-Associated Neurological Disorders
Many studies have reported that neurological disorders could
be attribute to the infection of HIV, EV71, and JCPyV. In
combination antiretroviral therapy (cART) for HIV infection,
HIV-associated neurological disorders remain a common, and
intractable problem. Recently, studies demonstrated that EVs
containing HIV-1 Nef could be taken in neurons and induce
neurotoxic effects through decreasing glutathione levels or

modulating lipid metabolism and lipid raft (Sami Saribas et al.,
2017; Ditiatkovski et al., 2020). There are miR-9 or miR-7 in
EVs after HIV infection, which separately cause upregulated
migration of microglial cells (Yang et al., 2018) or downregulation
of neuronal neuroligin 2 (NLGN2) and synaptic alterations (Hu
et al., 2019). Microglia are crucial for immune defenses in
CNS, but they can also induce neuropathological injury. When
microglia are infected by JEV, they can secrete EVs containing
let-7a/b into neurons to induce the activation of caspase and
cause neuronal death (Mukherjee et al., 2019). Moreover, JCPyV
infection is usually fatal for immunocompromised individuals
because this virus can explore a variety of pathways to invade
CNS and cause progressive multifocal leukoencephalopathy. EV
is one of multiple means that mediate the transmission of JCPyV
particles among glial cells (Morris-Love et al., 2019; Figure 3).

Virus-Associated Liver Fibrosis
Liver fibrosis is mainly caused by viral hepatitis, which is an
alarm bell of liver injury. To prevent the occurrence of cirrhosis,
we need to have a deep understanding of its pathogenesis
(Unfried and Fortes, 2020). The EVs produced by HCV-infected
hepatocytes not only affect the immune response of hepatic
stellate cells (HSC) but also affect their physiological state.
Recently, two studies have reported that HSC fibrosis was caused
by EVs derived from those cells infected with HCV. Some
EVs carry miR-19a or miR-192 to affect HSC fibrosis through
activating the STAT3-TGF-β pathway (Devhare et al., 2017;
Kim et al., 2019). Some other EVs are packaged with HCV
single-stranded RNA (ssRNA) to upregulate the expression of
toll-like-receptor 7/8 (TLR7/8) in monocytes, which reinforce
collagen production, and induce fibrocystic formation ultimately
(Saha et al., 2017; Figure 3).
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FIGURE 3 | The pathogenesis of virus-regulated EVs. EVs carrying components derived from hosts or viruses under viral regulation can alter the physiological state
of the target cells and promote the development of some virus-associated diseases, such as neurological disorder, liver fibrosis, cancer, and inflammation.

FIGURE 4 | Diagnosis and treatment of virus-related diseases based on EVs. (A) EVs as potential biomarkers in the diagnosis of viral infection. EVs from plasma or
serum can be extracted and analyzed for the expression level of some special molecules by Western blot or qPCR assays to help the diagnosis of some viral
infection. (B) EVs as drug target to fight against viruses. Some drugs, such as oxytetracycline, tetherin, and aspirin, may regulate the composition of EVs to inhibit
EBOV infection or the development of EBV-NPC. (C) EVs as tool to restrict viral infection. The EVs derived from some cells or bacteria carry antiviral factors or viral
receptors to limit viral infection. In addition, the artificial EVs produced by the nano-engineering system contain viral antibodies or microRNAs, which can disturb viral
replication, survival, and proliferation.
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Virus-Associated Malignancies
The role of virus in promoting tumor development has
earned great attention in the scientific field. EBV is closely
related to the occurrence of multiple human tumors,
including nasopharyngeal carcinoma (NPC), and lymphoma
(Zuo et al., 2017; Li and Lu, 2018). Our result has shown that
NPC cells infected by EBV could secrete EVs containing the latent
membrane protein 1 (LMP1), which has a positive influence on
the epithelial–mesenchymal transition (EMT) of EBV-negative
NPC cells (Zuo et al., 2019). Meanwhile, a recent similar result
also helped elucidate the relevant oncogenic mechanism of
this virus. EVs packaged with LMP1 could transform normal
fibroblasts to cancer-associated fibroblasts by affecting the NF-κB
p65 pathway, promoting autophagy and aerobic glycolysis.
Apart from LMP1, EBV-encoded RNAs (EBERs) could be also
transported by EVs derived from EBV-positive NPC to promote
angiogenesis via affecting the TLR3/RIG-I-mediated vascular
cell adhesion molecule 1 (VCAM-1) expression of endothelial
cells (Cheng et al., 2019). For supporting the development of
lymphoma, EVs with EBV BART miRNAs derived from B-cell
lymphoma could promote the tumor pathology by altering
the macrophage phenotype (Higuchi et al., 2018). KSHV,
another virus closely related to human tumors, could also take
advantage of EVs to impact the tumor microenvironment, such
as the mediated metabolic reprogramming of adjacent cells
(Yogev et al., 2017; Figure 3).

Virus-Associated Inflammation
As we all know, balanced immunity is important for an
effective antiviral response because excessive pro-inflammatory
or anti-inflammatory effects will cause pathological damage to
the body. However, numerous viruses are able to disrupt the
balance of inflammation with the help of EVs and promote
the inflammatory state (Duette et al., 2018; Sung et al., 2019).
When platelets are infected and activated by DENV, they can
drive EVs to activate CLEC5A and TLR2 on neutrophils and
macrophages, which can induce neutrophil extracellular trap
(NET) formation and proinflammatory cytokine release, causing
drastic inflammatory reactions (Sung et al., 2019). For HIV-
infected patients, severe inflammation response is a common
symptom. A recent report has unraveled that HIV infection
could induce the release of EVs containing trans-activation
response (TAR) RNA to induce the pro-inflammatory expression
of lymphocytes and macrophages, which could contribute to
excessive inflammatory response (Sampey et al., 2016; Figure 3).

DIAGNOSIS AND TREATMENT OF
VIRUS-RELATED DISEASES BASED ON
EXTRACELLULAR VESICLES

The Potential Biomarker in Diagnosing
Viral Infection
Taking into account the changes in the composition of EVs
after virus infection, it provides hope to diagnose viral infection
and follow various disease states. Recently, numerous studies

have shown that the abnormally expressed host miRNA in EVs
could be a potential biomarker of viral infection (Figure 4A).
For the rheumatoid arthritis patients, upregulated miR-155 in
serum EVs is a potential biomarker of HCV infection (Liao
et al., 2018). Similarly, our previous result also concluded that
downregulated miR-203 in EVs could be the feature of EBV-
NPC (Zuo et al., 2019). In addition to host miRNAs, viral
miRNAs, and proteins in EVs also serve as potential biomarkers
(Figure 4A). EBV BART miRNAs in EVs may assist to diagnose B
lymphoma (Higuchi et al., 2018); HIV Nef packaged into EVs can
also contribute to monitoring the development of HIV-related
diseases (McNamara et al., 2018).

Extracellular Vesicles as Potential Target
and Tool for Antiviral Therapy
EVs can be the therapeutic targets to resist viral pathology
because of their contribution in viral infection and viral
diseases. In recent years, researchers have noticed that antiviral
drugs could limit the regulatory effects of viruses on EVs
(Figure 4B). For restricting EBOV infection, Food and Drug
Administration (FDA)-approved oxytetracycline can lower the
production of the EVs containing Ebola VP40 to protect
the adaptive immune system (Pleet et al., 2016). Moreover,
some tetherin can suppress the secretion of EVs with EBOV
glycoprotein (GP) by interacting with the GP-transmembrane
domain (Nehls et al., 2019). Our previous study on EBV also
revealed that aspirin treatment to EBV-associated NPC could
downregulate the EV-LMP1 secretion and increase EV-miR-203
expression to inhibit NPC lung metastasis (Zuo et al., 2019;
Figure 4B).

In addition to being used as a possible target for antiviral
therapy, EVs have become a potential tool to resist viral infection.
Earlier reports have shown that semen EVs from healthy human
contained antiviral factors, such as host restriction factors (HRFs)
mRNAs, and specifically increased resistance to HIV replication
and spread (Madison et al., 2014, 2015); so did the EVs derived
from symbiotic vaginal lactobacilli (Ñahui Palomino et al., 2019).
Meanwhile, the semen EVs with a special lipid fraction are also
able to restrict ZIKV transmission (Wang et al., 2020). In the
process of suppressing HCV infection, the EVs derived from
macrophages or umbilical cord mesenchymal stem cells (UMSC)
are an appropriate choice (Qian et al., 2016; Cai et al., 2018;
Khatri et al., 2018). At present, COVID-19 caused by SARS-
COV-2 is a global public health crisis. It has been shown that the
spike (S) protein on this virus surface could bind to angiotensin-
converting enzyme 2 (ACE2) of host cells, which promoted the
viral entry into host cells (Walls et al., 2020). Cocozza et al. (2020)
and Inal (2020) have recently reported that EVs containing ACE2
could block SARS-CoV-2 Spike-dependent infection and could
be a potential treatment method for coronavirus infection that
rely on ACE2 binding (Figure 4C).

EVs have the advantages of low immunogenicity, high
biosecurity, and strong ability to penetrate solid tissue. Thus, it is
a kind of nano-engineering system widely used in drug delivery
to inhibit viral infection and diseases development (Cheng
et al., 2018; Figure 4C). To control the replication of HSV-1
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more efficiently, the designed miRNA-401 targeting HSV-1 ICP4
mRNA is packaged into engineered EVs and delivered to viral
susceptible cells, which can establish an antiviral environment
for at least 72 h (Wang L. et al., 2018). A specific antibody for
some viruses, such as HIV and human papillomavirus (HPV),
can be also packaged into engineered EVs to selectively target
these infected cells (Ferrantelli et al., 2019; Zou et al., 2019).
Owing to the placenta barriers and high security requirements,
the treatment for fetal defects caused by ZIKV remains a global
public concern. Zou et al. (2021) produced an engineered EV
carrying interferon-induced transmembrane protein 3 (IFITM3),
which could pass through the placental barrier and suppress
ZIKV infection in the fetuses of pregnant mice.

CONCLUSION AND PERSPECTIVE

EVs are the group of cell-derived vesicles, including exosomes
and MVs, which are regarded as the important mediator
of intercellular communication and have potential clinical
application value. As an important pathogenic factor for human
beings, viruses have been shown to regulate various cellular
mechanisms. Virus can regulate the EVs to mediate immune
evasion and virus spread, causing the development of various
diseases, including cancers and neurological disorders. However,
EVs also play a role in immune resistance to viral infection,
which is a strategy of host antiviral effect. Moreover, EVs
regulated by virus also play an important role in promoting
microbial communication and mediating the infection of other
virus or bacteria.

Although many different components in EVs have been
observed after virus infection, the function of these altered
components, especially of the altered host components, remains
unclear in most extent. Thus, many efforts will be required to
resolve this problem in the future. Given the truth that the

diameter of EVs is similar to that of most viruses, the separation
technology of EVs is really crucial, which is the premise of
analyzing the composition and function of these EVs.

Extensive studies have shown that EVs could serve as potential
biomarkers and therapeutic targets of some viral diseases. In
terms of the latter, some related drugs can be used to change
the number and component of EVs and restrict the feature of
virus. However, the drugs targeting the virus-regulated EVs are
scant. In order to promote the research of antiviral drugs, we
should further clarify how viruses interfere with the biosynthetic
mechanism of EVs. In addition, we can also take advantage of
EVs with antiviral elements to resist the viral infection. Some EVs
from body fluids, cells, and even bacteria could have the ability
as engineered EVs to inhibit viral infections. Of course, it may
be expected to treat COVID-19 caused by SARS-COV-2 if some
strategies based on EVs are taken.
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