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Abstract

Original Article

IntroductIon

The treatment of tumors using proton therapy is gaining 
popularity as more treatment centers are being built around 
the globe. Protons have an advantage over photons as a result 
of its Bragg peak depth-dose curve; to make good use of this 
property, there is a need for accurate estimation of proton range 
which depends on the stopping power ratio (SPR). This leads 
to the study on how to effectively compute proton SPR and 
other parameters it depends on directly or indirectly such as 
the relative electron density ρe, effective atomic number (Zeff), 
and mean excitation energy (I).

The current state-of-the-art method in use is the single energy 
computed tomography (SECT) stoichiometric calibration 
method which has been studied by several research groups. A 

range uncertainty margin of 3%–3.5% is added to the distal 
boundary of the clinical target volume for the proton range 
due to SECT uncertainties in computing the proton range.[1-3] 
Factors like CT number uncertainties which can be caused by 
beam hardening and CT image noise have a large effect on 
this method; therefore, studies have investigated dual-energy 
CT (DECT) approaches to help mitigate these uncertainties.

DECT makes use of CT images acquired at two different 
energies to estimate SPR in the case of image domain methods, 
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whereas the CT projection data are used to estimate the SPR 
in the case of projection domain methods. Many models and 
methods have been developed by different groups like those 
presented by Hünemohr et al.,[4] Bourque et al.,[5] Williams 
et al., and other methods.[6-32,33-45,46-50] Empirical approaches have 
been studied as well like the one presented by Taasti et al.[22] 
Uncertainties of some of these methods have been studied, for 
example, Yang et al..[12] conducted this study and showed that 
the DECT method was more robust to uncertainties that might 
be due to change in tissue composition, change in position 
compared to the SECT method. Furthermore, a good two-energy 
combination for the DECT method has been studied[47] where 
they found that spectral separation contributes to the accuracy 
of the estimation. The projection domain has been studied using 
different approaches like the one done by Shuangyue et al.[2,8] and 
others. The projection domain shows improved performance but 
requires high computation skills like the multi-energy approach 
proposed by Shen et al.[9] Some methods aimed at improving 
projection domain computation are still under development like 
the one presented by Chika and Hooshyar.[51]

Current studies are looking on how to improve the accuracy 
of these methods, improve the computation efficiency, and aid 
in automation which leads to the present study.

This study presents an image domain multienergy model based 
on empirical relationships which will help improve accuracy 
and reduce the uncertainties. Developed machine learning 
algorithm based on the model that will help in the automation 
of the computation process. We also carried out the comparison 
of the presented model with some other existing models 
and methods that follow similar ideas directly or indirectly. 
Theoretical linear attenuation coefficients of tissues (which 
can be converted to theoretical CT numbers) were used to 
estimate proton SPR, relative electron density ρe, effective 
atomic number (Zeff), and mean excitation energy (I).

MaterIals and Methods

Computed tomography data preparation
The mixture rule was applied to elemental mass attenuation 
coefficients gotten from the National Institute of Standards 
and Technology (NIST) XCOM database to compute linear 
attenuation coefficients.[52] The CT number of each pixel in 
CT images for unknown tissue was represented by:
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where µw, µ are the linear attenuation coefficients of water and 
unknown tissue, respectively. Si = 1, 2 represents low- and 
high-energy spectra, respectively. Eq (1) is by convention. We 
assume that a phantom consisting of unknown compounds or 
mixtures was scanned with a commercial CT scanner at low- 
(Si = 1) and high-energy (Si = 2) spectra, characterized by 
normalized X-ray energy fluence spectra ϕSi (E) where 
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This is the theoretical linear attenuation used for this study 
which can be applied to Eq (1) to get the CT number.

The energy spectra are computed using SpekCalc[53,54] and its 
normalized form is presented in Figure 1.

Tissue classification
33 ICRU human tissues are used for this study[55-58,59,60-62] 
Appendix]. The tissues are classified into three groups which 
are lung, soft, and bone tissues; this is the popularly used 
classification. We also considered the case of splitting the soft 
tissue into two, making it four groups [Figure 2]. This grouping 

is done here using the fL = µ1 and fr (µ) �
�
�
1

2

,  respectively. The 

boundaries that separate each group are shown in Figure 3 
(lung if fL ≤ 0.3, soft if fL ≤ 1.4, and bone if fL ≤ 1.4) and 
Figure 2, respectively. 

These human tissues were used as training data and the 12 
Gammex insert tissues were used as testing data.

Proposed method
Given a radiological parameter p related to the attenuation 
coefficient µ, there exist transformations/maps T(p) and f (µ) 
such that:
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n ≥ 0, j ≥ 0 and  p T T p� � �� ��1

ai ∈R , where, µ = (µ1, µ2, µ3,…, µm) for n-energies (n ≥ 1) with at 
least one low energy (that is ≤90kVp) and err is an acceptable 
error.

Figure 1: Specra used
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The low energy requirement is based on the observation made 
during the study.

The relationship is found using data observation approach like 
plotting to see how the data are related, after which reasonable 
f(μ) is constructed and a good approach of estimating the 
constants is employed.
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We used two energies for this study commonly known as dual 
energy. Three f �� �  were used which are: fL � �� � � � , 
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2

, fm � � �� � � �
1 2 .

T (p) = p for ρe and SPR, T (p) = ln(p) for I and Zeff. We 
implemented the simple form of the model, 
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n = 0 for (I) and Zeff. On ρe and SPR, n = 0 for soft tissues and 
n = 2 for bone tissues.

Symbol Definition: Tp,j,n here means T for parameter p, low 
index −j, and top index n. Example:
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Stopping power ratio
For the range of energy mostly used in proton therapy, the 
proton SPR can be approximated by the Bethe–Bloch equation 
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where me is the rest mass of an electron, c is the speed of light, β is 
the velocity of the proton in vacuum relative to the speed of light, 
and Iw (approximately 75.3) is the mean excitation energy of water.

We compute our reference SPR using the Eq (5) at 175 MeV proton 
energy. Some of the considered examples from our method are as 
below and the model parameters, ai, are given in the Supplementary 
Tables 1-3.
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We considered the following methods and compared them with 
our proposed method for the case of SPR. 

Stochiometric method
Here, we are referring to single-energy CT which is currently 
in use for planning. The single energy calibration method[13] 
uses single energy CT attenuation to estimate SPR through 
linear piece-wise function, i.e.

Figure 2:  4 Regions of classification (lung tissues if fL ≤ 0.3, soft tissue 
1 if 0.3 < fr ≤ 1.02, soft tissue 2 if 1.02 < fr ≤ 1.4, and bone tisue if 
fL > 1.4)

Figure 3:  3 Regions of classification (lung tissues if fL ≤ 0.3, soft tissue 
if 0.3 < fL ≤ 1.4, and bone tisue if fL > 1.4
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where αl = 0.2579, αs = 0.3343, bs = 0.6939, ab = 0.9283 and 
bb = 0.0780 with the data described in section 2.1.

This is the same as what we will denote as TSPR,0,1 in our method, 
so stochiometric calibration is just a subset of our proposed 
method. We implemented this model using low energy μ i.e., μ1.

Hünemohr–Saito method
Hünemohr et al.[4] developed the model below and Saito has 
previously developed a similar formula for ρe. This model is what 
we refer to as Hünemohr–Saito (H-S) method.
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The two model parameters, αH and 𝑏H, depend on specific dual-
energy scanning protocols. Here, it is computed theoretically 
with the data described in section 2.1; for soft tissues αH = 0.594, 
bH = 3.6348 and n = 0.6379, whereas for bone tissues αH = −0.1457, 
bH = 1.2493, and n = 0.6807. To estimate SPR from the values 
of ρe and Zeff images, Hünemohr used the empirical relationship 
between I-value and Zeff which was first introduced by Yang 
et al.[12] We used this with classification based on the attenuation 
as stated below to fit into the classification of our study.
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where αl = 4.3197, as = 0.0865, bs = 3.6374, ab = 0.0495 and 
bb = 3.8345.

Taasti method
The empirical parametrization model presented by Taasti et al.. 
using dual-energy is stated below. 
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We used our classification to implement this. For soft tissue, 
at
1

2 3826= . , at
2

2 8450= .  at
3

1 3042� � .  and at
4

0 7695� � . , 
whereas for bone tissues at

1
0 9517= . ,  at

2
0 0388= . , 

at
3

0 2829= .  and at4 0 0258� � . .

Relative electron density (ρe)
We computed reference relative electron density using the 
following formula: 
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where ρx denotes the mass density. ωm, Zm, and Am are the mass 
fraction, atomic number, and atomic mass of the m-th element in 
the tissue, respectively. The proposed methods are compared with 
the H-S method stated in the previous section. The model examples 
are as below and the model parameters, ai, are in Supplementary 
Tables 4-6.
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Effective atomic number Zeff 
Effective atomic number was computed with the Mayneord’s 
equation as stated below. 

Z

Z
A

Z

Z
A

Z

l
m

M m m

m
m
l

m

M m m

m
m

�
�

�

�

�

�

�
 (13)

where Zm is the atomic number of the m-th element and l = 3.3. 
This was used as the reference Zeff.

We used TμL and Tμr for ln (Zeff), whereas Tμm was used for Zeff

The implemented example is:
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The model parameters, ai, are presented in Supplementary 
Tables 7 and 8.

Bourque’s model
In Bourque’s model, spectrally averaged elemental electronic 
c ross  sec t ions  a re  f i t  to  po lynomia l  func t ion , 
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k
kZ a Z 1 , of their atomic number, Z, The 
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spectrally-dependent effective atomic number for an arbitrary 
mixture is then defined as:

Zeff e e mixture�� � � ��� �1

, . The parametric ρe  – Zeff model is 
given by:
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where ak and dm,L/H are scanner-specific model parameters. The 
scanner-specific parameters are determined theoretically from 
a calibration phantom. The original study used K = M = 6 
which is also used here.

We couldn’t implement Bourque’s model because we didn’t 
have cross-section data handy. Hence, we just implemented 
the Zeff as in our model and that’s what we represented as TB,0,1.
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; for soft tissues a1 = 7.1, a2 = 24.2, 

a3 = −47.9, a4 = −1108.3, a5 = −10.9 and 68.1, whereas for 
bone tissues a1 = 15, a2 = 142, a3 = 1523, a4 = −6921, a5 = 
14817 and a6 = − 12140.

Mean excitation energy I (ev)
The Bragg additivity rule was used to compute the mean 
excitation energy for each tissue: 
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Im is the mean excitation energy of the m-th element in the 
tissue.

We used the presented classification and the Yang’s empirical 
relationship between Zeff and I on H-S method for the 
purpose of comparison since we can’t find any model that 
predicts mean excitation energy directly from the attenuation 
coefficients.

We used TμL and Tμr for ln(I), whereas Tμm was used for I.

The implemented example is:
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The model parameters, ai, are presented in Supplementary 
Tables 9 and 10.

Accuracy analysis
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The mean error measures the overall bias of the values 
estimates, whereas the RMSE error measures the systematic 
estimation error for different tissues.

results

Stopping power ratio
Table 1 shows that the proposed method TSPR,1,2;fL(μ) defined 
using fr(μ) gives the overall least modeling RMSE when the 
tissues are grouped into three categories while that defined 
using fm(μ) gave the least testing RMSE for DECT. The 
implemented model from the proposed single energy CT 
method (TSPR,1,2;fL(μ)) performed slightly better than the 
existing stoichiometric method both in testing and modeling 
error, it also gave the least testing error for the presented 
methods. The H-S method gave the largest modeling error, 
whereas the Taasti method gave the largest testing error. Further 
classification into four groups gave a better modeling error 
since it reduced the error of TSPR,1,2 defined using fr(μ) from 
0.49 to 0.38 but not necessarily a better testing error.

We see from Table 2 that all the methods except H-S, 
TSPR,1,2;fr(μ) and TSPR,1,2;fr(μ) have very little bias in modeling 
but a slightly higher bias in testing. From Figures 4 and 5, 
we observe that TSPR,1,2 performed relatively better than other 
methods in modeling bone tissues and has overall least mean 
error.

Relative electron density
Just as in the case of SPR, Table 3 shows that the proposed 
method, Tρe,1,2;fr(μ), defined using fr(μ) gives the overall least 
modeling RMSE when the tissues are grouped into three 
categories while that defined using fm(μ) gives the least 
testing RMSE for DECT. The proposed single energy CT 
model (TSPR,1,2;fL(μ)) gave overall least testing error. The H-S 
method gave the largest modeling error. Further classification 
into four groups gives a better modeling error since it reduced 
the error of Tρe,1,2 defined using fr(μ) from 0.37 to 0.32 but not 
necessarily a better testing error.

We see from Table 4 that all the proposed methods have very 
little bias compared to the H-S method in modeling but bias 
increased in testing data. From Figure 6, we observe that Tρe,1,2 
performed relatively better than other methods in modeling 
soft and bone tissues.
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Table 1: Stopping power ratio modeling and testing root mean square (%)

SPR modelling RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
TSPR,1,1; fr (µ) 1.78 0.04 0.58 2.98 4.72 4.80 4.61
TSPR,1,2; fr (µ) 0.49 0.04 0.58 0.26 5.87 4.82 7.08
TSPR,1,2; fm (µ) 1.04 0.03 1.14 0.87 3.89 3.07 4.80
TSPR,1,2; fL (µ) 0.85 0.00 1.00 0.53 3.14 3.28 3.27
Stochiometric 0.86 0.01 1.00 0.56 3.39 3.35 3.44
Taasti 0.60 0.01 0.22 1.00 6.77 7.19 6.14
H−S 5.10 0.45 3.42 7.46 4.51 4.47 4.57
TSPR,1,2; fr (µ) 4 g 0.38 0.04 0.44 0.26 5.87 4.82 7.08
SPR: Stopping power ratio, RMSE: Root mean square

Table 2: Stopping power ratio modeling and testing mean error (%)

SPR modelling ME Total Lung Soft Bone Testing ME Total Soft Bone
TSPR,1,1; fr (µ) 0.28 0.04 0.01 0.84 0.63 1.02 0.09
TSPR,1,2; fr (µ) 0.00 0.04 0.00 0.00 −0.05 1.06 −1.62
TSPR,1,2; fm (µ) −0.09 −0.03 −0.02 −0.24 −2.08 −1.48 −2.92
TSPR,1,2; fL (µ) 0.00 0.00 −0.01 0.02 −1.04 −0.85 −1.30
Stochiometric −0.01 −0.01 −0.01 −0.01 −1.15 −0.93 −1.46
Taasti −0.02 −0.01 −0.01 −0.03 2.19 2.95 1.14
H−S 0.17 0.45 2.25 −3.84 −0.23 2.66 −4.28
TSPR,1,2; fr (µ) 4 g 0.00 0.04 0.00 0.00 −0.31 0.62 −1.62
SPR: Stopping power ratio, ME: Mean error

Table 3: ρe modeling and testing root mean square (%)

ρe modelling RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
Tρe,1,1; fr (µ) 1.03 0.2 0.45 1.67 4.60 4.69 4.46
Tρe,1,2; fr (µ) 0.37 0.2 0.41 0.29 6.04 4.94 7.32
Tρe,1,2; fm (µ) 1.08 −0.05 1.14 1.03 4.06 3.05 5.15
Tρe,1,2; fL (µ) 0.81 −0.2 0.92 0.59 3.04 3.00 3.10
H−S 5.14 0.01 3.16 7.76 5.00 4.34 5.79
Tρe,1,2; fr (µ) 4 g 0.32 0.02 0.35 0.29 6.00 4.85 7.32
RMSE: Root mean square

Table 4: ρe modeling and testing mean error (%)

ρe modeling ME Total Lung Soft Bone Testing ME Total Soft Bone
Tρe,1,1; fr (µ) 0.02 0.02 0.02 0.02 0.54 0.94 −0.01
Tρe,1,2; fr (µ) 0.00 0.2 0.01 −0.01 −0.05 1.32 −1.97
Tρe,1,2; fm (µ) −0.12 −0.05 −0.03 −0.30 −2.63 −2.03 −3.46
Tρe,1,2; fL (µ) −0.01 −0.2 −0.01 −0.01 −1.23 −0.99 −1.56
H−S −0.28 0.01 1.81 −4.30 −1.00 1.98 −5.18
Tρe,1,2; fr (µ) 4 g 0.00 0.02 0.00 −0.01 −0.19 1.08 −1.97
ME: Mean error

Table 5: Zeff modeling and testing root mean square (%)

Zeff modelling RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
TZ,1,1; fr (µ) 2.47 0.00 3.03 0.88 4.69 5.08 4.07
TZ,1,1; fm (µ) 2.06 0.00 2.48 0.95 6.51 8.02 3.42
TZ,1,1; fL (µ) 1.66 0.00 2.06 0.46 4.29 5.26 2.34
TB,0,1 2.87 0.00 3.00 2.77 4.86 4.78 4.99
H−S 10.61 0.00 2.87 17.95 14.63 2.77 22.43
TZ,1,1; fr (µ) 4 g 2.24 0.00 2.73 0.88 5.69 6.61 4.07
RMSE: Root mean square
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Effective atomic number
Table 5 shows that the proposed single low-energy model 
outperforms all other ones in both modeling and testing data. 
TZ,1,1 defined using fm(μ) gave the least modeling RMSE 
when the tissues were grouped into three categories, whereas 
the one defined on fr(μ) gave the least testing RMSE among 
dual energy methods. The proposed single energy model 
gave overall least testing error. The H-S method gave the 
largest modeling error and testing error. Further classification 
into four groups only shows slight improvement in modeling 
error.

We see from Table 6 that all the proposed methods have very 
little bias compared to the H-S method in modeling and some 
of the proposed models still maintained relatively low bias 
in testing data. From Figure 7, we observed that TZ,1,1, fL(μ) 
performed relatively better than other methods in modeling 
soft and bone tissues.

Mean excitation energy
Table 7 shows that although H-S has slightly lower modeling 
RMSE, TZ,1,1 defined using fr(μ) gave the least modeling RMSE 
when the tissues were grouped into three categories. Further 
classification into four groups shows improvement in modeling 
error since it reduces the error from 1.64 to 1.11 but don’t show 
improvement in testing error.

Table 8 indicates that all the methods have very little bias in 
modeling and relatively increased bias in testing data. From 
Figure 8, we observed that some of the proposed methods 
achieved similar results in modeling soft and bone tissues. 

dIscussIon

The model that can be used to estimate some of the important 
treatment parameters in radiotherapy is presented. Unlike 
most models including some of the ones presented here that 
are restricted to single or dual energy the one proposed can 
be applied to any number (n) of energies; we just need to 
construct suitable Tμ for the energies. The method is based 
on empirical knowledge and it’s validated using a theoretical 
poly-energy attenuation coefficient. This implies that it takes 
the energy spectrum into account as well as other properties 
of the phantom or machine. This is not saying that it takes 
care of the uncertainties associated with those situations in 
practice as different detailed studies are needed to ascertain 
that. We can make the model more general by including 
the case where the parameter we are interested in depends 
on other known parameters and not just the attenuation 
coefficient from the given CT image data. The model will 
be as stated below.

A generalized version of the proposed method: given a 
radiological parameter p related to the attenuation coefficient 
μ and some other parameters pꞌ, there exist transformations/
maps T (p) and f (μ,pꞌ) such that 

T p a f p err
i j

n

i
i

( ) ( ( , '))� �
��

� �� �  (21)

n ≥ 0, j ≥ 0 and p T T p� � �� ��1

ai ∈R , where, � � � � �� �� �1 2 3
, , , , n  for n-energies with at 

least one low energy, p p p p p K
' ' ' ' '

, , , ,� �� �1 2 3
 for K-known 

parameters and err is an acceptable error.

A similar idea of this model has been applied in 
estimating SPR and I using electron density[13] but what we 
presented here estimates the parameters directly from the CT 
image.

We talk about classification because it contributes a lot to 
accuracy. For example, one of the Tμ we tried that’s not 
presented here and gave reasonable RMSE but gives a high 
error for spongiosa and sacrum which were more than 6% 
and 3%, respectively. When these two tissues were classified 
as soft tissues instead of bone tissues, their error reduced 

Figure 4: Individual tissues stopping power ratio relative error for the 
presented single energy methods

Figure 5: Individual tissues stopping power ratio relative error for the 
presented dual energy methods
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classes instead of two classes also improves the results as 
shown in tables and figures by splitting soft tissues further into 
two making it four groups at least improves the modeling error. 
Further careful classification can be done using any preferred 
f(μ), it has to be carefully done because of our next discussion. 

In general, the model proposed here works well and has a 
lot of opportunities for improvement especially based on the 
classification, function construction, and degree of fitting. 
Caution needs to be taken in other to avoid overfitting and 
over smoothing. For example, looking at Figure 4 and Table 1 
for SPR, TSPR,1,1;fr(μ) has total modeling RMSE of 1.78% (soft 
0.58%, bone 2.98%) which are reduced to total modeling error 
of 0.49% (bone 0.26%) for TSPR,1,2;fr(μ) with increasing n degree 
fitting from 1 to 2. Observe what is happening in the testing 
error, it moved from a total testing error of 4.72% (bone 4.61% 
to total testing error of 5.87% (bone 7.08%). This actually gets 
worse testing error indicating overfitting of the data or over 
smoothing of the function. Similarly, TSPR,1,2;fr(μ) 4g which 
is grouping the tissues into four categories instead of three 
categories with the same increased fitting degree improved the 
modeling error but not the testing. Similar results hold for ρe.

The method beats many of the existing methods, especially on 
estimating Z and I with the theoretical attenuation coefficient. 
Although we couldn’t access a method that estimates mean 
excitation energy directly from the attenuation coefficient of the 
CT image, we compared it with the H-S method combined with 
the empirical relationship presented by Yang et al.[12] Yang et al. 
empirical approach is just referred to for comparison purposes 
since the presented method estimates mean excitation energy 
directly from the given CT image data unlike theirs that has to 
estimate effective atomic number first.

The limitation of this study is the limited data since the machine 
learning approach needs a lot of data to improve accuracy but 
we were able to make the optimal use of the data we have. 
The study can be considered a little bit ambitious compared 
to the idea that has been in existence, which is modifying 
tissue composition a little and checking for uncertainty. We 
used Gammex tissues as our testing tissues so the difference 
in error is expected.

The machine learning algorithm for the proposed method can 
be written as follows:

Determine the needed parameter p = SPR,ρe,I,Zeff,....
(i) Given CT image data 
(ii) Compute μ
(iii) Check the empirical relationship between p and μ
(iv) If an empirical relationship exists, construct Tμ 
(v) Formulate Tp
(vi) Classify the tissues 
(vii) Estimate the model parameters ai
(viii) Check the modeling and testing error
(ix) Repeat iv-viii until optimal acceptable error is reached 

given more priority to testing error.
tremendously with that of sacrum reducing to near 1% and 
spongiosa reducing to −0.04%. Grouping the tissues into more 

Figure 6: Individual tissues ρe relative error for the presented methods 
on computing relative electron density

Figure 7: Individual tissues Zeff relative error for the presented methods 
on computing the effective atomic number

Figure 8: Individual tissues I relative error for the presented methods on 
computing mean excitation energy
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conclusIon

The proposed method achieved modeling RMSE as low as 
0.85% on single energy and 0.38% on dual energy for SPR 
and all RMSE are near 1% at maximum. Similarly, modeling 
RMSE as low as 0.81% on single energy and 0.32% on dual 
energy were achieved for ρe and all RMSE are near 1% at 
maximum. In the same vein, the model achieved good accuracy 
for Zeff and I. The mean errors are all close to 0.00%. This 
method is more robust compared to other methods considered 
in this study since it mostly has lower errors on testing data 
using theoretical CT numbers. It also provides the flexibility 
to improve accuracy using any number of energy spectrum 
(n-energy).

The machine learning algorithm provides opportunity for 
automation and improvement. The algorithm provided will 
help improve the accuracy of predicting SPR, ρe, I and Zeff by 
considering models with different degrees, different tissue 
classifications, and different CT data. Both the model and the 
algorithm are easy and flexible to implement as they can be 
used to estimate different parameters with same set of data.

Data availability statements
The mass attenuation coefficients used for this study were 
gotten from NIST XCOM database which can be found 
with this link https://www.nist.gov/pml/xcom-photon-cross-

sections-database. The tissue linear attenuation is gotten using 
the tissue composition, summing over weighted spectrum and 
multiplying the mass attenuation with its linear density.

Elemental composition for different tissues can be found 
in,[55-58] ICRU database, or any other trusted source.

We use the formulas in materials and methods section and the 
tissues elemental composition to compute the relative electron 
density, mean excitation energy, effective atomic number and 
SPR for each tissue.

The spectra used are computed using SpekCalc.[54]

Some of these, data can be provided under reasonable request.
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appendIx

33 ICRU tissues used:

Lung (Inflated), Yellow marrow, Adipose, Breast, Red marrow, Eye lens, Skin, Pancreas, GI tract, Testis, Lymph, Kidney, Ovary, 
Muscles, Brain, Liver, Spleen, Lung (Deflated), Heart (blood filled), Blood, Cartilage, Thyroid, Spongiosa, Sacrum, Vertebral (D6, 
L3), Femur, Ribs (2nd, 6th), Vertebral C4, Humerus, Ribs (10th), Cranium, Mandible, Cortical bone.

Gammex inserts used:

Adipose (Gammex), Breast (Gammex), True water (Gammex), Solid water (Gammex), Muscle (Gammex), Brain (Gammex), 
Liver (Gammex), Inner bone (Gammex), B200 (Gammex), CB30 (Gammex), CB50 (Gammex), Cortical bone (Gammex).



Supplementary Table 1: Stopping power ratio ai’s value for fr (µ)

TSPR,1,1; fr (µ) a−1 a0 a1 a2 TSPR,1,2 a−1 a0 a1 a2

Lung ≤0.3 0 0.2578 0 0 0 0.2578 0 0
Soft ≤1.2 −0.6689 1.6858 0 −0.6689 1.6858 0 0
Bone −1.707 2.4267 0 0 0.0533 0.3327 0.654 −0.026
SPR: Stopping power ratio

Supplementary Table 2: Stopping power ratio ai’s value for fm (µ) and fL (µ)

TSPR,1,2; fL (µ) a−1 a0 a1 a2 TSPR,1,2; fm (µ) a−1 a0 a1 a2

Lung ≤0.3 0 0.2579 0 0 ≤0.3 0 0.2580 0 0
Soft ≤1.4 −0.325 1.356 0 0 ≤1.5 −0.2068 1.2416 0 0
Bone 0.0531 0.7277 0.2485 −0.062 0.2186 0.7936 0.1353 −0.0035

Supplementary Table 3: 4 groups stopping power ratio ai’s 
value for fr (µ)

TSPR,1,2; fr (µ) a−1 a0 a1 a2

Lung ≤0.3 0 0.2578 0 0
Soft 1 ≤1.02 −0.7028 1.7247 0 0
Soft 2 ≤1.2 −0.913 1.9178 0 0
Bone 0.0533 0.3327 0.654 −0.026



Supplementary Table 7: Zeff ai’s value for fL (µ), fr (µ) and fm (µ)

TZ,1,1; fL (µ) a−1 a0 TZ,1,1; fr (µ) a−1 a0 TZ,1,1; fm (µ) a−1 a0

Lung ≤0.3 0 2.0278 ≤0.3 0 2.0278 ≤0.3 0 7.5975
Soft ≤1.4 −0.9039 2.8844 ≤1.2 −1.5785 3.5317 ≤2.5 −5.3520 12.682
Bone −0.7612 2.7856 −0.7585 3.5317 −11.817 14.967

Supplementary Table 8: 4 groups Zeff ai’s value for fr (µ)

TZ,1,1; Tµr a−1 a0

Lung ≤0.3 0 2.0278
Soft 1 ≤1.02 −1.401 3.3352
Soft 2 ≤1.2 −0.8698 2.8591
Bone −0.7585 2.956

Supplementary Table 6: 4 groups ρe ai’s for fr (µ)

Tρe,1,2; fr (µ) a−1 a0 a1 a2

Lung ≤0.3 0 0.2578 0 0
Soft 1 ≤1.02 −0.8155 1.826 0 0
Soft 2 ≤1.2 −0.9732 1.9744 0 0
Bone 0.042 0.2633 0.7193 −0.0235

Supplementary Table 5: ρe ai’s value for fm (µ) and TL (µ)

Tρe, 1,2; TµL a−1 a0 a1 a2 Tρe,1,2; Tµm a−1 a0 a1 a2

Lung ≤0.3 0 0.2579 0 0 ≤0.3 0 0.2580 0 0
Soft ≤1.4 −0.4098 1.4344 0 0 ≤1.5 −0.2289 1.26 0 0
Bone 0.0559 0.6820 0.2801 −0.0065 0.2745 0.7357 0.1568 −0.0041

Supplementary Table 4: ρe ai’s value for fr (µ)

Tρe, 1,1; fr (µ) a−1 a0 a1 a2 Tρe, 1,2 a−1 a0 a1 a2

Lung ≤0.3 0 0.2578 0 0 0 0.2578 0 0
Soft ≤1.2 −0.7619 1.7723 0 0 −0.8275 1.835 0 0
Bone −1.9515 2.615 0 0 0.042 0.2633 0.7193 −0.0235



Supplementary Table 9: I ai’s value for fL (µ), fr (µ) and fm (µ)

TI,1,1; fL (µ) a−1 a0 TI,1,1; fr (µ) a−1 a0 TI,1,1; fm (µ) a−1 a0

Lung ≤0.3 0 4.3196 ≤0.3 0 4.3196 ≤0.3 0 75.1668
Soft ≤1.4 −0.7124 4.9869 ≤1.2 −1.2954 5.5466 ≤3 −12.804 85.899
Bone −1.0087 4.9344 −0.9906 5.1517 −131.45 125.95

Supplementary Table 10: 4 groups I ai’s Value for fr (µ)

TI,1,1; fr (µ) a−1 a0

Lung ≤0.3 0 4.3196
Soft 1 ≤1.02 −1.0436 5.271
Soft 2 ≤1.2 −0.4726 4.7658
Bone −0.9906 5.1517


