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ABSTRACT: An algorithm to perform stochastic generalized active space
calculations, Stochastic-GAS, is presented, that uses the Slater determinant
based FCIQMC algorithm as configuration interaction eigensolver.
Stochastic-GAS allows the construction and stochastic optimization of
preselected truncated configuration interaction wave functions, either to
reduce the computational costs of large active space wave function
optimizations, or to probe the role of specific electron correlation pathways.
As for the conventional GAS procedure, the preselection of the truncated
wave function is based on the selection of multiple active subspaces while
imposing restrictions on the interspace excitations. Both local and cumulative
minimum and maximum occupation number constraints are supported by
Stochastic-GAS. The occupation number constraints are efficiently encoded
in precomputed probability distributions, using the precomputed heat bath
algorithm, which removes nearly all runtime overhead of GAS. This strategy
effectively allows the FCIQMC dynamics to a priori exclude electronic configurations that are not allowed by GAS restrictions.
Stochastic-GAS reduced density matrices are stochastically sampled, allowing orbital relaxations via Stochastic-GASSCF, and direct
evaluation of properties that can be extracted from density matrices, such as the spin expectation value. Three test case applications
have been chosen to demonstrate the flexibility of Stochastic-GAS: (a) the Stochastic-GASSCF [5·(6, 6)] optimization of a stack of
five benzene molecules, that shows the applicability of Stochastic-GAS toward fragment-based chemical systems; (b) an
uncontracted stochastic MRCISD calculation that correlates 96 electrons and 159 molecular orbitals, and uses a large (32, 34) active
space reference wave function for an Fe(II)-porphyrin model system, showing how GAS can be applied to systematically recover
dynamic electron correlation, and how in the specific case of the Fe(II)-porphyrin dynamic correlation further differentially stabilizes
the 3Eg over the

5A1g spin state; (c) the study of an Fe4S4 cluster’s spin-ladder energetics via highly truncated stochastic-GAS [4·(5,
5)] wave functions, where we show how GAS can be applied to understand the competing spin-exchange and charge-transfer
correlating mechanisms in stabilizing different spin-states.

1. INTRODUCTION
Multiconfigurational Self Consistent Field (MCSCF) methods
are well-established approaches in quantum chemistry to
investigate the electronic structures of systems featuring strong
electron correlation effects, and are characterized by highly
multireference wave functions. MCSCF wave functions are
written as linear combinations of electronic configurations,
which can for example be Slater determinants (SDs) or spin-
adapted configuration state functions (CSFs). The many-body
wave function is then optimized to minimize the CI energy,
while the molecular orbitals are self-consistently optimized
under the mean f ield of the CI wave function. MCSCF
approaches represent a highly flexible strategy that can easily
be adapted to a large variety of challenging chemical systems.
The Complete Active Space Self Consistent Field

(CASSCF) method, is a popular MCSCF approach.1−4 In
CASSCF a number of important orbitals, n, usually around the
frontier orbitals, and their N electrons are selected to form the
active space. Doubly occupied and empty orbitals not included

in the active space form the inactive and the virtual spaces,
respectively. All possible electronic configurations are
generated, compatibly with spin and space symmetry, by
distributing the N active electrons among the n active orbitals,
a CAS(N, n). While the CI coefficients are obtained via exact
or approximated schemes for the CI Hamiltonian diagonaliza-
tion, the orbitals are variationally optimized via inactive−
active, active−virtual, and inactive−virtual orbital rotations.
CAS is conceptually simple because only one active space has
to be selected. However, the size of the CAS wave function
exponentially grows with the size of the active space, and the
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computational costs of conventional diagonalization techni-
ques5−7 quickly reach their practical limits for CAS(18, 18)
wave functions.
For most chemical systems, the full CI expansion in the

active space is unnecessarily large, since CAS wave functions
are generally sparse, mostly containing “deadwood”, that is
electronic configurations with vanishingly small CI ampli-
tudes.8−10 Various methods exist that attempt to exclude
deadwood from the CI optimization step, either via a sparse
wave function representation, via a user preselection of
truncated CI expansions, via an on-the-fly selection of the
important electronic configurations, or by exploiting redun-
dancies within the many-body wave function.
One example is the Full Configuration Interaction Quantum

Monte Carlo (FCIQMC) algorithm11−15 that takes advantage
of the sparsity of the wave functions, and deadwood is not (or
rarely) processed and stored along the FCIQMC optimization
procedure. FCIQMC is a projective method that stochastically
propagates the imaginary-time Schrödinger’s equation to solve
the CI-problem. Apart from being a sparse CI-eigensolver it
can be near-linearly parallelized to benefit from modern
hardware. The use of FCIQMC as the CASSCF CI-eigensolver
within the Super-CI framework, termed Stochastic-CASSCF,16

was developed in our group and has been applied with great
success to circumvent the active space size limits of
conventional CASSCF.16−19,99

Examples of methodologies where truncated CI spaces are
preselected include the generalized valence bond approach,20

constrained-CASSCF (CCASSCF),21 quasi-CASSCF
(QCASSCF),22 restricted-CI (RCI),23,24 restricted active
space self-consistent field (RASSCF),25,26 the occupation
restricted multiple active spaces self-consistent field
(ORMAS-SCF) method,27 and the generalized active space
self-consistent field (GASSCF) approach.25,28−31 In CCASSCF
the active space is partitioned into several subspaces with a
fixed number of particles per subspace; the method is
formulated in a basis of CSFs. QCASSCF works like
CCASSCF but is formulated in a basis of Slater determinants.
RAS wave functions are defined using three active subspaces,
commonly labeled RAS1, RAS2, and RAS3, with RAS1
containing doubly occupied orbitals, RAS3 containing empty
orbitals, and RAS2 containing orbitals with occupation
numbers ranging from 0 to 2. The maximum number of
holes in RAS1 and the maximum number of particles in RAS3
are used as restrictions to define the configuration interaction
space. In the ORMAS-SCF method, implemented in the
GAMESS-US chemistry software package,32 several active
spaces are chosen; all intraspace excitations are allowed while
the number of interspace excitations are restricted by local
minimum and maximum occupation numbers per active
subspace. The corresponding CI problem is solved in the
Slater determinant basis, relying on the Slater−Condon rules.
The similar concept of generalized active space (GAS) was
introduced by Jeppe Olsen already in 1988. In 2011, the GAS
approach was coupled to the Super-CI algorithm within the
(Open)Molcas chemistry software package33,34 for the varia-
tional orbital relaxation, leading to GASSCF.28 As in ORMAS,
the truncated GAS wave functions are built by selecting a
number of active subspaces, and imposing constraints at the
level of the interspace excitations. However, GASSCF differs
from ORMAS-SCF in a number of aspects; most notably, in
GAS interspace excitation constraints are enforced via
cumulative minimum and maximum occupation numbers,

instead of the local constraints of the ORMAS scheme, and a
spin-adapted basis of CSFs is used in the GAS method, relying
on the Graphical Unitary Group Approach (GUGA).35 GAS-
like truncated CI wave functions have also been implemented
in the Molpro package.36

GAS restrictions can be used to exclude deadwood
configurations and to reduce the computational costs while
retaining highly accurate multireference predictions. This
strategy was adopted in the 2011 work and applied to the
dissociation curve of the Gd2 dimer and to the study of the
relative stability of two energetically low-lying spin states of the
Oxo-Mn(salen) complex.28 The GAS strategy can also be
applied to investigate the role of specific electron correlation
mechanisms, by removing electronic configurations that are
relevant to describe those correlation pathways. This strategy
was undertaken in our group to quantify the effect of the
correlation enhanced π-backdonation in Fe(II)-porphyrins,19

to understand correlation effects in corner-sharing cuprates,
and to investigate the effect of a novel combined approach
based on localization, site ordering permutations and
GUGA.37,99

Selected CI methods are another class of MC techniques
that attempt to circumvent the exponential scaling limitation
by selecting the important electronic configurations on the fly
using automated heuristics. These methodologies heavily rely
on the Slater−Condon rules and are generally bound to a
Slater determinant basis.38−46 Another notable strategy that
reduces the exponential scaling limitation is the Density Matrix
Renormalization Group (DMRG) theory.47−57

In this work we introduce a flexible Stochastic-GAS method,
that stochastically optimizes truncated GAS wave functions
expanded in the Slater determinant many-body basis, based on
the FCIQMC algorithm. In one of our earlier works, we
introduced a prototype Stochastic-GAS implementation that
supported only disconnected GAS subspaces, in that similar to
the QCAS strategy, and successfully applied it to an Fe(II)-
porphyrin model system,19 to probe the effect of the
correlation enhanced σ-donation/π-backdonations on the
basis of a large CAS(32, 34) active space.17 The GAS
algorithm here described also supports interspace excitations
that can be restricted by both cumulative and local minimum
and maximum occupation numbers constraints, as in the
conventional GASSCF method,28 and in ORMAS-SCF,27

respectively.
In Stochastic-GAS, occupation number constraints (local or

cumulative) are embedded within the precomputed heat bath
(PCHB) excitation generation.58 Our algorithm does not incur
runtime overhead to adhere to the GAS constraints, instead
they are automatically accounted for by precalculated heat bath
probability distributions. Moreover, the Stochastic-GAS
dynamics automatically benefits from another recent develop-
ment in FCIQMC, the adaptive shift with an offset,59,60 that
greatly improves the convergence with respect to walker
numbers.
Stochastic CAS, QCAS, RAS, and equivalently uncontracted

multireference configuration interaction (MRCI) wave func-
tions are special cases of the GAS strategy; thus, they are
promptly available by an appropriate choice of the GAS
subspaces and corresponding constraints. Our efficient
implementation of the Stochastic-GAS method, using hybrid
parallelization, the GAS-PCHB excitation generator, and the
adaptive shift has allowed, for example, uncontracted
stochastic-MRCISD calculations with up to 96 electrons and
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159 orbitals and a large (32, 34) active space reference wave
function.
Within the Stochastic-GAS method, one- and two-body

reduced density matrices (RDMs) can be stochastically
sampled as for stochastic FCI or CAS wave functions.16,61−63

Those can be subsequently utilized to calculate orbital
gradients, Hessians, or within the Super-CI theory2,28 to
variationally relax the molecular orbitals. This gives rise to
Stochastic-GASSCF. As shown in the following, RDMs can
also be utilized to calculate properties, such as the spin
expectation value. The Stochastic-GAS method has been
implemented and has been made available in the open source
NECI program.15 The Stochastic-GASSCF variant is available
via the interface of the NECI code with the OpenMolcas
chemistry software package.34

The remainder of the article is organized as it follows: In
section 2 we summarize the key concepts of GAS and the
original PCHB algorithms. In section 3 we introduce the novel
GAS-PCHB method, and discuss in some details its perform-
ance. In section 4 we discuss three test case applications, that
show how Stochastic-GAS can be applied to various chemical
situations, and to understand the role of different forms of
electron correlation mechanisms. The first example is a stack of
five benzene molecules, at varying intermolecular distances,
which illustrates the applicability of Stochastic-GASSCF to
fragment-based chemical systems. The second example uses
Stochastic-GASCI to perform a very large uncontracted
stochastic MRCISD calculation that correlates 96 electrons
and 159 orbitals, and uses a large CAS(32, 34) active space
reference wave function, for an Fe(II)−porphyrin model
system, and demonstrates how our algorithm can be used to
account for dynamic correlation effects. With this example, we
also demonstrate that dynamic correlation effects outside the
CAS(32, 34) further stabilize the 3Eg over the

5A1g spin state.
In a third test case application, the Stochastic-GASCI strategy
has been utilized to investigate the low-energy spin ladder of an
Fe4S4 cubane cluster. We show how the GAS strategy can be
applied to understand the two competing spin-exchange and
charge-transfer correlating mechanisms in stabilizing different
spin-states. In section 5 we summarize the findings of this
paper and section 6 contains an appendix with mathematical
details.

2. THEORETICAL BACKGROUND
2.1. Generalized Active Space (GAS) Wave Functions.

The generalized active space approach arises from the necessity
to build truncated CI wave functions that span a preselected
portion of the corresponding complete active space (CAS). As
for CAS, GAS-CI wave functions are preselected by the user,
through chemical (and/or physical) considerations, and a
careful choice of active orbitals and electrons. The active
orbitals are subsequently partitioned in a number of active
subspaces. The nature, size, and number of these subspaces
largely depend on the investigated systems, and generally are
chosen according to the type of electron correlation that one
wants to target or exclude from the CI space. The examples
discussed in the Application section or in ref 28 can be used as
guidelines to the strategic choice of GAS subspaces.
Within each subspace a full-CI expansion is generated

(complete set of intraspace excitations), while the number of
interspace excitations is restricted.19,25,28,29 GAS spaces are
defined disconnected if no interspace excitations are permitted,
while they are defined connected if interspace excitations are

allowed. In the same GAS wave function both connected and
disconnected spaces can exist. Figure 1 depicts a possible
specification of GAS constraints.

The number of interspace excitations are limited by
constraining the particle number per GAS space. In the
original work on the GAS approach28,64−66 the term supergroup
was utilized to refer to a given distribution of particles (α-, β-,
or in general electrons) among GAS subspaces, while fulfilling
the GAS constraints. We will interpret supergroups as a special
case of compositions, a term borrowed from number theory.67 A
composition is a solution to the following integer equation

+ + = ∈ ∈ x x N x N k... , ;k i1 0 (1)

We consider two compositions to be different, if their order
differs, that is, 2 + 1 = 3 and 1 + 2 = 3 are two different
compositions. If we identify the number of summands k with
the number of GAS spaces, N with the total number of
particles, and xi with the number of particles in the ith GAS
space, we can easily interpret a given composition as
distribution of particles over GAS spaces. We can constrain
the allowed compositions, hence the allowed interspace
excitations, by defining local or cumulative minimum and
maximum occupation numbers per GAS space. We write Ni

min,
Ni

max for local constraints and Ñi
min, Ñi

max for cumulative
constraints. GAS allowed compositions are then those for
which

∀ ≤ ≤ ≤ ≤i i k N x N, 1 : i i i
min max

(2)

∑∀ ≤ ≤ ̃ ≤ ≤ ̃
=

i i k N x N, 1 : i
j

i

j i
min

1

max

(3)

is fulfilled and will be called supergroups, as mentioned before.
Two electronic configurations with the same distribution of
electrons per GAS subspace belong to the same supergroup.
The occupation number constraints cannot be chosen freely.

For example, if the total minimum exceeds the total number of
electrons, ∑i = 1

k Ni
min > N or Ñk

min > N, no valid composition
(and supergroup) exists. In chemical applications, the Pauli-
principle enforces that the number of spin orbitals in a GAS
space is larger than or equal to the minimum particle number.
These “constraints of the constraints” have been discussed in
the literature.27

Figure 1. Pictorial representation of a GAS wave function with five
GAS subspaces. GAS1 and GAS2 are connected to each other but
disconnected from the rest. GAS3, GAS4, and GAS5 are also
connected to each other but disconnected from GAS1 and GAS2.
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We trivially note that if minima and maxima equal each
other in every GAS space, it is not possible to excite a particle
from one GAS space to the other, and the spaces are
disconnected. We also note that in the case of cumulative
constraints it is possible to enforce tight inequalities for the last
space Ñk

min = Ñk
max = N which tie the total number of particles

and the GAS constraints together and allow shortcuts in an
algorithm using cumulative constraints.
It is not always possible to convert between the two types of

constraints; there are constraints which can be expressed only
using local constraints, and vice versa. This aspect has already
been discussed in the manuscript introducing the GASSCF
method.28 An example is given in the Appendix (example 6.5).
If the constraints can be converted into each other it is done by
the following relationships (Lemma 6.6, see Appendix):

l
m
ooo

n
ooo
l
m
ooo
n
ooo

=
̃ − ̃ >

̃ =

=
̃ − ̃ >

̃ =

−

−

N
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N
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1

1

1
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i
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i
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i

min
min

1
max

min

max
max

1
min

max
(4)

In the Appendix (subsection 6.2) we give the necessary proofs.
It can be proven easily that CAS and RAS wave functions are

special cases of GAS, with one and three active spaces,
respectively. We trivially note that in CAS, as only one active
space is necessary, a single supergroup is generated. We also
note that GAS wave functions with purely disconnected spaces
have also one supergroup, with a constant number of electrons
per GAS space. On the contrary, the electronic configurations
generated in RAS wave functions can already be distributed
among a number of supergroups, depending of the level of
excitation from RAS1 and into RAS3 spaces.
The conventional GASSCF, that we implemented in 2011

and made available within the Molcas33 and the Open-
Molcas34 chemistry software packages, is based on
cumulative GAS constraints.28 The ORMAS-SCF method
uses local occupation number constraints.27 The novel
Stochastic-GAS algorithm introduced in this work allows
both local and cumulative constraints.
The MRCI method accounts for dynamic correlation effects

on top of a multiconfigurational wave function chosen as
reference, generally of CAS type.68−70 Since the uncontracted
MRCI approach can be expressed via RAS specifications, an
efficient GAS algorithm could promptly allow uncontracted
MRCI calculations. This is generally prohibitively expensive,
considering the unfavorable exponential scaling of RAS wave
functions with respect to the size of RAS1 and RAS3 spaces.33

However, it is feasible using our Stochastic-GAS algorithm, and
an example is offered in section 4.2.
In the GASSCF method orbitals are variationally optimized

via a self-consistent field (SCF) procedure, under the mean
field generated by the GAS wave function.28 As in CASSCF, all
intraspace orbital rotations, such as GAS1 ↔ GAS1 or GAS2
↔ GAS2, are redundant and already described by the
intraspace excitations in the CI expansion; thus, these
excitations are excluded from the orbital optimization.
Interspace orbital rotations such as GAS1 ↔ GAS2, however,
are only partially redundant and have to be considered in the
GASSCF orbital optimization step, in addition to inactive−
active, inactive−virtual, and active−virtual rotations. As some

of these rotations are already represented by the GAS wave
functions, linear dependencies are introduced, that often have a
negative impact on the rate of convergence of the GASSCF
procedure.66

Also of interest is the structure of the 1-RDM for GAS wave
functions. For disconnected GAS spaces the 1-RDM is block
diagonal, because off-diagonal elements, which couple orbitals
belonging to different GAS subspaces, vanish. Thus, the
diagonalization of the 1-RDM for disconnected GAS, which
leads to the natural orbitals, represents an invariant orbital
transformation. For connected GAS subspaces, the off-diagonal
elements between orbitals belonging to different GAS spaces in
general do not vanish, and diagonalization of the one-body
density matrix becomes a noninvariant rotation, that mixes
orbitals from different GAS subspaces. Thus, natural orbital
occupation numbers are only well-defined for disconnected
GAS spaces. For connected spaces we can define “pseudona-
tural orbitals” which are obtained from the block diagonaliza-
tion of the 1-RDM, each block referring to orbitals of one GAS
subspace. Pseudonatural orbitals and natural orbitals are
identical for disconnected spaces.
Although GAS wave functions with purely disconnected

spaces are highly constrained, they are of great theoretical and
practical interest. From a practical standpoint, they do not
suffer from the redundancy problems mentioned above, and
they have well-defined natural orbital occupation numbers. An
algorithm that assumes purely disconnected spaces is also
much easier to derive and implement. A first prototype of the
stochastic-GASSCF method with disconnected spaces was
reported in our earlier work.19

2.2. Precomputed Heat Bath (PCHB). In this section, we
discuss the Precomputed Heat Bath (PCHB) excitation
generation using the Heat Bath sampling algorithm developed
by Holmes et al.58 in the context of FCIQMC,58 and adopted
in the present work for the stochastic-GAS algorithm. For the
reader who is unfamiliar with FCIQMC we give a brief
summary in the Appendix (subsection 6.1).
We first introduce the (on-the-fly) Heat Bath excitation

generator which calculates matrix elements to all connected
determinants on-the-fly and suggests a new determinant with
proportional probability. From the generation probability
standpoint this is the ideal excitation generator, but the wall
clock time per excitation becomes quickly large because an on-
the-fly calculation of matrix elements incurs large overhead and
the setup of the nonuniform probability distributions scales
with the number of orbitals n and number of particles N as

n N( )2 2 .
The PCHB excitation generator adopted for the Stochastic-

GAS algorithm is based on the Slater−Condon rules for
double excitations. If we evaluate the matrix element between
two determinants that differ only by a double excitation, we
obtain

|⟨ | | ⟩| = | − |† †D H a a a a D g gi A B I J i AIBJ AJBI (5)

Thus, the matrix element only depends on the two-electron
integrals (g) involving the differing orbitals, hence it only
depends on the excitation, but not on the starting determinant,
Di. This allows the following approximate heat bath excitation
generation: starting from a determinant Di, two particles I, J are
selected; next, two indices A, B are drawn for the holes from a
precalculated probability distribution with probability given by
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=
∑

p AB IJ
H

H
( ; ) IJ

AB

XY IJ
XY

(6)

where HIJ
AB are the matrix elements for a double excitation from

I, J to A, B. If the picked hole indices A, B are already occupied
in Di the excitation is discarded. The numerator of eq 6
involves no approximation. However, compared to the on-the-
fly heat bath method, the denominator contains some nonzero
elements which would vanish in the nonapproximated heat-
bath algorithm if X or Y were already occupied in Di. Note that
p(AB; IJ) is not yet the complete pgen value needed for eq 25. It
has to be multiplied with the probability to perform a double
excitation and to draw the particles I and J.
If the probability distribution from eq 6 is implemented

using the alias-method, the time for the excitation generation
scales as (1) with the number of orbitals and particles.71 As
we will discuss later in depth, this is a typical trade of “space for
time”. If we write |M| for the number of elements in a setM, we
need |{(I, J)|I < J; I, J < n}| probability distributions with |{(A,
B)|A < B; A, B < n}| entries; hence, the memory demand scales
with n( )4 , with n being the number of orbitals.
The Hamiltonian matrix element between two determinants

Di and Dj that differ by one single excitation is given by

∑|⟨ | | ⟩| = |⟨ | | ⟩| = + −†

∈

D H D D H a a D h g gi j i A I i IA
X

AIXX AXXI
occ.

(7)

The value of this element depends on the specific occupied
orbitals in Di. Hence it is not possible to define configuration-
independent probability distributions as for the double
excitation case. Thus, in general it is not efficient to use
precomputed probability distributions for single excitations as
it cannot be done in (1) time.
In the context of single-reference methods it is possible to

introduce additional approximations and define precomputed
probability distributions even for single excitations.72 However,
for the more general case of multireference wave functions,
which represent our main target, such approximations cannot
be applied, and single excitations are picked uniformly.

3. THE GAS-PCHB ALGORITHM
In this section, we describe how the PCHB excitation
generation and the concept of supergroups in GAS can be
combined to derive an efficient algorithm, that we call GAS-
PCHB, for performing Stochastic-GASCI and Stochastic-
GASSCF calculations within the FCIQMC framework.
The simplest stochastic implementation of GAS constraints

consists in performing excitations using the conventional
FCIQMC excitation generators and to discard GAS forbidden
excitations a posteriori. The discarding GAS implementation
can be easily combined with any already available FCIQMC
excitation generator, including PCHB, and represents the
natural choice for benchmarking more sophisticated GAS
excitation generators, such as the GAS-PCHB algorithm, that a
priori suggests only GAS allowed determinants. We have also
implemented a discarding-GAS algorithm and found that when
GAS constraints simply aim at removing deadwood config-
urations, the discarding-GAS performs surprisingly well, and it
is rather challenging to develop GAS excitation generators that
aim at excluding configurations a priori, without incurring
overhead that makes the discarding implementation faster in

practice. We succeeded in this task via the GAS-PCHB
algorithm.

3.1. The Algorithm. In FCIQMC the spawning step is
responsible for the stochastic propagation of walkers into the
CI space, starting from occupied determinants. Thus, if we
assume that our starting determinant is allowed by GAS
constraints, only the spawning step has to be modified to
ensure that all spawned determinants are GAS allowed. The
algorithmic details to realize a GAS-PCHB excitation generator
are described in this section.
Within the GAS approach, a given (A, B ← I, J) excitation

can lead to a GAS allowed or forbidden determinant Dj
depending on the starting determinant Di. Hence for GAS, it
is not possible to generate probability distributions that only
depend on the orbital indices, p(AB; IJ) as for eq 6. The
concept of supergroups and compositions (section 2.1) are
introduced in our GAS-PCHB excitation generator to
circumvent the dependency of the probability distributions
on the individual Slater determinants.
The supergroup of a given determinant can be determined

by counting the particles per GAS space (a N( ) operation,
where N is the number of correlated particles). Counting how
many particles an excitation transfers between GAS spaces is
also a trivial operation. Hence for a given supergroup (and all
determinants belonging to it), an excitation is GAS allowed if
the composition after excitation is still inside the chosen GAS
constraints. Whether an excitation is GAS allowed or forbidden
only depends on the supergroup of the starting determinant Di.
This condition applies for local and cumulative constraints
alike.
If we define isg to be a labeling index for the supergroups, we

can introduce a modified Hamiltonian, H̃(isg), for each
supergroup whose entries are set to zero for GAS forbidden
excitations and to the original Hamiltonian otherwise. Thus, in
the case of double excitations, we can write

l
m
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n
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|⟨ | ̃ | ⟩|

=
| − | ←

† †D H i a a a a D

g g A B I J i

( )
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0 else

i A B I J i

AIBJ AJBI

sg

sg
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Equation 8 is similar to eq 5, in that the right-hand side of the
equation does not depend on the determinant Di, but only on
its supergroup isg(Di). Similar to the FCI-PCHB probability
distributions (eq 6), we can define GAS-PCHB probability
distributions as

=
̃

∑ ̃p AB i
H i

H i
( ; IJ; )

( )

( )
IJ
AB

XY IJ
XYsg

sg

sg (9)

Although the new dependency on isg(Di) increases the number
of probability distributions that have to be generated and
stored, the direct dependency on the individual Slater
determinants is circumvented, making GAS-PCHB a practical
tool of general applicability. In the next section the scaling of
the algorithm will be discussed together with some examples
that show the practical limitations bound to the dependency of
p(AB; IJ; isg) on the number of supergroups. However, we can
anticipate that since there are much fewer supergroups than
determinants, the different probability distributions can in
most of the practical cases be precomputed and stored.
As for the FCI-PCHB case, it is not possible for single

excitations to use precomputed probability distributions to
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perform importance sampling according to the matrix element.
Nevertheless, it is possible to perform uniform selection of
holes for single excitations which at least automatically adhere
to GAS constraints by using

l
m
ooo
n
ooo

=
̃ ←

p A I i
N A I i

( ; ; )
1/ ( ) is GAS allowed for

0 else
sg

sg

(10)

where Ñ is an appropriate normalization factor, to ensure
∑Xp(X; I; isg) = 1 for a given particle I and given supergroup
isg. Such a distribution can be very efficiently implemented by
using bitmasks.
For an efficient GAS-PCHB excitation generator, a fast

function to determine the supergroup index of any given Slater
determinant is key. A fast on-the-fly algorithm to calculate
isg(Di) is given in the appendix (subsection 6.2).
The time to calculate isg(Di) can be additionally reduced, by

evaluating isg(Di) only once for a given determinant and then
reusing this value for all walkers on this determinant. The
reused supergroup index does not require additional
communication, because of an implementation detail in the
annihilation step. All walkers on the same determinant are
collected to the same process, to facilitate the annihilation of
newly spawned walkers from different parent determinants.
This implies that in the subsequent spawning step all walkers
belonging to a given determinant will reside on one process.
Every walker that attempts to spawn from this determinant can
look up the index without any communication across
processes.
In the special case of disconnected spaces or GAS

constraints that are equivalent to CAS there is exactly one
supergroup (section 2.1). Hence the index isg equals one for
every determinant and does not have to be calculated at all in
this case. Algorithm 1 summarizes the main steps of the GAS-
PCHB excitation generator.

The adaptation of the semistochastic method (introduced in

subsection 6.1) to the stochastic GAS-PCHB procedure

requires only minor changes, conceptually and code-wise. In

the case of GAS, the deterministic core-space Hamiltonian for

performing semistochastic FCIQMC dynamics is simply

defined as

l
m
ooo
n
ooo
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⟨ | | ⟩

H
D H D D Dand are GAS allowed

0 else
ij

i j i jcore

(11)

and since Hcore has to be constructed only once and the full
information about GAS constraints is contained in the zeroed
off-diagonal elements it is very easy to implement the
semistochastic method for GAS constraints.
The sampling of reduced density matrices (RDM) does not

require any code adaptation, since GAS forbidden CI
coefficients are simply zero and they are not accumulated
during the RDM sampling steps.61−63 Therefore, the stochastic
GAS-PCHB excitation generator allows us to formulate a
Stochastic-GASSCF procedure, and gives us access to
properties encoded into the RDMs, such as the spin
expectation value.

3.2. Performance and Scaling. To evaluate the perform-
ance of the GAS-PCHB excitation generator, invariant and
noninvariant GAS constraints are to be distinguished. Invariant
GAS constraints are those that exclude deadwood config-
urations. Noninvariant GAS constraints, instead exclude
configurations that would have nonzero coefficients in the
corresponding CAS-CI expansion, and once removed the
resulting total energy increases.
The conventional GAS-CI algorithm,28 greatly benefits both

from invariant and noninvariant GAS constraints, because the
largest bottleneck of the method is the memory required to
store the dense CI vector. A truncated Hamiltonian matrix and
corresponding CI eigenvector greatly reduce this demand,
independently of the nature of the truncated configurations.
Conversely, FCIQMC is a method that benefits from

sparsity in the wave function, and unpopulated determinants
do not occupy memory and are rarely selected at the spawning
step. Hence, invariant GAS constraints do not improve the
course of the dynamics, nor do they reduce the corresponding
computational costs (spawning process and storage). On the
contrary, noninvariant GAS constraints reduce the CI space to
which walkers are allowed to propagate. Consequently, these
GAS constraints can effectively reduce the computational costs
for FCIQMC.
If we compare GAS-PCHB with discarding-GAS and assume

that the supergroup index isg is known, and that the list of
probability distributions for all supergroups are already
available, the drawing of orbital pairs AB from p(AB; IJ; isg)
is practically as fast as drawing AB from the corresponding FCI
distribution p(AB; IJ). Computational overhead for the GAS-
PCHB algorithm arises from the generation of the probability
distributions (only at the beginning of the simulation) and
from the evaluation of the supergroup index for a given
determinant at runtime. In the worst case, if every determinant
is occupied by exactly one walker, the supergroup has to be
calculated for every walker and the time per excitation
increases slightly. Such a dense CI wave function is rarely
encountered in practical applications. In actual chemical
problems determinants are occupied by multiple walkers and
the supergroup index is calculated only once for each newly
occupied determinant. Thus, in practical GAS calculations, the
evaluation of the supergroup index represents a negligible
additional step and the time per excitation can be considered
identical for GAS-PCHB and discarded-GAS.
For GAS schemes, where only disconnected spaces are

considered, this negligible overhead vanishes completely, since
for disconnected GAS schemes only one supergroup exists; the
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supergroup index isg equals one for every determinant and does
not have to be calculated (see section 3.1). This implies that
FCI-PCHB can be implemented as a special case of GAS-
PCHB.
Since discarded excitations increase autocorrelation of the

projected energy, the standard error σE of a discarding-GAS
excitation generator will usually be larger than for the a priori
selection provided by the GAS-PCHB scheme.73 Also the
pgen(i, j) for discarding GAS algorithms is generally lower than
for corresponding a priori GAS algorithms; this has the effect
of leading to a smaller imaginary time-step for the discarding-
GAS algorithm. Both effects deteriorate the efficiency of a
discarding implementation with respect to the GAS-PCHB
algorithm.58

Because the amount of GAS discarded excitations strongly
depends on the system, it is difficult to give general efficiency
ratios between GAS-PCHB and discarding-GAS. But since the
time per excitation is in general the same for both methods,
GAS-PCHB is usually more efficient than discarding-GAS.
PCHB (in Stochastic-GAS and Stochastic-CAS) is a typical

trade of “space for time”. The memory demand for GAS-
PCHB probability distributions increases with ·n n( )4

sg ,
where n is the number of spatial molecular orbitals and nsg
the number of supergroups that are generated for a given GAS
specification.
It is rather difficult to write a closed expression for the

scaling of nsg with respect to the number of particles, N, GAS
spaces, nGAS, and GAS constraints. It has to be stressed that the
number of supergroups is independent from the number of
orbitals and in the best case of purely disconnected spaces
there is only one supergroup, regardless of N and nGAS. In the
worst case of no minimum or maximum restrictions, the
scaling of nsg is combinatorial and given by the number of
compositions (Lemma 6.4) as
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In practical applications, as the ones discussed in the next
section, interspace excitations lie between these extremes, and
in general closer to the lower extreme. As an example, we
consider a system of five stacked benzene molecules, with an
active space that includes the six π-orbitals of each benzene,
and distributed into separate GAS subspaces. This system is
discussed in greater detail in subsection 4.1. If we use
cumulative constraints we can define

̃ = −

̃ = +

N i n

N i n

6

6

i

i

min
exc

max
exc (13)

for the ith GAS space, to control the number of allowed
supergroups depending on the interspace excitations nexc.
Table 1 shows a steep scaling of the memory with nexc. Our
GAS-PCHB implementation uses hybrid parallelization, and
precomputes the probability distributions in shared memory
on every node. Thus, in the case of the stack of five benzene
molecules, ≈35 GB per node is required for three interspace
excitations (Table 1). The memory demand would have been
larger with pure message-passing parallelization, where each
process requires its own copy of the probability distributions.
In that scenario, a 40 processes node would require 1.5 TB of
memory for the same system. Since drawing a number is a

read-only operation, no complicated locking mechanisms or
atomic operations are required, after the distributions have
been initialized. The memory demand is further reduced by a
factor of ≈ 3

16
if distribution entries are indexed over spatial

orbitals instead of spin orbitals.15

Moreover, as shown in the next section, in practical
calculations double interspace excitations are usually enough
to recover the Full CI energy for chemically motivated GAS
constraints. If the number of interspace excitations is low, the
memory demand remains contained and a larger number of
particles and GAS subspaces are accessible. For example, in
Table 2, we show the memory requirements for a hypothetical

[n·(6, 6)] GAS calculation, with varying number of GAS
subspaces, n, and using a fixed number of interspace
excitations, nexc = 2. On today’s scientific computing hardware,
up to eight of such (6, 6) GAS subspaces can be correlated
(≈1 TB). In this context, we note again that the number of
supergroups is independent f rom the number of orbitals, and only
depends on the number of GAS spaces and the level of
interspace excitations.

4. APPLICATION
In this section three applications of Stochastic-GASCI and
Stochastic-GASSCF are presented that show how GAS in its
stochastic form can be utilized for modeling the electronic
structure of a variety of chemical systems. The first example is a
stack of five benzene molecules, which illustrates how a limited
number of interspace excitations in GASSCF already recovers
the full CI energy if the main correlation effects happen inside
each GAS space. The second example uses Stochastic-GASCI
to perform a very large uncontracted-MRCI calculation for a
Fe(II)−porphyrin model system, with a (32, 34) active space
as reference wave function, and correlating a total of 96
electrons and 159 orbitals. This example demonstrates how the

Table 1. Memory Demand of Probability Distributions for a
Hypothetical [5·(6, 6)] GAS Calculation with Different
Number of Interspace Excitations nexc Using Cumulative
Constraints (eq 13)

algorithm nexc nsg memory/GB

FCI-PCHB 0 1 0.01
GAS-PCHB 0 1 0.01
GAS-PCHB 1 81 1.17
GAS-PCHB 2 625 9.06
GAS-PCHB 3 2401 34.81

Table 2. Memory Demand of Probability Distributions for a
Hypothetical [n·(6, 6)] GAS Calculation with Varying
Number of GAS Subspaces, And a Constant Number of
Interspace Excitations Set to nexc = 2. The GAS Constraints
Are Cumulative as Given by eq 13

nbenzene nsg memory/GB

1 1 0.01
2 5 0.07
3 25 0.36
4 125 1.81
5 625 9.06
6 3125 45.31
7 15625 226.55
8 78125 1132.74
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new method can be efficiently used to account for dynamic
correlation in a systematic way. As a last example, we use
Stochastic-GASCI to investigate the spin ladder of an all-ferric
Fe4

(III)S4 cluster, and discuss the role of the leading forms of
electron correlation by selectively switching them off via GAS
constraints.
4.1. Benzene Stack. In this section we discuss the

application of Stochastic-GAS-CI and Stochastic-GASSCF to
a stack of five benzene molecules separated by a varying
distance, d, ranging from 3.0 to 20.0 Å (Figure 2).

The geometry of the benzene unit was taken from the
Computational Chemistry Comparison and Benchmark Data-
Base.74 A conventional CASSCF(6, 6) calculation was
performed on this structure using OpenMolcas.34 The
resulting MO coefficient matrix was repeated five times along
the diagonal to form a block-diagonal coefficient matrix, used
as MO basis for the GAS-CI calculations and as starting MOs
for the Stochastic-GASSCF optimizations. Since the molecular
orbitals of this block-diagonal matrix are not orthonormal, a
Gram-Schmidt orthonormalization was performed prior to the
stochastic-GASSCF optimization.
For this system, π−π* correlation within each individual

benzene (intrafragment) is expected to be dominating, while
electron correlation across the fragments is expected to be
weaker, and its role becoming increasingly important as the
benzene fragments get closer to each other. A GAS [5·(6, 6)]
active space has been chosen, which consists of the 30 π-
orbitals, six on each benzene, and their 30 electrons. The six π-
orbitals of each benzene have been grouped into separate GAS
subspaces. We used cumulative
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for the ith GAS space. The number of interspace excitations,
nexc, starting from a value of zero (disconnected spaces), was
gradually enlarged until convergence in total energy was
reached. Local and cumulative constraints are exactly
equivalent for disconnected spaces (nexc = 0), and yield very
similar results for single excitations (nexc = 1). Looking at the
sizes of the Hilbert spaces, as we will do later in depth, the
highest discrepancy between local and cumulative constraints
is expected for nexc = 1. Since the deviation was negligible

already in this case we tested only cumulative constraints for
nexc > 1.
The case of disconnected spaces, nexc = 0, is equivalent to a

system of neutral fragments, whose π-electrons are internally
correlated and interact among each other only via the mean
field generated by the local (6, 6) active space expansion. For
nexc ≥ 1, charge-transfer configurations are added to the wave
function and many-body correlation effects are explicitly
accounted for. Hence, convergence with respect to nexc was
reached earlier for larger distances between neighboring
benzene molecules.
The number of supergroups and memory requirements for

the different CAS and GAS calculations with cumulative
constraints are summarized in Table 1. The CAS(30, 30) space
with Sz = 0 consists of 2.41 × 1016 SDs, while the GAS space
with disconnected spaces consists of 1.32 × 1014 SDs which is
0.5% of the CAS size. The connected GAS spaces contain
different supergroups for local and cumulative constraints, and
the allowed configurations and Hilbert space sizes differ
slightly at the same level of interspace excitations. For example,
the supergroup [6, 5, 8, 5, 6] would be allowed by the
cumulative constraints given in eq 14 for single interspace
excitations nexc = 1, but is forbidden by the local constraints in
eq 15. On the other hand, the supergroup [5, 5, 7, 7, 6] and
other multiple single excitations from neighboring fragments
would be allowed by local constraints (eq 15) but forbidden by
cumulative ones (eq 14).
The [5·(6, 6)] GAS space with nexc = 1 and local constraints

consists of 51 supergroups and 4.25 × 1015 SDs, or 18% of the
CAS size, and requires 0.74 GB to store the PCHB probability
distribution in memory. Conversely, the cumulative constraints
lead to 81 supergroups and 5.22 × 1015 SDs, or 22% of the
CAS size, and require 1.17 GB of memory to store the
corresponding PCHB probability distributions. For a higher
number of interspace excitations the difference of Hilbert space
sizes between local and cumulative constraints decreases
further.
Figure 3 shows the energy difference between GASSCF and

CASSCF, (EGASSCF − ECASSCF), for a different number of
interspace excitations, nexc, and different distances between
neighboring benzene fragments.

Figure 2. Geometry of the benzene stack. The interfragment distance,
d, has been changed from a value of 20 Å (very weak, mean-field-only
interactions between fragments) to a value of 3 Å, where many-body
correlation effects take place.

Figure 3. (EGASSCF − ECASSCF) energy difference [kJ/mol] for a
number of interspace excitations, nexc, ranging from 0 to 3, and
different distances, d, between the benzene fragments. The chemical
accuracy of 1 kcal mol−1 is marked with the black-dashed horizontal
line. A table of all energies is given in the Supporting Information.
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The Stochastic-GASSCF energy converges very fast to the
Stochastic-CASSCF value, as the nexc value is increased.
Already with nexc = 1 the error is below the chemical accuracy
of 1 kcal mol−1 for all distances and both local and cumulative
GAS constraints.
As expected, the CI-truncation error is dependent on the

distance. The closer the benzenes are to each other, the more
charge transfer configurations are required for an accurate
description of the correlation effects. At an interfragment
distance of 4.5 Å and above, disconnected spaces suffice to
have deviations smaller than 1 kcal mol−1 from the
corresponding Stochastic-CASSCF calculation. Notice that
this is a typical distance for π-stacking, leading to the
conclusion that highly truncated MC wave functions, such as
GAS wave functions with disconnected spaces, can be of high
value for realistic model systems of weakly interacting
fragments. It has to be emphasized that the mean field orbital
relaxation effect of fragments onto each other is still accounted
for by the SCF procedure, even for disconnected spaces, as
opposite to methods where only the CI problem is solved in a
fixed MO basis.
The stack of benzene molecules represents a good ground

for comparison between Stochastic GASSCF, Active Space
Decomposition Density Matrix Renormalization Group (ASD-
DMRG),75,76 and Non-Orthogonal CI with a Reduced
Common Molecular Orbital Basis (NOCI-RCMO),77,78 as
the latter approaches have also been tested on the same or
similar model systems in earlier works. Both NOCI-RCMO
and ASD-DMRG are tailored toward clusters of molecules with
weak interspace interactions, and share the assumption that the
main correlation effects happen within the fragments.
In ASD-DMRG, the CI problem is solved conventionally on

each fragment. The compound wave function is then
constructed as a linear combination of direct products of
fragment states. As in DMRG, a matrix-product ansatz is used
for the coefficients.75 The dimension of these matrices,
commonly called the bond dimension, M, is the main factor
controlling accuracy and cost of such calculations. Although
the M value cannot be as intuitively interpreted as the number
of interspace excitations in GASSCF, it is also a measure for
correlation between fragments. If M = 1 the matrix-product
reduces to a plain product ansatz of noninteracting systems,
while if M is the dimension of the full Hilbert-Space, the CI-
expansion can be exactly recovered. The M value in realistic
systems lies somewhere in between, as in those cases M cannot
be made large enough to reconstruct exactly the entire Hilbert
space. The most notable difference between ASD-DMRG and
conventional DMRG, is the low value of M at the order of 102

that is required by ASD-DMRG to reach convergence for
fragment-like systems. Conventional ab initio DMRG, where
the sites are not optimized fragments but spatial molecular
orbitals requires M values that are approximately 2 orders of
magnitude higher.
In ref 75, the authors of ASD-DMRG state that “If a poor

initial guess for the chain includes only neutral f ragments and the
total charge is constrained to be neutral, the algorithm will keep
only neutral f ragment states although charge transfer conf ig-
urations may be important in the exact ground state” and
overcome this limitation via a perturtative correction. Within
the GAS approach, charge transfer configurations are added by
tuning the number of interspace excitations, nexc. It is thus,
possible to precisely identify these configurations and quantify
their importance, as shown in Figure 3.

The NOCI-RCMO method uses orthonormal molecular
orbitals for each state on each fragment but allows non-
orthogonality between orbitals in different states or different
fragments.77,78 From the nonorthogonal and partly redundant
orbitals, a common orbital basis is constructed on each
fragment by removing linear dependencies among the orbitals
in different states, depending on a cutoff value τMO for the
diagonalized overlap matrix. The common orbital bases on
each fragment are then collected together to form a large
nonorthogonal MO basis for the cluster. The similarity with
the GAS truncation arises at the evaluation of matrix elements
which requires several determinant pairs due to the non-
orthogonality. Determinants are neglected if their CI-
coefficient are smaller than another threshold, τdet. The
application of NOCI-RCMO to similar aromatic systems as
our benzene stack shows that τdet can become as large as 1 ×
10−6 for fragment distances of 5 Å without affecting the total
energy value.77 Unlike GASSCF, τdet does not a priori exclude
higher-order charge-transfer configurations. However, if a
system is made of weakly interacting fragments and fragment
MOs are utilized, charge-transfer configurations will have
(vanishingly) small CI-coefficients, and will be excluded at run
time by the chosen τdet threshold. A high value of τdet has then
a similar meaning as a low number of allowed interspace
excitations in GASSCF.
It is important to highlight that both ASD-DMRG and

NOCI-RCMO are tailored toward systems of weakly
interacting fragment molecules, while GASSCF is a method
of general applicability, that can be used on compounds of
weakly interacting fragments, as well as on strongly correlated
and covalently bonded systems as shown in the later sections.
Regardless of the chosen method for optimizing the CI
problem, the orbital representation is also very important. In
the particular case of the benzene stack, choosing fragment-
localized orbitals enhances the locality of electron correlation
within each fragment, and the sparsity of the many-body
eigenvectors. Truncations (via GAS, NOCI, or ASD-DMRG)
that take advantage of the sparse structure of the wave
functions have negligible impact on the accurate description of
correlation effects and on the predicted total and relative
energies.
In the following, the error introduced by not optimizing the

molecular orbitals is discussed. Since the CI energy of the first
SCF iteration is the GASCI energy on the initial, unoptimized
orbitals, it is possible to compare the GASCI total energies
with the GASSCF energies. The energy difference between
GASCI and GASSCF (EGASCI − EGASSCF) for different numbers
of interspace excitations, nexc, and different distances between
the benzene fragments is shown in Figure 4.
The discrepancy between GASCI and GASSCF, due to

missing variational relaxation of the orbitals, is higher than the
difference between GASSCF with disconnected spaces and
CASSCF, indicating that mean-field effects can be substantially
larger than correlation effects bound to the charge-transfer
correlation mechanism. Interestingly, the error is nearly
independent from the nexc chosen.
Of particular interest is also the speed of convergence of the

FCIQMC dynamics (in the CAS form) depending on the
orbital basis. Only noninvariant orbital rotations are performed
in the CASSCF procedure (inactive ↔ active, inactive ↔
virtual and active ↔ virtual rotations). Thus, the active orbitals
are not rotated among each other by the SCF procedure, and
the main correlation features are to a large extent retained
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along the CASSCF optimization. At convergence, the
optimized CASSCF active orbitals are in general transformed
into natural orbitals, by diagonalization of the one-body RDM
in the active space. For GASSCF, the diagonalization of the 1-
RDM in the full active space is not an invariant rotation.
Instead, invariant is the rotation to pseudonatural orbitals,
defined as those which diagonalize each GAS subspace
separately. While pseudonatural orbitals do not disrupt the
fragment-localized structure of the MO basis, the natural
orbitals are in general delocalized across the entire system. The
locality of correlation (within the fragment) is lost when the
more delocalized natual orbitals are utilized, and the many-
body wave function generally becomes more dense. FCIQMC
dynamics are sensitive to the MO basis adopted. This
argument has been discussed for exchange-coupled transition
metal clusters.79 The benzene stack example shows how the
MO representation can affect FCIQMC dynamics for weakly
interacting closed-shell systems. The FCIQMC (in CAS form)
projected energy, Eproj, as a function of the walker population,
and using both natural orbitals and fragment-localized orbitals
is depicted in Figure 5.
The FCIQMC dynamics (in CAS form) converge faster

when fragment-localized molecular orbitals are utilized, rather
than for example the corresponding more delocalized natural
orbitals. This result represents the numerical evidence that
fragment-localized orbitals produce sparser wave functions
which are simpler to describe by a finite distribution of
stochastic walkers. Within GASSCF, where the pseudonatural
orbitals are used, the convergence speed does not deteriorate,
owing to the fact that pseudonatural orbitals preserve the
fragment-localized nature of the molecular orbitals. We also
note that the time-step can be chosen larger for fragment-

localized orbitals ( = × ℏτΔ − −E2.85 10
i

3
h

1) than for delocal-

ized ones ( = × ℏτΔ − −E1.90 10
i

3
h

1) which allows faster

propagation along the imaginary time while retaining a stable
dynamics. FCIQMC benefits from a sparse representation of
the wave function. While the exact CI-energy is invariant under
unitary MO transformations, methods that approximate the
full-CI energy are not invariant under the same MO
transformations. This is due to the different degree of sparsity

of the Hamiltonian matrix and the corresponding CI wave
function with respect to the orbital transformations. If orbitals
that are delocalized over the entire compound system are
utilized as one-electron basis, a simple π−π* excitation on one
fragment can only be represented by a large linear combination
of excitations across most (if not all) delocalized MOs,
artificially coupling them to each other and, thus, producing
unnecessarily complicated CI expansions, featuring long-range
entanglements. On the contrary, fragment-localized orbitals
keep the leading forms of electron correlation confined within
each fragment, increasing the sparsity of the wave function. We
also note that for systems made of weakly interacting
fragments, such as the benzene stack, and using a GAS
strategy that reflects the fragment nature of the compound, the
Stochastic-GAS calculations are practically size-extensive if
localized orbitals are used, because we can safely assume that
only interspace excitations into neighboring fragments are
relevant.

4.2. Fe(II)−Porphyrin Model System. Iron-porphyrins
are the central building block for a variety of enzymes in
biochemistry. Owing to the low barrier between Fe2+ and Fe3+

and nearly degenerate low-energy electronic states, they
catalyze important redox reactions and can serve as charge
or molecular carriers.80−83 The relative stability of the low-
energy spin states depends on ligand field and many-body
correlation effects experienced by the metal center that, in turn,
depend on chemical functionalization and geometry of the
conjugated macrocycle. For this reason, a reliable theoretical
prediction of the energetically low-lying spin states is
challenging and necessary to facilitate the understanding of
nature’s efficient enzymatic reactions.
The theoretical prediction of the relative stability of the

energetically close 5A1g and 3Eg states in the square planar
Fe(II)−porphyrin system is a notoriously difficult task, and
there have been a number of theoretical investigations on this
topic.17−19,44,45,84−91 It has been shown that the triplet is
characterized by more complex electron correlation mecha-
nisms than the quintet spin state and only if these correlation
effects are precisely taken into account, is the triplet predicted
to be the ground state.17−19

Figure 4. Energy difference between GASSCF and GASCI, (EGASCI −
EGASSCF), for different numbers of interspace excitations, nexc, and
different distances between the benzene fragments. The chemical
accuracy of 1 kcal mol−1 is marked by the horizontal dashed-black
line.

Figure 5. FCIQMC projected energy, Eproj, against the number of
iterations using the more delocalized natural orbitals and the
fragment-localized orbitals, and increasingly larger number of walkers.
The system is the benzene stack (Figure 2) with an interfragment
distance of 6.0 Å. The fragment-localized orbitals utilized here are the
CASSCF orbitals. The natural orbitals are obtained from the
diagonalization of the corresponding one-body RDM.
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A (14, 16) active space erroneously predicts a quintet
ground state, even when coupled to the post-CASSCF
perturbative CASPT2 correction.17

If the active space is substantially enlarged, CAS(32, 34),17

consisting of the entire ligand-based π system, the σ donating
orbitals, and the valence and double-shell d orbitals, complex
mechanisms such as 3d−3d′−π* excitations are observed in
the wave function19 that can be ascribed to correlation-induced
delocalization of a metal charge to the macrocycle, a correlated
π-backdonation. Only then is a triplet ground state predicted.17

In a joint FCIQMC and DMRG study, we have also analyzed
the CI-expansion of the wave function and the orbital
entanglement to visualize the complex correlation mechanisms
taking place in this system.19 In the same work, a prototype
Stochastic GAS implementation for disconnected spaces was
used to quantitatively probe the importance of π-back-
donations and was found to have an effect of 2.5 kcal mol−1

on the spin gap.19

Even if the (32, 34) active space describes qualitatively well
the necessary correlation mechanisms, dynamic correlation
effects exist that go beyond the (32, 34) active space. Semicore
correlation has been accounted for by further enlarging the
active space, CAS(40, 38), including the 3s and 3p orbitals,
and ultimately increasing the spin gap to 4.4 kcal mol−1, at the
Stochastic-CASSCF level of theory.18 Coupled cluster
calculations with up to quadruple excitations (CCSDTQ)
inside the Stochastic-CASSCF(40, 38) orbital space yielded a
spin gap of 4.8 kcal mol−1.18 Several methods exist to treat
efficiently dynamic correlation effects on top of CASSCF wave
functions. However, the list dramatically reduces when a large
CASSCF wave function is used as reference. The multi-
configuration pair−density functional theory, MCPDFT, is one
of the few methods that can be effectively coupled to very large
CAS reference wave functions. MCPDFT calculations on top
of DMRG-CASSCF(32, 34) active space were performed by
Zhou et al.90 and further stabilized the triplet over the quintet
with an estimated spin gap of 16.1 kcal mol−1.90 Although this
method can be coupled to large CAS wave functions, it is not
possible to systematically improve it. Moreover, although the
delocalization error92 does not affect the SCF procedure in MC-
PDFT, as this is carried exclusively using the preceding
CASSCF procedure, it is possible that the delocalization error
bias, dependent on the chosen exchange and correlation
translated functional, still exists that overstabilizes the triplet
spin-state. Another example is the tailored coupled cluster
approach (TCC) that performs Full CI within the active space
and uses the resulting CI coefficients as fixed amplitudes in the
subsequent coupled cluster equations, which are then solved to
account for the remaining dynamic correlation.93 The tailored
distinguishable cluster method94 with singles and doubles
(TDCSD) and F12 correction95,96 gave a spin gap of 5.8 kcal
mol−1.97

For the current application, the Stochastic-GAS approach
has been applied to build and stochastically solve a large RAS-
CI wave function. The converged CASSCF(32, 34) MOs have
been used as a one-electron basis.17,19 The 34 active orbitals
have been included in the RAS2 space. The RAS1 space was
selected by identifying plateaus in the orbital energy of the
inactive orbitals for each irreducible representation and
including orbitals above these plateaus. In total 32 doubly
occupied orbitals were chosen for the RAS1 space, including
the four 3s and 3p semicore orbitals from the metal center and
the 28 additional σ-orbitals from the macrocycle. Since there

were no well-defined plateaus in the orbital energies of the
virtual orbitals, the RAS3 space was simply defined by an
energy threshold of 0.85 Eh. The threshold was chosen such
that the resulting memory demand could be still fullfilled by
the smallest node used for these calculations. All virtual orbitals
below this threshold were included into the RAS3 space. A
total of 93 empty orbitals were selected for the RAS3 space. Up
to double excitations out of RAS1 and into RAS3 were
allowed, leading to a total of nine supergroups and a memory
requirement of 97.64 GB for the GAS-PCHB probability
distributions.
In total, a RAS(96, 2, 2; 32, 34, 93) active space was

selected, where the notation RAS(n, l, m; i, j, k) is used, where
n represents the number of active electrons, l is the maximum
number of holes allowed in RAS1, and m is the maximum
number of electrons allowed in RAS3. Active orbitals are
labeled by i, j, k and refer to those placed in RAS1, RAS2, and
RAS3, respectively. This scheme correlates 96 electrons into
159 orbitals.
The Stochastic-GAS scheme is conceptually equivalent to a

stochastic uncontracted Multi-Reference Configuration Inter-
action approach with single and double excitations from the
occupied space (Stochastic-MRCISD). Clearly, no conven-
tional uncontracted or contracted MRCI procedure can be
carried that uses the large CAS(32, 34) reference wave
function. In that respect the present calculation is unprece-
dented and it is only possible using our Stochastic-GAS
strategy.
The spin gap, ΔE = E(5A1g) − E(3Eg), predicted by our large

Stochastic-GAS approach, is 7.0 kcal mol−1, a value that is
considerably larger than any systematically improvable result
previously reported. The Stochastic-GAS spin gap is reported
in Table 3 together with the results obtained with other

methods on the same model system. Computational details
related to the Fe(II)−porphyrin applications can be found in
the Supporting Information.
The spin gap increases from 3.5 kcal mol−1 to 7.0 kcal mol−1,

in going from CASSCF(32, 34) to the large Stochastic-RASCI
calculations. The doubled spin gap prediction clearly shows the
importance of dynamic correction effects on top of an already
large active space, that describes most of the valence
correlation mechanisms. This unprecedented result should

Table 3. Spin Gap ΔE = E(3A1g) − E(3Eg) between the
Quintet and Triplet State of Fe(II)−Porphyrin for Different
Methods from the Literaturea

algorithm
ΔE/

(kcal mol−1)

CASSCF(14, 16)/CASPT217 −0.5
Stochastic-CASSCF(32, 34)17,19 3.5
DMRG(M = 1 × 104) CASSCF (32, 34)19 3.5
Stochastic-CASSCF(40, 38)18 4.4
Stochastic-CASSCF(40, 38)/CCSDTQ18 4.8
Stochastic-CASSCF(40, 38)/CCSDTQ + F1218 5.7
Stochastic-CASSCF(32, 34) + TDCSD97 2.6
Stochastic-CASSCF(32, 34) + TDCSDF12

97 5.8
DMRG(M = 300) CASSCF(34, 35) + MCPDFT(tPBE)90 16.1

Stochastic-CASSCF(32, 34) + RASCI(96, 2, 2; 32, 34, 93) 7.0(1)
aThe results are sorted by increasing spin gap, except for the
MRCISD result in the last row which is from this work.
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also be compared to the CASSCF(14, 16)/CASPT2 approach
used earlier.17 While the CASPT2 also aims at recovering
dynamic correlation outside the active space, the chosen active
space was too small, and important high-order excitations
effects (such as the correlation induced π-backdonation
discussed in ref 17 and 19) were missed by the second order
perturbative correction. It is also important to emphasize that
our approach can be further systematically improved by
increasing the excitation level from RAS1 and to RAS3, a study
that goes beyond the scope of the present work.
4.3. Fe4S4 Cubane Spin Structure. In this section, the

Stochastic-GAS paradigm is used to investigate correlation
effects in spin ladders of exchange-coupled polynuclear
transition metal clusters, here exemplified by an all-ferric
Fe4

(III)S4 cubane complex.
The GAS strategy is first applied to an N4 tetrahedron model

system as a proof of concept. The smaller N4 model is chosen
to mimic the weak magnetic interactions across the four
magnetic centers of the transition metal cubane. In the all-
ferric Fe4

(III)S4 cubane, each magnetic center is in a local spin
sloc = 5/2 with five unpaired electrons, for a total of 20
unpaired electrons. The (20, 20) active space is the smallest
that can be chosen to describe spin interactions in this system,
which is already too large for conventional multiconfigurational
techniques. The N4 model is characterized by three unpaired
electrons per site, a local spin sloc = 3/2, and a total of 12
valence electrons. Conventional CAS(12, 12) calculations are
routinely feasible and fast and will be used as a reference for
comparisons with GAS(12, 12) calculations, in Slater
determinant and spin-adapted bases. Considering that the
current implementation of the Stochastic-GAS operates on the
basis of Slater determinants (SDs), the N4 will also be used to
address the question of whether spin-pure solutions can be
obtained from our SD-based Stochastic-GAS method.
SDs are not necessarily eigenfunctions of the spin operator

Ŝ2, but they are always eigenfunctions of the spin-projection
operator, Ŝz. Since Ŝ2 and Ŝz commute, a basis of joint
eigenfunctions exists. If the respective quantum numbers of Ŝ2

and Ŝz are s and ms, for a common eigenfunction of Ŝ2 and Ŝz
we know that

| | ≤m ss (16)

implying that eigenfunctions of Ŝz with eigenvalue ms cannot
form a basis for an eigensolution of Ŝ2 with |ms| > s, but they
can form a basis for any eigensolution of Ŝ2 with |ms| ≤ s.
Starting from an SD as reference, the FCIQMC dynamics
preserves the spin-projection, ms, and converges to the lowest
spin state with s ≥ |ms|. It follows that for antiferromagnetically
coupled systems, it is possible to target spin pure states by
adjusting the spin-projection of our starting guess. However,
for ferromagnets, where higher spin means lower energy, any
spin-unconstrained optimization will inevitably lead to the
high-spin ground state, independently of the initial choice of
ms. The analysis of the following spin-systems is carried with
this limitation in mind.
The distorted N4 tetrahedron model system is discussed

first. The N atoms are at the equivalent positions of the four
metal centers of the Fe4S4 system. Two N−N bond distances
are 2.85 Å, and four are 2.75 Å. The selected active space
consists of the 12 2p orbitals. A conventional CASSCF(12, 12)
was performed. The optimized natural orbitals were sub-
sequently localized with the Pipek-Mezey method and used as
starting orbitals for subsequent GAS-CI calculations. No SCF
orbital optimizations were carried for this system, as our main
focus is the rationalization of electron correlation mechanisms
that are missed with respect to the corresponding CAS, when
interspace excitations are sevelery constrained by GAS. This
comparison is only possible if the same active orbitals are
utilized for CAS and GAS approaches, except for the invariant
rotations among the active orbitals.
The GAS active space was defined as [4 × (3, 3)] with the

three 2p orbitals of each nitrogen atom grouped in a separate
GAS subspace. The charge-transfer excitations between the
magnetic centers were controlled using cumulative constraints

̃ = −

̃ = +

N i n

N i n

3

3

i

i

min
exc

max
exc (17)

and excitation levels nexc between 0 and 2 were considered.
Interestingly, convergence with respect to nexc is reached for

Figure 6. CAS and GAS energies relative to the CAS(12, 12) s = 6 state for all lowest spin states of N4 and calculated spin quantum number, s, for
the SD-based CAS and GAS wave functions. Both spin-pure and SD representations were used for GAS. The x-axis refers to the total spin, s, for
spin-adapted calculations and to the total spin-projection, ms, for SD-based calculations. The GAS results in an SD basis for disconnected GAS
subspaces are omitted (see main document for details).
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two interspace excitations, and GAS schemes with larger nexc
values were not necessary. For nexc = 1, the number of
supergroups is 19 and a memory of 56.2 MB has been allocated
to store the PCHB probability distributions. For nexc = 2 the
number of supergroups is 85 and 250 MB are required. GAS
calculations were performed in both spin pure and SD bases
and compared to each other. The Supporting Information
contains further computational details.
The CAS and GAS spin ladders of N4, for the different

choices of nexc, and using both spin-pure and SD-based GAS
are depicted in Figure 6. In addition, the spin quantum number
s is computed from the ⟨ψ|Ŝ2|ψ⟩ expectation value for each
chosen ms value in the SD based calculations and is also
reported in Figure 6. In the Supporting Information we derive
the working equations for how Ŝ2 is evaluated using the RDMs.
The highest spin state (s = 6) of the N4 system can be

represented by a single SD (or CSF) with all orbitals occupied
by exclusively α (or exclusively β) electrons (|ms| = s = 6). The
energy of this state is unaffected by GAS constraints, as
particles cannot be excited among GAS subspaces anyway, due
to the Pauli exclusion principle. For |ms| < 6 numerous forms of
electron correlation can potentially take place. Three main
excitation types are recognized: (a) on-site excitations (with
electron pairing) may lead to non-Hund contributions into the
multiconfigurational wave function, (b) exchange interactions,
that introduce long-range correlation effects, and (c) charge-
transfer excitations across the sites that reduce on-site electron
repulsion.
As shown in Figure 6, for spin-adapted and SD-based CAS,

the lower spin states of the N4 model are energetically more
stable than the higher spin states (an antiferromagnet). For
GAS wave functions with connected spaces (to the limit of
single interspace excitations) the same result is obtained. The
agreement between CAS and GAS wave functions with as little
as single interspace excitations, nexc = 1, is impressive, even
though the GAS space is considerably smaller than the CAS
space. The CAS(12, 12) space consists of 853776 SDs, while
the GAS[4·(3, 3)] space with single interspace excitations nexc
= 1 consists of 468942 SDs which is 55% of the CAS space
size. The largest energy difference between CAS and GAS with
single interspace excitations is obtained for the s = 0 spin state
and is only 0.36 kJ mol−1, a negligible quantity.
The N4 cluster is antiferromagnetically ordered for CAS and

connected GAS spaces, hence we conclude from the previous
discussion that we can target spin pure states with selected ms
values and s = |ms|. The results in Figure 6 confirm precisely
this aspect. CAS and connected GAS energies, obtained using
the SD representation, are undistinguishable from the
corresponding energies obtained in a spin-adapted basis.
Also, the calculated spin quantum number from the expect-
ation value of the Ŝ2 operator (Figure 6) confirms that for this
system all states are pure spin eigensolutions, despite the fact
that an SD basis has been utilized.
For disconnected GAS spaces (nexc = 0), the spin ladder is

inverted to ferromagnetic order. This can be explained by
considering the two main competing correlation mechanisms,
spin exchange and charge-transfer. The exchange energy favors
parallel alignment of spins across the sites, while charge-
transfer correlation across magnetic centers allows for
correlation induced differential stabilization of the lower spin
states. In the absence of charge-transfer excitations (nexc = 0),
only exchange interactions remain that stabilize the high spin
states, leading to a ferromagnetically ordered system.

Thus, for disconnected spaces, independently of the chosen
ms value for the SD based Stochastic-GAS dynamics, the final
state is the one with the highest spin, s = 6. For this reason,
neither a spin ladder nor spin expectation values have been
reported in Figure 6 for disconnected GAS calculations in an
SD basis. A spin-adapted Stochastic-GAS implementation is
currently under development, that relies on the GUGA
technique to build and couple CSFs via the Hamiltonian
operator. The development of the spin-adapted Stochastic-
GAS is precisely motivated by the above-discussed limitation.
It is also important to mention that spin purification
techniques exist for ensuring that the eigenvectors of a SD-
based CI expansion have the desired ⟨Ŝ2⟩.98

For the Fe4S4 system, the active space consisted of the 20 3d
orbitals of the Fe3+ ions and their 20 electrons. The structure
of the cluster can be found in the computational details of the
Supporting Information. This (20, 20) active space exceeds the
limits of conventional CAS; thus, only the stochastic-CAS and
GAS strategies will be presented in this section. The spin-pure
CASSCF(20, 20) localized orbitals from ref 99 were used, and
only CASCI and GASCI calculations were performed here.
The GAS active space was defined as [4·(5, 5)] with each of
the localized Fe(III) orbitals being in a separate GAS space.
While for the N4 system, cumulative GAS constraints have
been used (for direct comparison with the conventional GAS
method where only cumulative constraints are available), the
excitation level between the irons was controlled by local
constraints

= −

= +

N n

N n
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5
i

i

min
exc

max
exc (18)

As shown for the benzene stack, differences between local and
cumulative GAS constraints exist, but their practical effect on
the energetics is in general negligible. GASCI calculations with
an excitation level nexc of 1 and 2 were performed. Higher
excitation levels were not necessary as convergence is reached
already for nexc = 2. As in the case of N4 it was not possible to
use disconnected spaces (nexc = 0) due to the ferromagnetic
ordering.
The spin ladder of Fe4S4 calculated with the SD-based

Stochastic-CASCI and Stochastic-GASCI methods is depicted
in Figure 7, together with the deviation from the spin-adapted
Stochastic-CASSCF results from ref 99.
The analogy between the Fe4S4 and the N4 spin-ladders is to

be noted. The highest-spin s = |ms| = 10 configuration for Fe4S4
is an eigenfunction of both Ŝ2 and Ŝz, and the CI-expansion
consists of precisely one configuration. For this case, neither
difference exists between SD and CSF bases, nor between the
GAS and the CAS expansions. Moreover, as for the N4 system,
also the Fe4S4 system is an antiferromagnet and it is thus
possible to target spin eigenstates using the SD representation,
without requiring spin-adaptation or spin-purification strat-
egies.
We will first discuss the difference between the SD-based

Stochastic-CASCI and the spin-adapted Stochastic-CASCI
spin-ladders. Figure 7 shows that the CASCI spin ladder in
the SD basis is in good agreement with the spin-adapted
CASCI results. Some marginal deviations appear for s ≤ 3. The
largest deviation occurs for s = 2, and it is less than 1 kcal
mol−1. For higher spin-states the deviation becomes vanish-
ingly small. This difference has been attributed in an earlier
work79 to the slow convergence of the FCIQMC dynamics in
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SD basis with respect to the number of walkers (initiator bias).
The number of possible SDs for a given number of electrons
N, orbitals n, and spin-projection ms is given by
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which reaches its maximum for ms = 0, if n = N as in our case.
If the initiator bias is directly bound to the size of the Hilbert
space, it should be highest for the lowest spin-state. Why, then,
is the slowest convergence observed for the s = |ms| = 2 state?
The answer is offered by the CI expansion in CSF basis. The
Fe4S4 cluster behaves to the leading terms as a spin-system,
with exchange-interactions representing the main form of spin
interactions across the sites.100 CSFs with singly occupied
orbitals represent the leading configurations of such a spin-
system, and their number is promptly given by the van Vleck-
Sherman formula:101
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where no and s refer to the number of singly occupied orbitals
and the target spin, respectively. For the (20, 20) active space,
ΩCSF attains its maximum at s = 2. The multireference
character in a CSF basis is amplified when transformed to the
corresponding SD basis, and more walkers are required within
the FCIQMC algorithm for a correct stochastic representation
of the more complex wave function. Therefore, while it is
possible to calculate pure spin states for such systems using an
SD basis, the number of walkers required for converging the
FCIQMC dynamics is larger than in a CSF basis. While the
reference calculation in a spin-pure basis was converged with

Nw = 1 × 106 walkers,99 the SD-based calculations used Nw = 5
× 107 walkers and was not fully converged in all spin states, as
shown by the difference in Figure 7. We would like to stress
that the SD-based dynamics were not at the computational
limits and increasing the walker number to achieve
convergence would have been possible. This was not done as
it was not in the scope of the present investigation. The main
goal was to compare the truncation effects of GAS compared
to CAS.
We now turn our attention toward the error that is

introduced from a limited number of GAS interspace
excitations. As already observed for the N4 system,
disconnected GAS model calculations lead to the unphysical
inverted and ferro-magnetically ordered spin-ladder. Interest-
ingly, already a GAS with single interspace excitations is
enough to obtain a spin ladder in excellent agreement with the
corresponding CAS wave function and energetics. The largest
deviation from the SD-based Stochastic-CASCI calculation is
only 1.2 kJ mol−1, and the deviation from the spin-adapted
Stochastic-CAS is around 4 kJ mol−1 (see lower part of Figure
7). If double excitations among the iron atoms are allowed, the
Stochastic-GASCI recovers the CASCI energy with a
maximum deviation of 0.3 kJ mol−1 from the SD-based
Stochastic-CAS energy.
With these examples we demonstrated how the GAS strategy

can be used to probe the effect of charge transfer excitations
and to reduce the size of the Hilbert space by limiting the
number of interspace excitations.

5. CONCLUSION
In this work, the Stochastic-GASSCF method was introduced
based on a new PCHB excitation generator in FCIQMC for
the stochastic sampling of the GASCI space, the stochastic
sampling of RDMs, and the Super-CI method for the
variational orbital relaxation. In Stochastic-GAS both local
and cumulative particle number constraints can be imposed, a
feature that is unique to Stochastic-GAS, and allows
exploration of both the cumulative constraints of the
conventional GAS,28 as implemented in OpenMolcas,34

and the local constraints, as implemented in the ORMAS
method, and made available in GAMESS-US.32 GAS allowed
electronic configurations are classified into supergroups based
on the number of electrons per GAS subspace. The concept of
supergroups is at the core of the new GAS-PCHB excitation
generation, since the GAS constraints only require knowledge
about the supergroup of a configuration. Since the GAS
constraints are ingrained in precalculated probability distribu-
tions per supergroup, our algorithm adds practically no
runtime overhead to an unconstrained Full CI PCHB
calculation. On the other hand, the higher number of
probability distributions increases the memory demand
compared to Full CI PCHB.
Three different potential showcase applications have been

discussed that demonstrate how Stochastic-GAS can be used
to reduce computational costs of FCIQMC by operating on
preselected truncated CI spaces or to enhance our under-
standing of the role of different electron correlation pathways.
The first example was a stack of five benzene molecules. We

separated the system into five GAS spaces to enable full
correlation inside each molecule, but allowed only a limited
number of excitations between the fragments. Depending on
the distance between the fragments, a different number of
interspace excitations was necessary to recover the Full CI

Figure 7. Spin ladder of Fe4S4 calculated with Stochastic-CAS in SD
and spin-adapted basis (GUGA), and Stochastic-GASCI using the SD
representation. The Stochastic-CAS and Stochastic-GAS calculations
used a defined ms value to target the desired state, while the spin-
adapted Stochastic-CAS used a well-defined s value for each state. The
upper figure displays the spin ladder energetics relative to the high-
spin state (s = 10). The lower figure displays the energy difference,
ΔE, between the SD based calculations and the spin-adapted
Stochastic-CASSCF results from ref 99. The local interspace
excitations for GAS are controlled with nexc according to eq 18.
Error bars were obtained using blocking analysis.73 The spin-adapted
Stochastic-CASSCF calculations used Nw = 1 × 106 walkers,99 while
the SD-based calculations used Nw = 5 × 107 walkers.
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energy, but already with one interspace excitation the error was
well below 1 kJ mol−1 for distances of 3 Å or larger. By this
application, we show that Stochastic-GAS can easily be tailored
toward fragment-based compounds, and thus operate in a
mode that is conceptually similar to other techniques, such as
NOCI-RCMO and ASD-DMRG. However, while NOCI-
RCMO and ASD-DMRG are exclusively tailored toward
fragments, GAS can be applied to a wider range of chemical
situations. With suitably chosen orbitals and GAS subspaces
the new method is practically size-extensive.
In the second example we used Stochastic-GAS to perform a

very large uncontracted stochastic-MRCISD calculation (using
the RAS strategy) on an Fe(II)−porphyrin model system, for
which a total of 96 electrons and 159 orbitals have been
correlated over a (32, 34) RAS2 space. While the RAS2 space
accounts for relatively strong forms of electron correlation, as
we have discussed already in earlier works,17−19 single and
double excitations out of the occupied space (RAS1) and into
the virtual orbitals (RAS3) account for dynamic correlation. By
considering both static and dynamic electron correlation, we
could greatly improve the theoretical estimate for the spin gap
between the 5A1g and

3Eg state to be around 7.0(1) kcal mol−1,
substantially larger than our previous estimate exclusively
based on the Stochastic-CASSCF(32, 34) energetics. This
application shows how Stochastic-GAS can be utilized to
account for dynamic correlation in a systematically improvable
way, as opposed to other methodologies such as DFT102,103 or
MC-PDFT104 that rely on the accuracy of (translated)
functionals to describe exchange and correlation effects.
In the last example, we calculated the spin ladder of an Fe4S4

cubane cluster and used Stochastic-GAS to understand the role
of charge-transfer excitations in differentially stabilizing the
low-energy spin-states. We showed that although the current
Stochastic-GAS is based on an SD many-body basis, it is
possible to efficiently use the method to selectively target pure-
spin states of antiferromagnets. A limitation still exists in using
the SD-based approach; for some spin states, a relatively slower
convergence is observed with respect to the walker number,
compared to the spin-adapted implementation. This limitation
is independent of the GAS constraints, but depends on the
system. This limitation mostly characterizes systems featuring a
large number of unpaired electrons, where denser wave
functions exist and spin interactions are harder to describe
using a SD basis. This limitation is to a large extent removed
using spin-adaptation. A spin-adapted Stochastic-GAS strategy
is under development and will be presented in a separate work.
Via Stochastic-GAS it is demonstrated that the exchange
interactions stabilize the high spin states (inverted spin-ladder
for disconnected GAS subspaces with ferromagnetically
ordered spin states), while low-spin states are stabilized via
charge-transfer excitations, that are included as soon as
connected-GAS spaces are considered. For the Fe4S4 cubane
system, GAS calculations with single interspace excitations
already recover the CAS energy with an error ≤1.2 kJ mol−1

and two interspace excitations decrease this error to ≤0.3 kJ
mol−1.
As a final remark for possible future applications, we note

that the Stochastic-GAS strategy can be utilized also for core-
excitations, necessary in simulating X-ray diffraction spectros-
copy.105,106 As for the conventional GAS strategy, core orbitals
can be included in one of the GAS subspaces and constrain
them to have a minimum number of holes. The advantage of
Stochastic-GAS over conventional GAS is that in the former

the GAS subspaces can be made substantially larger. Thus,
dynamic correlation effects for the core-excited states can be
accounted for already at the level of Stochastic-GAS.
Future development of methods in our group will

concentrate on GAS in a spin-pure basis using GUGA.

6. APPENDIX
6.1. FCIQMC. In this section a brief overview of the

FCIQMC algorithm12,15,107 is provided, the elements of which
are crucial to the understanding of the stochastic-GAS
algorithm.
Starting with the imaginary-time (τ = it) Schrödinger

equation, = − Ψ
τ

∂Ψ
∂ H , and assuming that an initial state, D0

(referred to as the reference determinant), has non-zero
overlap with the ground state, Ψ0, our system will evolve to the
ground state in the long-term limit

τΨ = −
τ→∞

H Dlim exp( )0 0 (21)

If we assume a finite many-body basis, for example Slater
determinants (SDs), Di, and linearize the propagator via a first-
order Taylor expansion, we obtain
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diagonal death step
spawning step (22)

where

δ= ⟨ | | ⟩ −K D H D Eij i j
i j

HF
,

(23)

and S is a shif t parameter specifically introduced within
FCIQMC for walker population control. The value of S has to
equal the correlation energy at stationary conditions.12

In principle, eq 22 can be solved deterministically. However,
the evaluation of the large number of Hamiltonian matrix
elements and the operation count bound to the CI update and
the storage of the updated CI vector, makes this equation
prohibitive to solve deterministically, in practical cases where
large active spaces are utilized. In FCIQMC the imaginary-time
evolution of the CI wave function is represented via the
propagation of signed stochastic walkers across the configura-
tional space. At each time-step, Δτ, the propagation process is
divided into four steps: excitation generation, spawning, death,
and annihilation. New walkers spawn stochastically using eq
22. For a given time-step Δτ we accept new spawns from the
parent determinant Di to the child determinant Dj with an
acceptance probability

τ∝ Δ | |p i j K( , ) ijacc (24)

Note that pacc(i, j) may become larger than one which means
that a given walker can spawn more than one new walker. For a
stable FCIQMC dynamics, it is desirable to have spawn events
with a constant probability, hence to keep Δτ |Kij| nearly
constant. This is achieved by suggesting new determinants Dj
with a non-uniform generation probability pgen(i, j) ∝ |Kij|, that
is, to suggest strongly connected determinants more often.
Thus, a modified equation for the acceptance probability is
considered

τ∝ Δ
| |

p i j
K

p i j
( , )

( , )
ij

acc
gen (25)
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where a suitable choice of pgen(i, j) ∝ |Kij| leads to a more
stable acceptance probability. The suggestion of new
determinants is called the excitation generation step, and it is
at the heart of an efficient implementation of FCIQMC. The
excitation generation and spawning steps are “embarassingly
parallel” processes. After excitation generation and spawning,
the diagonal death step from eq 22 is performed, and all
walkers on determinant Dj are stochastically killed with a
probability proportional to (Kjj− S). Depending on the signs of
the parent determinants, Di, and of the corresponding Kij it is
possible that spawns to Dj with different signs arise from
different determinants Di, which is a manifestation of the sign-
problem within the FCIQMC algorithm.12,108 To partially
control the sign problem, spawns of opposite sign to the same
determinant are summed at each time-step. This process
represents the annihilation step.
At the beginning of the simulation the shift parameter, S, is

kept constant (generally initialized to a small real number or
equal to zero). This allows the walker population to grow until
the target population is reached. Once the target population is
reached, the spawn, annihilation, and death steps are repeated
with a shift parameter that is varied such that the target
population stays constant. The calculation is carried in
stationary conditions to collect sufficient data points for a
satisfactory statistical analyis.73

The stochastic error of FCIQMC can be greatly reduced by
using the semi-stochastic method. After stochastic propagation
of eq 22, the ncore most occupied determinants, representing
the core space of the evolving CI wave function, are identified,
and the full Hamiltonian matrix, Hcore, for these configurations
is constructed. The dynamics is propagated deterministically
inside the core space and stochastically outside.
The projected energy, Eproj is a common FCIQMC energy

estimator which is obtained by projecting the sampled wave
function, Ψ(τ), at any imaginary-time, τ, on the reference
determinant, D0:

∑=
⟨ | |Ψ⟩
⟨ |Ψ⟩

= +
≠

E
D H

D
H H

C

Cj
j

j
proj

0

0
00

0
0

0 (26)

When the wave function approaches the ground state, the
above estimator converges to the ground state energy. To
minimize the relative statistical noise of the denominator, one
chooses a reference determinant that has a high CI coefficient.
This is typically the Hartree-Fock (HF) determinant which
usually has the highest CI coefficient. However, if another
determinant is found during the simulation to have a higher
coefficient, a change of reference may occur, that helps in
stabilizing the projected energy estimate. Note that FCIQMC
samples of the numerator and the denominator of the
projected energy should be averaged separately before taking
their ratio.
The original FCIQMC algorithm suffers from a sign-

problem in its application to most systems including ab inito
ones.12,108 When the number of walkers is below a certain
threshold, called the annihilation plateau, the sampled wave
function does not have a stable sign-structure and is dominated
by sign-incoherent noise. The annihilation plateau depends on
the system under study and is typically a non-negligible
fraction of the overall size of the Hilbert space. This means that
one needs a minimum number of walkers that scales
exponentially with the number of electrons and the number
of orbitals. The problem is largely overcome by applying the

initiator approximation, i-FCIQMC, which obviates the
annihilation plateau and allows a stable simulation using
small numbers of walkers.13,109 In i-FCIQMC, a walker is
classified as an initiator if the determinant on which it resides
has a population above a chosen threshold nadd (usually set to
three). Only initiators are allowed to spawn onto empty
determinants, while non-initiators can only spawn onto other
occupied determinants. These constrained dynamics stop low-
populated determinants from propagating unstable sign-
structure further into the Hilbert space but introduce a bias,
called the initiator bias, that can be systematically improved by
increasing the number of walkers. In the limit of a very large
number of walkers, all non-zero walkers become initiators and
the exactness of the original method is restored.
The convergence of the initiator method to the exact FCI

limit with the number of walkers can be further accelerated
with the help of the adaptive shift method.59,60 The initiator
bias is mainly attributed to the missing back-spawns onto the
non-initiators resulting from their underpopulated local Hilbert
space. This bias is ameliorated in the adaptive shift method by
reducing the shift of non-initiators and thus boosting their
lifetime to compensate for the missing back-spawns. In the
adaptive shift method, each determinant Di gets its own local
shift Si as a fraction of the total global shift S

= Δ + · − ΔS f S( )i i (27)

where S ≤ Δ ≤ 0 is an adjustable offset parameter to be
discussed below and f i are factors measuring how much a
determinant is affected by the undersampling. These factors
are computed during the simulation as a weighted ratio of the
spawns accepted under the initiator constraint

=
∑

∑ + ∑
∈

∈ ∈
f

w

w wi
j i j

j i j j i j

accepted ,

accepted , rejected , (28)

and the weights wi,j are the first-order perturbation theory
contribution of a walker on determinant Di to determinant Dj

=
| |

−
w

H

H Ei j
i j

jj
,

,

(29)

with E being an estimate of the ground state energy such as the
instantaneous projected energy.
The offset parameter Δ provides a mean of controlling the

amount of correction applied by the adaptive shift method.
When Δ = 0, the correction is applied in its full strength (Si = f i
· S), while for Δ = S the adaptive shift reduces to the
conventional i-FCIQMC algorithm. Lowering the offset gives
higher total energy estimates, using the same number of
walkers. When the energy is plotted as a function of the
number of walkers, there is a strict ordering between the
energy curves for different offsets, with some converging from
below (high offsets), while others converge from above (low
offsets). By varying the offset, one can use this property to
bracket the exact energy between the curves of different offsets
(see Figure 8). A good starting point for varying the offset is
setting it to half the correlation energy Δ = Ẽcorrelation/2. This
estimate of the correlation energy, Ẽcorrelation, can be
approximated by the shift, S, of an earlier FCIQMC calculation
or by other methods such as MP2 or coupled cluster
calculations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00936
J. Chem. Theory Comput. 2022, 18, 251−272

266

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For the test case applications investigated in this work the
choice of Δ = S/2 was already satisfactory for largely curing the
initiator bias.
6.2. Compositions, Supergroups, and Indexing. In this

subsection we derive a fast on-the-fly algorithm for calculating
the supergroup index of a given determinant. We will first
discuss how to calculate the index for a given composition and
apply this knowledge to supergroups. We repeat the definitions
formally.
Definition 6.1 (Compositions and Supergroups) For
∈ ∈ n k,0 we call a solution of the following equation

+ + =x x n... k1 (30)

a composition of integers. We define p(k, n) to be the number
of different compositions. Solutions with a different order of
summands are considered to be different.
If we identify n with the number of particles and k with the

number of possible GAS spaces then a supergroup is a
composition that is allowed by local or cumulative GAS
constraints.
We define pl(k, n, N

min, Nmax) and pc(k, n, Ñ
min, Ñmax) to be

the number of supergroups for local and cumulative
constraints, respectively.
We trivially note that p(1, n) = p(k, 0) = 1 and in general we

have the following lemma.
Lemma 6.2 (Number of compositions) For ∈ ∈ n k,0

the number of compositions is given by

i
k
jjjj

y
{
zzzz=

+ −
−

p k n
n k

k
( , )

1
1 (31)

Proof. If there are k summands, there are (k − 1) “+” symbols
in the composition. If we have n symbols “∗” and denote
numbers with a corresponding number of those symbols we
can write compositions with arrangements of “+” and “∗”
symbols. For example 8 = 3 + 0 + 3 + 2 can be denoted as 8 =
***++***+**. The number of compositions is then the
number of different arrangements.□
Definition 6.3 (Composition and supergroup index). We

assume lexicographical decreasing order of the compositions
and assign the composition index based on this order.
In the same way, we assume lexicographical decreasing order

of the supergroups and assign the supergroup index based on
this order.
In Table 4, we show an example for the composition of three

with three summands and the supergroups from example GAS
constraints and the respective indices.

Lemma 6.4 (Determine composition index) For a
composition ∈ C k

0 the composition index iC is given by
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where

∑ ∑| | = | | =+
= + = +

C C Ci
j i

k

j
j i

k

j1: 1
1 1 (33)

Proof. We know that all elements of the composition lie
between 0 and n.
If the first element C1 is equal to n, all other elements of the

composition have to be zero and the composition index has to
be one. (First row of Table 4)
If C1 is smaller than n, all compositions with a leading term

L, C1 + 1 ≤ L ≤ n have a lower index. The number of all
compositions with a first element of L is given by p(k − 1, n −
L), because we write the sum of n − L with k − 1 summands.
By summing the number of all compositions with a leading

term L, C1 + 1 ≤ L ≤ n, we can now calculate the index of the
first composition which has a leading term of C1 as

∑[ ] = + − − −
=

i C n C p k j( , ? , ..., ? ) 1 1 ( 1, )
j

C 1
0

1

(34)

If we keep in mind that n − C1 = ∑i = 2
k Ci = |C2:|1 we can

rewrite eq 34 as

∑[ ] = + −
=

| | −

i C p k j( , ? , ..., ? ) 1 ( 1, )
j

C

C 1
0

12: 1

(35)

If we look at the second element C2, we are either finished,
because C1 + C2 equals n, or all compositions with a second
element L, C2 + 1 ≤ L ≤ n − C1 are larger than C in
lexicographical order. We can repeat the previous steps to
calculate the number of compositions and continue this
procedure for all elements of C to arrive at the final eq 32.□
We give an illustrative example and determine the index of

the composition [1, 0, 2]. Since the leading term is a 1, we can
“jump” over all compositions with a leading 3 or 2 and arrive at
[1, 2, 0], which is the first composition with a leading 1. The
number of terms with a leading 3 is given by p(2, 3−3) = p(2,
0). The number of terms with a leading 2 is given by p(2, 3−2)

Figure 8. Normal initiator and adaptive shift results using different
offsets for N2 in the cc-pVDZ basis set and stretched geometry:
4.2a0.

60

Table 4. Example for the Supergroups of a GAS Constraint
with a Cumulative Minimum and Maximum of [0, 1, 3] and
[2, 2, 3]a

isg iC x1 x2 x3

1 3 0 0
2 2 1 0

1 3 2 0 1
4 1 2 0

2 5 1 1 1
3 6 1 0 2

7 0 3 0
4 8 0 2 1
5 9 0 1 2

10 0 0 3
aThe composition index is iC and the supergroup index isg. GAS
allowed compositions, i.e., supergroups, are in bold font.
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= p(2, 1). Then we can repeat the same logic to jump over [1,
1, 1] to arrive at [1, 0, 2]. In total this gives

[ ] [ ] [ ] [ ]

[ ] = + + + +

= + + + +
=

i p p p p

3, ? , ? 2, ? , ? 1, 2, ? 1, 1, ?

( 1, 0, 2 ) (2, 0) (2, 1) (1, 0) (1, 1) 1

1 2 1 1 1
6

C

(36)

which agrees with Table 4. Since p(k, n) only requires the
binomial coefficient which can be implemented as lookup
table, the whole calculation may become a summation of
values from a lookup table.
If we had a general closed solution to calculate the number

of supergroups pc and pl, we could apply the same logic of
“jumping over” leading terms to calculate the supergroup
index. Unfortunately only recursive solutions are known for pc
and pl which do not lend themselves to an efficient
implementation.67

For this reason, we generate all possible supergroups in the
beginning. This step does not have to be performant, one can,
for example, generate all compositions and just test if they
adhere to GAS constraints. After lexicographical sorting of the
supergroups we calculate the composition index for each of
them and store it.
If we now want to calculate the supergroup index for a

determinant, we count the number of particles per GAS space
to get a supergroup, calculate the composition index of the
supergroup using Lemma 6.4, and look up the position of this
composition index in our stored list. We can calculate for
example the supergroup index of [1, 0, 2] as

[ ] ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯1, 0, 2 6 3
Equation 36

Lemma 6.4 binary searchin Table 4

(37)

6.3. Conversion of Constraints. In this section, we want
to show that cumulative and local GAS constraints are not
always equivalent and that there are systems which can be
expressed in only one of them. We also want to prove eq 4 for
the conversion between these constraints when it is possible.
We write again N and nGAS for the number of particles and

GAS spaces. If Nmin, Nmax denote local GAS constraints and
Ñmin, Ñmax denote cumulative ones, then we write for the set of
a l l s u p e r g r o u p s u n d e r l o c a l c o n s t r a i n t s
 N n N N( , , , )l GAS

min max and for the set of all supergroups

under cumulative constraints ̃ ̃ N n N N( , , , )c GAS
min max .

We start with an example that shows that there is at least one
cumulative constraint that cannot be expressed with local ones.
Example 6.5. We define a system comprising four GAS

spaces using cumulative constraints and eight particles and
tight inequalities Ñ4

min = Ñ4
max = 8 in the last space in Table 5.

We assume that local constraints Nmin, Nmax exist such that

= ̃ ̃ N n N N N n N N( , , , ) ( , , , )l cGAS
min max

GAS
min max

and lead this to a contradiction.
Proof. The compositions [1, 3, 1, 3] and [3, 1, 3, 1] are

contained in ̃ ̃ N n N N( , , , )c GAS
min max . This implies that for all

spaces Ni
min ≤ 1 and 3 ≤ Ni

max. We immediately conclude

[ ] [ ]

⊂

⊂ ̃ ̃







N n

N n N N

N n N N

( , , 1, 1, 1, 1 , 3, 3, 3, 3 )

( , , , )

( , , , )

l

l

c

GAS

GAS
min max

GAS
min max

(38)

Since

[ ] ∈ [ ] [ ] N n1, 1, 3, 3 ( , , 1, 1, 1, 1 , 3, 3, 3, 3 )l GAS

we see from eq 38 that

[ ] ∈ ̃ ̃ N n N N1, 1, 3, 3 ( , , , )c GAS
min max

But the calculation shows that [1, 1, 3, 3] cannot be contained
in the cumulative GAS constraints from Table 5.□
In a next step, we prove eq 4 with the following Lemma.
Lemma 6.6. If for a given number of particles N and GAS

spaces nGAS local GAS constraints Nmin, Nmax and cumulative
GAS constraints Ñmin, Ñmax exist such that

= ̃ ̃ N n N N N n N N( , , , ) ( , , , )l cGAS
min max

GAS
min max

(39)

and if for each i > 1 there exists a composition
∈ ̃ ̃x N n N N( , , , )c GAS

min max such that

= ̃ − ̃ −x N Ni i i
min

1
max

(40)

and if for each i > 1 there exists a composition
∈ y N n N N( , , , )l GAS

min max such that

=y Ni i
min

(41)

and if for each i > 1 there exists a composition

′ ∈ ̃ ̃x N n N N( , , , )c GAS
min max such that

′ = ̃ − ̃ −x N Ni i i
max

1
min

(42)

and if for each i > 1 there exists a composition
′ ∈ y N n N N( , , , )l GAS

min max such that

′ =y Ni i
max

(43)

then the following relationships must hold:
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Proof. The relationship is true for i = 1. We now prove for i > 1
that Ni

min = Ñi
min − Ñi − 1

max . Note that this is not a proof by
induction, we just separated the two cases. By definition of
Ni

min, we have for the composition from condition 40 that

≤ = ̃ − ̃ −N x N Ni i i i
min min

1
max

(45)

On the other hand, we have for every composition

∈ ̃ ̃y N n N N( , , , )c GAS
min max

Table 5. An Example System with Cumulative Constraints
Ñmin, Ñmax which Cannot Be Expressed Using Local
Constraints

Ñi
min Ñi

max

1 3
4 4
5 7
8 8
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Since we assume that y is also contained in the set of
supergroups under local constraints (condition 39), we
conclude for every ∈ z N n N N( , , , )l GAS

min max

≥ ̃ − ̃ −z N Ni i i
min

1
max

(47)

Since we also assume, that at least one zi admits the extremal
value Ni

min (condition 41) we conclude

≥ ̃ − ̃ −N N Ni i i
min min

1
max

(48)

With inequality 45 we arrive at Ni
min = Ñi

min − Ñi − 1
max . The proof

of Ni
max = Ñi

max − Ñi − 1
min can be performed in exactly the same

way.□
It might seem very difficult to use Lemma 6.6 in practice,

because the equality of local and cumulative constraints is an
assumed condition that has to be verified (eq 39). But it is very
useful not so much to convert between constraints that are
known to be equivalent, but to prove that a given type of
constraint has no equivalent.
We could have proven example 6.5 by directly applying the

conversion formulas (eq 4) to the cumulative constraints Ñmin,
Ñmax. The obtained local constraints Nmin, Nmax and the original
cumulative constraints fulfill the conditions 39−43, but as in
the original proof of example 6.5 the obtained local constraints
have different supergroups

≠ ̃ ̃ N n N N N n N N( , , , ) ( , , , )l cGAS
min max

GAS
min max

With Lemma 6.6 we conclude that there are no local
constraints that are equivalent to the cumulative constraints
from Table 5.
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