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Human pluripotent stem cells (hPSCs) hold significant promise for use in regenerative medicine, or as a
model to understand human embryo development. However, the basic mechanisms required for proliferation
and self-renewal of hPSCs have not been fully uncovered. Proliferation in all eukaryotes is dependent upon
highly regulated expression of the histone H3 variant Centromere protein A (CENP-A). In the current study,
we demonstrate that hPSCs have a unique messenger ribonucleic acid (mRNA) reserve of CENP-A not
found in somatic fibroblasts. Using short hairpin RNA technology to reduce but not ablate CENP-A, we
show that CENP-A-depleted hPSCs are still capable of maintaining a functional centromeric mark, whereas
fibroblasts are not. However, upon induction of differentiation or DNA damage, hPSCs with depleted
CENP-A arrest in G2/M and undergo apoptosis. Analysis of CENP-A dynamics following DNA damage in
hPSCs reveals that 60 min after irradiation, CENP-A is found in multiple small nuclear foci that are mutually
exclusive to gH2AX as well as CENP-C. Furthermore, following irradiation, hPSCs with depleted CENP-A
mount a normal apoptotic response at 6 h; however at 24 h, apoptosis is significantly increased in CENP-
A-depleted hPSCs relative to control. Taken together, our results indicate that hPSCs exhibit a unique mech-
anism for maintaining genomic integrity by possessing the flexibility to reduce the amount of CENP-A
required to maintain a functional centromere under self-renewing conditions, and maintaining a reserve of
CENP-A mRNA to rebuild the centromere following differentiation or DNA damage.

INTRODUCTION

Maintaining the genomic integrity of human pre-implantation
embryos and human pluripotent stem cells (hPSCs) is of con-
siderable importance to human reproduction and regenerative
medicine. Aneuploidy in human pre-implantation embryos is a
common occurrence with an estimated 30% of all human
embryos failing to progress at implantation due to chromo-
some structural defects (1,2). Furthermore, hPSCs derived
from the inner cell mass of human blastocysts, which are
called human embryonic stem cells (hESCs), acquire aneu-
ploidies after culture in suboptimal conditions, continuous

culture and adaptation or passaging as single cells without
Rock inhibitor or neurotrophins (3–8). However, not all aneu-
ploidies are tolerated in hPSCs as derivation of hESC lines
from embryos diagnosed as being monosomic after pre-
implantation genetic screening are selected against during
the derivation procedure (9).

Chromosome segregation defects occur due to abnormal
centromeric chromatin, abnormal construction of the kineto-
chore or defects in the activity of the spindle assembly check-
point during mitosis. Centromeric chromatin in metazoans is
uniquely identified by the incorporation of the histone H3
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variant centromere protein A (CENP-A) in alpha satellite DNA
repeats which act to promote centromere identity and assem-
bly of the kinetochore protein complex required for cell div-
ision (10–16). Centromeric chromatin is surrounded by
peri-centromeric heterochromatin which is hypothesized to
act as a barrier to prevent CENP-A spreading (reviewed in
17–20). Conversely, when the number of CENP-A containing
nucleosomes is reduced, heterochromatin spreading is hypoth-
esized to cause dissolution of the centromeric mark (21). A
complete loss of CENP-A in mitotic cells including pluripotent
cells of the pre-implantation mouse embryo is lethal (11). In
the complete absence of CENP-A or when CENP-A has been
depleted to below the threshold required to create an epige-
netic centromeric mark, cells exhibit a transient mitotic
delay followed by apoptosis (22–25). In contrast, overexpres-
sion of CENP-A causes random incorporation of CENP-A into
chromatin, and the creation of functional ectopic kinetochores
(10). Overexpression of CENP-A has been described in human
cancer cells, where it is hypothesized to cause aneuploidy (26).
Taken together, the levels of CENP-A in a given cell are
highly regulated to ensure appropriate functional activity and
mitotic fidelity.

Microarray analysis comparing human oocytes, hESCs and
somatic cells have revealed that CENP-A messenger ribonu-
cleic acid (mRNA) is highly expressed in both oocytes and
hESCs (27–31). High expression levels of CENP-A in
oocytes most likely act as a maternal reserve to support the
small number of mitotic pluripotent cell divisions (cleavages)
that occur prior to embryonic genome activation (11).
However, the purpose of the relatively high CENP-A mRNA
levels in hESCs is unclear. Furthermore, it is also not known
whether high CENP-A mRNA levels are found in hPSCs
generated by induced reprogramming, which creates
human-induced pluripotent stem (hIPS) cells, or whether
hPSCs have an increase in CENP-A protein load that corre-
lates with the increased levels of CENP-A mRNA.

CENP-A localization in hPSCs is known to be unique rela-
tive to somatic cells. For example, in hPSCs, CENP-A centro-
meric foci occupy a central position in the nucleus (32–36).
However, upon differentiation and accumulation of hetero-
chromatin, CENP-A is redistributed to the heterochromatic
nuclear periphery and perinucleolar regions (33). The relation-
ship between CENP-A levels and accumulation of heterochro-
matin upon hPSC differentiation is unknown (35,37).
Furthermore, it is also unknown whether dynamic relocaliza-
tion of CENP-A only occurs during hPSC differentiation, or
whether it can be induced under alternative circumstances
such as DNA damage where CENP-A has been shown to
accumulate at foci of DNA damage in somatic cells (38,39).
Given these intriguing unanswered questions, in the current
study we sought to evaluate the unique biology of CENP-A
in hPSC self-renewal, differentiation and DNA damage.

RESULTS

A high transcriptional load of CENP-A is a general
property of hPSCs

In order to determine whether elevated levels of CENP-A
mRNA are a property of hPSCs derived from the inner cell

mass of blastocysts (hESCs), relative to hPSCs derived by
induced reprogramming from skin fibroblasts (hIPS cells),
we performed real-time PCR for CENP-A mRNA in triplicate
for two hESC lines (HSF-6 and HSF-1) and two hIPS cell lines
(hIPS2 and hIPS18) (40), and compared this with a primary
skin fibroblast cell line called BJ (Fig. 1A). We found that
hPSCs derived from the inner cell mass of blastocysts or by
induced reprogramming have on average 10–15-fold higher
levels of CENP-A mRNA relative to somatic BJ cells. There-
fore, elevated levels of CENP-A mRNA are a general property
of pluripotent stem cells regardless of origin, and are not a his-
torical remnant of ESCs derived from the inner cell mass.
Next, we used western blot of purified chromatin to evaluate
whether elevated levels of CENP-A mRNA correlate with
elevated levels of CENP-A protein in undifferentiated hPSCs
(shown is HSF-6) (Fig. 1B). Our results showed that the
expression of CENP-A protein is equivalent between BJ
cells and undifferentiated hPSCs.

Given the unique cell cycle properties of undifferentiated
hPSCs in which a significant fraction of cells occupy S phase
and G2/M, we next tested whether CENP-A mRNA levels
change upon differentiation for 7 days in the presence of reti-
noic acid where the cell cycle normalizes to that of a somatic
cell. Our results show that by day 7 of differentiation, the pro-
portion of cells occupying G1 is significantly increased, and the
proportion of cells in G2/M and S is significantly reduced to
become equivalent to cycling BJ fibroblast cells (Fig. 1C, Sup-
plementary Material, Fig. S1). Despite this change in cell cycle
dynamics, the levels of CENP-A mRNA remain equivalent to
the levels of undifferentiated hPSCs (Fig. 1D). In order to deter-
mine whether CENP-A protein levels change with differen-
tiation, we evaluated CENP-A in the chromatin and soluble
fractions of hPSCs (shown is HSF-6), and compared this to
cells differentiated for 7 days. Our data show that CENP-A
protein is exclusive to the chromatin fraction of hPSCs, and
that the levels of CENP-A in chromatin increase with hPSC
differentiation. Furthermore, we found that increased levels
of CENP-A protein correlate with an increase in the amount
of histone H3 lysine 27 (H3K27me3), which is known to
occur as cells transition from the self-renewing pluripotent
state to differentiation (Fig. 1E).

Significant depletion of CENP-A in pluripotent cells under
self-renewing conditions is not lethal

Given the high mRNA reserve of CENP-A in undifferentiated
hPSCs relative to fibroblasts, we were next interested in deter-
mining whether modulating the levels of CENP-A in hPSCs
had an effect on undifferentiated hPSC self-renewal. In this
experiment, our goal was to reduce but not ablate the levels
of CENP-A in undifferentiated hPSCs. To achieve this, we
used short hairpin RNA (shRNA) technology and assayed plur-
ipotent stem cells in parallel with somatic BJ fibroblasts. We
initially tested three independent shRNAs in fibroblasts and
found one which consistently resulted in .90% knockdown
(data not shown). This shRNA was used for the remainder of
the study. Transduction of control or CENP-A shRNA lenti-
viral vectors into BJ fibroblasts resulted in 90% knockdown
of CENP-A mRNA levels relative to control following 5 days
selection in hygromycin (Fig. 2A). Using immunofluorescence
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with an antibody against CENP-A, we determined that this
level of knockdown significantly reduced the CENP-A centro-
meric foci in knockdown cells relative to cells transduced with
the control vector (Fig. 2B) suggesting that the centromeric
mark is compromised in the knockdown cells. Transduction
of HSF-6 hPSCs with control or CENP-A shRNA lentivirus
resulted in an 80% reduction in CENP-A mRNA levels com-
pared with control cells after 5 days of selection (Fig. 2C).
This knockdown reduced the CENP-A mRNA load to an equiv-
alent level found in fibroblasts under unmanipulated con-
ditions. However, using immunofluorescence and western
blot comparing control and CENP-A shRNA knockdown cul-

tures CENP-A shRNAs also caused a significant reduction in
CENP-A protein, with loss of CENP-A foci by immunofluores-
cence and a significant reduction in protein levels by western
blot (Fig. 2D).

Next, we evaluated the functional consequence of CENP-A
knockdown in BJ cells and hPSCs (Fig. 2E–H, Supplementary
Material, Fig. S2). Knockdown of CENP-A in BJ cells caused
rapid out-competition of the GFP positive knockdown cells by
wild-type cells, with a 40% reduction in the percentage of
GFP positive CENP-A knockdown cells within 2 days of the
assay, and a 90% loss in GFP positive CENP-A knockdown
cells after 15 days (Fig. 2E). Control GFP positive cells and

Figure 1. hPSCs have a reserve of CENP-A mRNA but not protein when compared with fibroblasts. (A) Quantitative real-time PCR for CENP-A normalized to
GAPDH (n ¼ 3 replicates). (B) Western blot of purified chromatin. (C) Cell cycle analysis in undifferentiated and differentiated HSF-6 and BJ cells (n ¼ 3
replicates for each). A representative flow plot of each is also shown. (D) Quantitative real-time PCR for CENP-A mRNA comparing undifferentiated and differ-
entiated cells (n ¼ 3 replicates). (E) Chromatin and soluble fraction of undifferentiated and 7 days differentiated HSF-6 hPSCs (Diff, differentiation; D0, undif-
ferentiated; D4, day 4 of differentiation; D7, day 7 of differentiation).
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wild-type cells maintained a constant ratio over this period
demonstrating that the vector was not silenced. Phenotypically,
knockdown of CENP-A in BJ fibroblasts caused a significant
increase in apoptosis relative to cells transduced with the
control vector (Fig. 2F) and this was morphologically associated
with a significant reduction in cell number after 5 days of selec-
tion when starting with equivalent seeding densities (Sup-
plementary Material, Fig. S2b). In contrast, knockdown of

CENP-A in undifferentiated hPSCs resulted in no change in
morphology by phase contrast (Supplementary Material,
Fig. S2a), or proliferation rate relative to cells transduced with
the control vector as measured using the competition assay
(Fig. 2G). Furthermore, knockdown of CENP-A in undiffer-
entiated hPSCs did not cause a significant change in
apoptosis relative to control (Fig. 2H, Supplementary Material,
Fig. S3a). Analysis of basic self-renewal markers including

Figure 2. hPSCs with depleted CENP-A undergo normal self-renewal. (A) Quantitative PCR for CENP-A mRNA in BJ cells (n ¼ 5 replicates). (B) Immuno-
fluorescence of BJ cells for CENP-A knockdown and control conditions. (C) Quantitative PCR for CENP-A in control and knockdown hPSCs (HSF-6) compared
with BJ (n ¼ 6 replicates). (D) Immunofluorescence and western blot comparing control and knockdown hPSCs (HSF-6). (E) Competition assay in BJ cells
knockdown compared with control transduced. A representative graph from n ¼ 3 replicates is shown. (F) Annexin V staining of BJ cells (n ¼ 3 replicates).
(G) Competition assay in CENP-A knockdown cells compared with control hPSCs (HSF-6). A representative graph from n ¼ 3 replicates is shown. (H)
Annexin V staining of hPSCs (HSF-6) (n ¼ 6 replicates).
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stage-specific embryonic antigen 4 (SSEA4) by flow cytometry,
and OCT4, NANOG and SOX2 mRNA by real-time PCR
revealed no difference in levels when compared to cells trans-
duction with the control vector (Supplementary Material, Figs
S2c–d and S3b). Taken together, these results suggest two
alternative hypotheses; (i) knocking down CENP-A in undiffer-
entiated hPSCs has no effect on the integrity of the centromere
resulting in normal mitosis, or (ii) hPSCs with significantly
reduced levels of CENP-A are proliferating, but accumulating
considerable aneuploidies due to relaxed cell cycle checkpoints.

To address this, we evaluated the cell cycle of BJ fibroblasts
and undifferentiated hPSCs transduced with control and
CENP-A shRNA vectors. Our results show that knockdown
of CENP-A in BJ cells caused a delay in G2/M and a loss of
cells from G1 as expected for cells arresting in mitosis due
to segregation defects (Fig. 3A). However, knockdown of
CENP-A in hPSCs resulted in a trend towards a G2/M delay,
but no statistically significant effect on cell cycle phasing
(Fig. 3B). To determine whether knockdown of CENP-A in
hPSCs caused chromosomal alignment defects, we evaluated
50–55 mitotic cells from control and CENP-A knockdown
cultures 5 days after transduction and selection (Fig. 3C). To
detect the centromere in these studies, we used CREST anti-
sera commonly used to identify active centromeres. Unlike
staining with CENP-A, CREST foci could be identified in
the CENP-A knockdown cells (Fig. 3C), confirming that redu-
cing the levels of CENP-A by 80% is not sufficient to induce
complete loss of the centromere under self-renewing con-
ditions. Analysis of the metaphase plate showed 38/50 or
76% of cells transduced with the control vector exhibited
normal chromosomal alignment in metaphase (Fig. 3C).
However, under control conditions, we also identified 12
metaphases (24%) with morphologically abnormal alignment.
Similarly, in the CENP-A knockdown cells, 69% of meta-
phases were scored as normal, whereas 17/55 (31%) of meta-
phases exhibited abnormal alignment (Fig. 3C). In order to
determine whether this small increase in chromosome misa-
lignment translates to an increase in aneuploidy, we performed
karyotype analysis of the CENP-A knockdown cells 10 days
after transduction (Fig. 3D). Our results showed that knock-
down of CENP-A under self-renewing conditions does not
result in aneuploidy within the first passage.

Taken together, our results indicate that the CENP-A
mRNA reserve found in undifferentiated PSCs is responsible
for sustaining the CENP-A protein load, as loss of the
mRNA reserve results in a significant reduction in CENP-A
protein. However, unlike fibroblasts, depleting CENP-A
protein levels has no impact on proliferation and self-renewal.
Therefore, our data point to the idea that under self-renewing
conditions, the amount of CENP-A protein necessary to gener-
ate a functional epigenetic centromeric mark in hPSCs is con-
siderably less than the amount of CENP-A protein required to
create a functional centromere in fibroblasts.

CENP-A depleted pluripotent stem cells cannot support the
transition from pluripotency to lineage commitment

Next, we investigated whether reducing CENP-A has an effect
on centromeric maintenance when hPSCs are induced to
differentiate and accumulate increased amounts of

H3K27me3 (Fig. 1E). To achieve this, we transduced hPSCs
with either CENP-A shRNA lentivirus or control lentivirus
under self-renewing conditions, allowed the cells to recover
for 72 h in selection media and then induced differentiation
in the presence of retinoic acid for 4 days. Our results show
that differentiation of cells with reduced levels of CENP-A
caused in a significant increase in the proportion of cells
undergoing apoptosis relative to control (Fig. 4A). This was
observed in HSF-6 (Fig. 4A) as well as HSF-1 hPSC lines
(Supplementary Material, Fig. S3c). Furthermore, apoptosis
on day 4 of differentiation was accompanied by accumulation
of cells in the G2/M phase of the cell cycle (Fig. 4C), indicat-
ing that the apoptosis is due to cells with segregation defects.
In order to determine whether apoptosis could be attributed to
all differentiated cells or whether there was a quantitative
difference between cells with more stem-like characteristics
(retaining SSEA4 positive surface staining), we analyzed
Annexin V staining in the SSEA4 positive and SSEA4 negative
fractions at day 4 of differentiation (Fig. 4B). Our results
showed that apoptosis is enriched in the SSEA4 negative (dif-
ferentiated) fraction of CENP-A knockdown cells, confirming
that apoptosis was more tightly coupled with the process of
differentiation in cells with reduced levels of CENP-A.

One of the major proteins involved in coupling cell cycle
checkpoints to induction of apoptosis is p53. In order to deter-
mine whether the increased apoptosis in CENP-A knock down
cells is p53 dependent, we added the p53 inhibitor pifithrin to
transduced hESCs 12 h before the initiation of differentiation,
and measured apoptosis at day 4 of differentiation (Fig. 4D).
Our results showed that the majority of apoptosis was p53
dependent in both HSF-6 (Fig. 4D) and HSF-1 hPSCs derived
from the inner cell mass of blastocysts (Supplementary
Material, Fig. S3d). We also showed that pifithrin induced a
small yet significant decrease in the endogenous levels of apop-
tosis in differentiated cells transduced with the control vector.

Given that the reduced levels of CENP-A caused a significant
increase in apoptosis as hESCs transition to lineage commit-
ment, we were next interested in evaluating whether hIPS
cells exhibit the same phenotype. We first transduced hIPS2
cells with either control or CENP-A shRNA lentivirus, and eval-
uated apoptosis and SSEA4 expression under self-renewing con-
ditions. Our results indicated that similar to hESCs, hIPS cells
with depleted CENP-A exhibit no change in SSEA4 or apoptosis
relative to control cells cultured under self-renewing conditions
(Fig. 4E and F). Next, we induced differentiation, and similar to
hESCs, our results showed that hIPS cells with reduced levels of
CENP-A exhibit increased apoptosis relative to control
(Fig. 4G), and that this apoptosis is p53 dependent (Fig. 4H).
Taken together, our results indicate that even though reduced
levels of CENP-A in undifferentiated hPSCs is sufficient to
support a basic centromeric mark, the switch to lineage commit-
ment increases the threshold of CENP-A required to maintain
the centromeric mark and cells with depleted CENP-A
undergo G2/M arrest and apoptosis.

CENP-A-depleted ESCs undergo significant apoptosis
when challenged with DNA damage

A role for CENP-A was recently identified in human somatic
cells following DNA damage (38). Given that significantly redu-
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cing the levels of CENP-A in undifferentiated hPSCs still sup-
ports a functional centromere, we were next interested in evalu-
ating whether the DNA damage response is affected in hPSCs
with significantly reduced levels of CENP-A mRNA and
protein. To achieve this, we first evaluated the kinetics of
CENP-A localization in hPSCs (HSF-6) over the course of 2 h
following DNA damage with 5 Gy of irradiation (Fig. 5A).
Our results show that within 50 min of DNA damage,
CENP-A protein is identified as numerous small nuclear foci
rather than large centromeric dots. The generation of the numer-
ous small CENP-A foci was associated with an increase in
gH2AX signal indicating initiation of DNA repair, however
CENP-A and gH2AX do not co-localize. At 50–90 min, a
major proportion of the hESC nuclei reorganize, resulting in
clustering of the majority of CENP-A foci. Clustered and non-
clustered CENP-A foci continue to exhibit minimal to no
overlap with gH2AX. By 120 min, CENP-A foci had returned

to the central nuclear position in most cells, however the
intense staining of gH2AX indicates that repair is still
ongoing. Furthermore, similar to the proceeding time points,
gH2AX staining remained mostly mutually exclusive from the
foci of CENP-A. Given the dynamic remodeling of CENP-A
foci following irradiation, we next evaluated whether during
the clustering phase 60 min after DNA damage, the CENP-A
foci localized with a second constitutive centromeric protein
(CENP-C) (Fig. 5B). CENP-C was chosen because centromere
localization and function is mutually dependent upon both
CENP-C and CENP-A (reviewed in 17,18). Our results clearly
show that at 60 min following irradiation damage, CENP-C
foci also rearrange and cluster in the nucleus, however
CENP-A and CENP-C foci rarely co-localize.

In order to evaluate the effects of reduced levels of CENP-A
mRNA and protein during DNA damage, we knocked down
CENP-A in undifferentiated hPSCs (HSF-6) and after 5 days

Figure 3. Significantly reducing CENP-A levels in hPSCs does not cause segregation defects. (A) Cell cycle profile of CENP-A knockdown BJ cells relative to
control after 5 days of selection with hygromycin (n ¼ 3 replicates). A representative flow plot of each is also shown. (B) Cell cycle profiles of control and
CENP-A knockdown hPSCs (HSF-6) (n ¼ 3 replicates). A representative flow plot of each is shown. (C) Immunofluorescence (IF) of control and CENP-A
knockdown hPSCs with anti-tubulin, anti-CREST and DAPI. (D) Karyotype of CENP-A knockdown HSF-6 hPSCs 10 days after transduction with lentivirus.
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Figure 4. Differentiation of CENP-A-depleted hESCs and hIPS cells causes lethal mitotic defects. (A) Annexin V staining of control and CENP-A shRNA-
transduced HSF-6 cells after 4 days of differentiation with 10 mM RA (n ¼ 3 replicates). (B) Annexin V staining in SSEA4+ versus SSEA42 populations
in CENP-A shRNA-transduced HSF-6 after 4 days of differentiation (n ¼ 3 replicates). (C) Cell cycle profiles of hPSCs (HSF-6) after 4 days differentiation
(n ¼ 3 replicates). Shown is one representative flow plot from each sample. (D) Annexin V staining of HSF-6 after 4 days of differentiation before and after
treatment with Pifithrin (n ¼ 3 replicates). (E) Annexin V staining of control and CENP-A shRNA-transduced HIPS2 cells under self-renewing conditions
(n ¼ 3 replicates). (F) SSEA4 staining of control and CENP-A knockdown hIPS2 cells under self-renewing conditions (n ¼ 3 replicates). (G) Annexin V staining
of control and CENP-A knockdown hIPS2 cells after 4 days of differentiation (n ¼ 3 replicates). (H) Apoptosis following 4 days of differentiation in control and
CENP-A knockdown hIPS2 cells before and after treatment with pifithrin (n ¼ 3 replicates).
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of selection we exposed the cells to 5 Gy of irradiation. Our
functional read-out was to measure apoptosis at 6 and 24 h
after irradiation damage. Our results showed that in cells trans-
duced with the control vector, a 2–3-fold increase in apoptosis

was identified on 24 h of irradiation damage. In contrast,
hPSCs transduced with CENP-A shRNA vectors exhibited a
statistically significant increase in apoptosis above the
control cells at 24 h (Fig. 5C).

Figure 5. The dynamics and role of CENP-A following DNA damage. (A) IF of unmodified HSF-6 hPSCs with CENP-A and gH2AX localization after DNA
damage by 5 Gy IR. (B) IF of unmodified HSF-6 hPSCs with CENP-A (red) and CENP-C (green) 60 min following 5 Gy IR. (C) Annexin V staining of control-
and CENP-A shRNA-transduced HSF-6 with and without DNA damage with 5 Gy IR (n ¼ 6 replicates).
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DISCUSSION

In the current study, we show that the mRNA levels of
CENP-A in human PSCs and day 7 differentiated progeny
are significantly higher than fully differentiated cycling
somatic fibroblast cells. This elevated level of CENP-A
mRNA is found regardless of whether hPSCs were derived
by culture-induced conversion of the inner cell mass, or by
induced reprogramming of human fibroblasts. However,
despite this higher mRNA load, protein analysis indicates
that the amount of CENP-A in hPSC chromatin is identical
to fibroblasts. A second novel finding is that depletion of
CENP-A mRNA and protein in hPSCs under self-renewing
conditions causes no significant phenotype, whereas inducing
differentiation of the CENP-A depleted cells causes accumu-
lation of cells in G2/M, and a significant increase in
p53-dependent apoptosis. Together these results suggest that
the amount of CENP-A protein required to define the centro-
mere may be cell type, and context specific in mammalian
cells, with undifferentiated hPSCs requiring less CENP-A
protein to faithfully retain the centromeric epigenetic mark
relative to fibroblasts (Fig. 6). Finally, given that the threshold
for significantly depleting CENP-A protein in hPSCs was
lower than fibroblasts, we induced DNA damage in
CENP-A-depleted self-renewing hPSCs, and determined that
CENP-A-depleted hPSCs undergo significantly more apopto-
sis 24 h after irradiation, which is 22 h after the dynamic

remodeling of CENP-A foci that occur in response to DNA
damage.

Previous reports using microarray analysis determined that
CENP-A mRNA levels were higher in oocytes and hESCs
relative to somatic cells (27–31). Our study confirms these
findings; however, we further show that despite the elevated
CENP-A mRNA in undifferentiated hPSCs, protein levels of
CENP-A are equivalent to fibroblasts. This uncoupling of
relative RNA to protein levels could be explained by the
unique RNA translational controls recently identified in
murine PSCs (41,42). For example, in murine ESCs, ‘parsi-
monious translation’ is hypothesized to define the pluripotent
state, with undifferentiated ESCs containing 78% lower ribo-
some loading of RNA transcripts relative to their differen-
tiated progeny, which establishes an RNA pool of specific
transcripts that do not undergo productive protein synthesis
(41). Translational regulation is also a critical feature of
oocyte growth and the transition to an embryonic develop-
mental program after fertilization. Translational regulation
in the oocyte is a complex process involving multi-
component RNA-binding complexes, compartmentalization
of maternal RNAs and polyadenylation-induced translation
(reviewed in 43,44). Whether the elevated levels of
CENP-A mRNA are a product of poor polyribosome activity
and content in hPSCs and/or the presence of a hPSC-specific
CENP-A RNA-binding protein that regulate translation
remain to be determined.

Figure 6. Summary of differences between CENP-A expression and functional dynamics in fibroblasts and hPSCs. Our data demonstrate that the relative levels
of CENP-A mRNA are significantly higher in undifferentiated hPSCs and hPSCs treated with retinoic acid (RA) relative to fibroblasts (green boxes). However,
this higher load of CENP-A mRNA in control or unmanipulated hPSCs does not translate into significantly higher levels of CENP-A protein in the undiffer-
entiated state (green boxes). Depletion of CENP-A mRNA and protein in fibroblasts using shRNA causes apoptosis (Apop) and G2/M delay as previously
reported (red box). In contrast, depletion of CENP-A mRNA and protein in hPSCS using shRNAs had no effect on the maintenance of a functional epigenetic
mark (red box). Treatment of CENP-A-depleted hESCs with either retinoic acid (RA) to induce differentiation or irradiation (yellow lightening rod) to induce
DNA damage caused significant apoptosis above control, suggesting that in the CENP-A-depleted state, hPSCs cannot effectively mount a differentiation
response, or overcome DNA damage and continue to proliferate (+/2, detection at the lower limit of resolution for the assay; +, low expression;
+++++, high expression).
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The depletion experiments in the current study suggest that
under circumstances where CENP-A mRNA and protein levels
are reduced, the threshold of CENP-A required to maintain a
functional centromeric mark must be lower in hPSCs relative
to fibroblasts because proliferation and self-renewal were
unaffected. Depletion of CENP-A was achieved using
shRNAs which are known to mostly act through RNA degra-
dation (45). This would suggest that the high mRNA reserves
of CENP-A in hPSCs are required to sustain wild-type levels
of CENP-A protein. The paradox in this analysis is that redu-
cing CENP-A mRNA and protein levels in undifferentiated
hPSCs using shRNAs did not affect proliferation or self-
renewal, whereas reducing CENP-A by the same technique
in fibroblasts was lethal. One possible explanation is the
unique chromatin configuration of PSCs compared with fibro-
blasts. For example, hPSCs have what is termed an ‘open’
chromatin configuration largely devoid of heterochromatin
(37,46). In support of this, we show that the heterochromatic
mark H3K27me3 is low in the undifferentiated hPSCs used
in the current study, and that this epigenetic mark is signifi-
cantly increased upon hPSC differentiation. We also show
that as H3K27me3 levels increase during differentiation so
do the levels of CENP-A in chromatin. The purpose of an
open chromatin state is hypothesized to create the plasticity
for mounting a rapid response to differentiation signals
(reviewed in 47). Using human artificial chromosomes, it
has been shown that heterochromatin can act as one of the
major determinants of minimal centromeric length (48).
Therefore, if reduced heterochromatin is also found at the cen-
tromeres of undifferentiated hPSCs, this unique chromatin
architecture may create the opportunity for sustaining a func-
tional centromere under circumstances where CENP-A protein
levels become significantly reduced. This hypothesis would
only be plausible if heterochromatin were not necessary to
sustain a functional centromere, and indeed this was recently
shown using neocentromeres as a model in lymphoblast and
fibroblast BBB lines (49).

Our data indicate that once CENP-A-depleted hPSCs exit
the self-renewing state, lineage-committed CENP-A-depleted
cells undergo P53-dependent apoptosis. In support of this, a
recent study using human primary fibroblasts revealed that
entry into senescence in CENP-A-depleted fibroblasts is also
P53 dependent (50). Therefore, our data support the hypoth-
esis proposed by Maehara et al. (50) that p53 is a major sur-
veillance factor for centromeric defects, and our study
extends these original findings to indicate that reduced levels
of CENP-A during early lineage commitment in the embryo
would also act to prevent aneupoidy as a consequence of com-
promised centromere function.

A non-centromeric role for CENP-A in DNA damage repair
has previously been proposed using Xenopus sperm as well as
mouse and human somatic cells (38,39). In order to evaluate
the dynamics of CENP-A in hPSCs following DNA damage,
we used irradiation to induce double-strand breaks, and in
agreement with previous studies, we identified an increase in
the number of CENP-A foci shortly after inducing damage
(38,39). However, our data stand in contrast to previous
reports, as we did not observe an increase in foci size, or
direct correlation with gH2AX staining. These differences
may be explained by species differences, or an inherent

difference between diploid hPSCs and haploid sperm. Given
that in our study, CENP-A foci did not correlate with
gH2AX after DNA damage, this would indicate that
CENP-A is not localizing stably to induced break points in
hPSCs (38). Furthermore, at 60 min after DNA damage,
CENP-A foci also do not co-localize with CENP-C. This
would indicate that the centromere is no longer functional
during this period and therefore, before the cells can resume
mitosis after DNA damage and repair, functional centromeres
will need to be rebuilt. Inducing DNA damage of
CENP-A-depleted hPSCs revealed that 24 h after DNA
damage, CENP-A depleted cells are undergoing significantly
higher levels of apoptosis relative to control. Combined with
the result that CENP-C and CENP-A foci do not correlate fol-
lowing DNA damage, our interpretation is that increased
apoptosis at 24 h is not due to defects in DNA repair associ-
ated with gH2AX, because CENP-A and gH2AX show no
major overlap. Instead, we favor the hypothesis that increased
apoptosis in CENP-A-depleted cells following DNA damage
is due to reduced availability of new CENP-A protein to
rebuild the CENP-A/CENP-C uncoupled centromeres follow-
ing DNA damage.

In conclusion, cultured hPSCs are unique cell types that
closely resemble the inner cell mass cells in blastocysts that
normally persist for only a few days before changing fate to
create every cell type in the body including the germline. In
the first week post-fertilization, the human embryo is dividing
on a rigid time scale governed by female reproductive physi-
ology that creates a small window for successful implantation.
If cell division occurs too slowly, then the embryo is lost
because the window for receptive implantation is over. Our
results suggest that hPSCs create both a reserve of CENP-A
mRNA as well as the flexibility to reduce the amount of
CENP-A necessary to create a functional centromere. This
mechanism functions in favor of cell division, while minimiz-
ing the potential for post-fertilization aneuploidies due to
defective centromeres. The fact that hIPS cells maintain this
same phenomenon indicates that establishing a dynamic
range for CENP-A is not merely a relic from the pre-
implantation embryo, but an integral aspect of hPSC self-
renewal. Finally, our data indicate that hPSCs provide a new
and unique tool with which to evaluate the biology of
CENP-A (Fig. 6) and the pathways by which centromeric
nucleosomes in primary human cells of the same genotype
are dynamically remodeled under conditions of self-renewal,
differentiation and DNA damage.

MATERIALS AND METHODS

Cell culture and treatments

Information regarding the hESCs, HSF-6 (UC06, 46XX) and
HSF-1 (46XY) can be obtained at http://stemcells.nih.gov/
stemcells. Undifferentiated hESC colonies were maintained
as previously described (51). For all experiments, hESCs
were used between passages 40 and 60. The hIPS cell line 2
(hIPS2, 46XY) was cultured as previously described (40).
All hESC and hIPS experiments were conducted with prior
approval from the UCLA Embryonic Stem Cell Research
Oversight Committee.
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BJ fibroblast somatic cells were cultured in 90% minimum
essential medium (MEM) with Earle’s salt and L-glutamine,
10% fetal bovine serum, 1% non-essential amino acids and
1 mM sodium pyruvate. Cells were passaged using 0.25%
trypsin every 7 days.

Differentiation from hESCs and hIPS

Differentiation was performed on matrigel (BD Biosciences)
treated six-well plates. Differentiation media included
DMEM/F12 (Gibco BRL) supplemented with Lot-tested
20% FBS (Hyclone), 0.1 mM non-essential amino acids
(Gibco BRL), 0.1 mM b-mercaptoethanol (Gibco BRL),
1 mM L-glutamine (Gibco BRL) and 10 mM retinoic Acid
(RA, Sigma, St Louis, MO, USA, http://www.sigmaaldrich.
com). Media were changed every 2 days during differentiation
with the addition of fresh 10 mM RA at each medium change.

Irradiation

Human ES cells were irradiated 2 days after passaging with
5 Gy of g-radiation using a Mark-1 cesium137 irradiator.
Immediately after irradiation, cells were returned to the incu-
bator for recovery until the appropriate time point.

Vectors

Sense and antisense oligonucleotides of the CENP-A shRNA
duplex were as follows: sense ttc gga tct cct tta gcc a, anti-
sense ttc gga tct cct tta gcc a. The oligonucleotides were syn-
thesized and HPLC purified by Invitrogen. After annealing,
the duplexes were cloned into the H1P lentiviral vector as
already described (52).

Lentivirus production and ES cell transduction

Lentiviral vectors were packaged, concentrated by ultracentri-
fugation at 50 000g for 1.5 h, resuspended in hESC media and
stored at 2808C as previously described (53). Titering was
performed on 293 FT cells. For transduction, ES cells were
treated with 1 mg/ml collagenase, resuspended in conditioned
media and 2.5 × 106 IU of virus was added to 1 × 105 cells
and rocked in the incubator for 2.5 h as already described
(54). Polybrene (Sigma) was added at a concentration of
10 mg/ml. Subsequently, cells were pelleted, virus washed
off and plated on matrigel coated plates in conditioned
media. Selection with hygromycin at 200 mg/ml was started
at 24–48 h post-transduction. Majority of the experiments
were performed after having cells under selection for 5 days.
Knockdown efficiency was confirmed using quantitative
PCR, western blots and immunohistochemistry.

Competition assay

shRNA-transduced BJ cells were mixed with non-transduced
cells at a ratio of 4:1 and plated into gelatinized 12-well
plates. Every 48 h (one passage), the cells were trypsinized
and replated. At each passage, the proportion of GFP+/
GFP2 cells was measured by flow cytometry on a LSRII
(BD Biosciences). Analyses were carried out for six consecu-

tive passages. Similar analysis was performed in shRNA-
transduced hESCs, but cells were plated on matrigel plates
in conditioned media and analyzed at each passage (approxi-
mately every 5–6 days) for two passages.

RNA extraction and polymerase chain reaction

Total RNA was extracted using the RNeasy kit (Qiagen,
Hilden, Germany, http://www.qiagen.com) according to man-
ufacturer’s instructions. Total RNA was quantified, and 1 mg
was used for cDNA synthesis using random primers (Invitro-
gen, Carlsbad, CA, USA) under standard conditions. Reverse
transcriptase–polymerase chain reaction (RT–PCR) amplifi-
cations were conducted for 35 cycles of 958C, 30 s; 608C,
30 s and 728C, 30 s. Primer sequences are as follows:
glyceraldehydes-3-phosphate dehydrogenase (GAPDH) F
5′-acc aca gtc cat gcc atc ac-3′, GAPDH R 5′-tcc acc acc
ctg ttg ctg ta-3′, centromere protein A (CENP-A) F 5′-ata
tgt gtt aaa ttc act cgt ggt gt-3′, CENP-A R 5′-cag gaa aga
ctg aca gaa aca ctg-3′, OCT-4 F 5′-aca tca aag ctc tgc aga
aag aac t-3′, OCT-4 R 5′-ctg aat acc ttc cca aat aga acc
c-3′, NANOG F 5′-cag ctg tgt gta ctc aat gat aga ttt-3′,
NANOG R 5′-aca cca ttg cta ttc ttc ggc cag ttg-3′, SOX2 F
5′-agt ctc caa gcg acg aaa aa-3′, SOX2 R 5′-gca aga agc
ctc tcc ttg aa-3′.

Quantitative real-time PCR was performed in duplicate for
each sample from at least three separate experiments using
Sybr Green master mix (Roche) according to manufacturer’s
instructions. Sybr green PCR was initiated at 958C for 3 min
followed by cycles of 958C, 30 s; 608C, 30 s and 728C, 30 s.
All primers were used as stated above. All results were nor-
malized against GAPDH.

Flow cytometry

Cells were dissociated with 0.05% trypsin and 0.5 mM EDTA
(Gibco BRL) at 378C for 5 min and collected by centrifugation
at 156.5g for 5 min. Cells were incubated in 1% BSA in PBS
containing primary antibodies on ice for 20 min. Cells were
then washed and incubated in FITC- or Cy5-conjugated sec-
ondary antibodies on ice for another 20 min. For the
Annexin assays, cells were washed and incubated with 5 ml
PE-conjugated annexin per 1 × 105 cells at room temperature
in the dark for 15 min according to manufacturer’s instructions
(BD Pharmingen). Analysis was performed using LSR II
(Becton Dickinson, Franklin Lakes, NJ, USA, http://www.
bd.com) and FlowJo software (Tree Star Inc., Ashland, OR,
USA, http://www.treestar.com).

Cell cycle analysis

Cells were dissociated with 0.05% trypsin and 0.5 mM EDTA
(Gibco BRL) at 378C for 5 min and collected by centrifugation
at 156.5g for 5 min. Cells were then washed once in PBS and
subsequently resuspended in hypotonic propidium iodide
buffer as described previously (55) at a concentration of 1 ×
106 cells/ml. Cells were then immediately analysed using
FacScan I (Becton Dickinson) and ModFit software (http://
www.vsh.com) subsequently.
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Immunofluorescence

Immunofluorescence was performed on cells grown on slides
coated with matrigel fixed with 4% paraformaldehyde for
15 min. Blocking was performed in 10% heat-inactivated
FBS (Hyclone) with 0.05% Tween 20 (Sigma) in phosphate-
buffered saline (PBS) for 1 h prior to incubation with
primary antibody [CENP-A (Millipore), gH2AX (Millipore)
and Tubulin (Sigma)]. The primary antibody was detected
with fluorescent dye-conjugated secondary antibody.
TO-PRO-3 iodide (Invitrogen, http://www.invitrogen.como)
was used as a marker for nucleus.

Western blot

Protein was harvested using M-PER cell lysis reagent (Thermo
Scientific, Rockford, IL, USA, http://www.thermo.com).
Protein concentration was measured using BCA Protein
assay (Thermo Scientific). One hundred micrograms of total
protein were electrophoresed through 12% NuPAGE Novex
Bis-Tris gels (Invitrogen) and transferred according to stan-
dard procedures. For immunoblotting, primary antibody was
rabbit anti-human CENP-A protein (Millipore) and rabbit
anti-human b-actin (Abcam). Secondary HRP-conjugate was
used at a 1:10 000 dilution. Blots were developed using
SuperSignal West Pico Chemiluminescent Substrate (Pierce).
Soluble proteins were separated from chromatin-
hydroxyapatite using 0.35 M NaCl-buffer washes, and concen-
trated by TCA precipitation, followed by acetone rinse. Air-
dried pellets were dissolved directly in 1× SDS–PAGE
loading buffer. The H3K27Me3 antibody (Millipore) was
used at 1:5000 dilution o/n, with secondary at 1:50 000 for 2 h.

Chromatin purification and CENP-A detection

Bulk chromatin was purified from HSF-6 and BJ cells following
published protocol with slight modification (56). Briefly, cells
were pelleted at low speed, washed three times with PBS contain-
ing 0.1% Tween 20. Nuclei were releases by resuspending cells in
TM2 (20 mM Tris–HCl, pH 8.0, 2 mM MgCl2) containing 0.5%
NP40 for 2 min on ice. Released nuclei were collected by cen-
trifugation at 800 rpm for 10 min at 48C. Nuclei were washed
once with TM2 and 0.1 M TE. Nuclei were resuspended
ice-cold nuclear extraction buffer (1× PBS containing 0.35 M

NaCl2, 2 mM EDTA and 0.5 mM PMSF) containing 10% hydro-
xylapatite (HAP) to purify the DNA-bound histones, and left in
an end-over-end rotary shaker in a cold box over night. HAP chro-
matin was collected by centrifugation 1000 rpm for 10 min. HAP
chromatin was washed four times with ice-cold nuclear extraction
buffer. HAP-/DNA-bound histones were eluted with high salt
buffer (1× PBS containing 2 M NaCl2, 2 mM EDTA and
0.5 mM PMSF) for 16 h. Eluted proteins were collected by cen-
trifugation and tri-chloroacetic acid (TCA, Sigma) precipitated
for 10 min, rinsed with 70% acetone and then gently dried.
Pellet was resuspended 1× SDS–PAGE sample buffer contain-
ing b-mercaptoethanol (Invitrogen), boiled for 10 min and elec-
trophoretically resolved on 4–20% gradient TGX gels in Tris/
Glycin/SDS buffer (Biorad). The gels were either fixed and
stained with Coomassie Brilliant Blue or transferred to Optitran
membrane for western blot with anti-CENP-A antibody accord-
ing to manufacturer’s protocol (Millipore).

Statistics

Two-sided Student’s t-tests were performed to evaluate sig-
nificance between two groups. Significance was accepted at
P , 0.05.
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