
Research Article
An Improved Cuckoo Search Optimization Algorithm for
the Problem of Chaotic Systems Parameter Estimation

Jun Wang,1 Bihua Zhou,1 and Shudao Zhou2

1National Key Laboratory on Electromagnetic Environmental Effects and Electro-Optical Engineering,
PLA University of Science and Technology, Nanjing 210007, China
2College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

Correspondence should be addressed to Jun Wang; wangjun19007@163.com

Received 7 June 2015; Revised 27 August 2015; Accepted 1 October 2015

Academic Editor: Jens Christian Claussen

Copyright © 2016 Jun Wang et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve
the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation
are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish
parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The
numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results
are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results
demonstrate the method is energy-efficient and superior.

1. Introduction

Chaos is a universal complex dynamical phenomenon, lurk-
ing in many nonlinear systems, such as communication
systems and meteorological systems. The control and syn-
chronization of chaos has been widely studied [1–4]. Param-
eter estimation is a prerequisite to accomplish the control
and synchronization of chaos. During recent years many
parameter estimation methods have been proposed, such as
particle swarm optimization (PSO) [5–8], genetic algorithm
(GA) [9–12], andmathematicalmethods ofmultiple shooting
[13]. However, the GA and PSO algorithms are easily trapped
into local-best solution that affects the quality of solutions;
the precisions of PSO, GA, and multiple shooting are not
high enough. Recently, a novel and robust metaheuristic
based method called cuckoo search algorithm was proposed
by Yang and Deb [14–16]. The algorithm proved to be very
promising and could outperform existing algorithms such
as GA and PSO [14]. However, the relatively poor ability of
local searching is a drawback, and it is necessary to further
improve the performance of CS algorithm to obtain a higher-
quality solution. The basic principle of the ICS algorithm is

to integrate the orthogonal design and simulated annealing
operation to enhance the exploitation optimization capacity.

The remaining sections of this paper are organized as
follows. In Section 2, a brief formulation of chaotic system
parameters estimation is described. Section 3 elaborates
the ICS algorithm, and the results established upon the
proposed algorithmand some compared algorithms are given
in Section 4. The paper ends with conclusions in Section 5.

2. Problem Formulation

A problem of parameter estimation can be converted into a
problem of multidimensional optimization by constructing
the proper fitness function.

Let the following equation be a continuous nonlinear 𝑛-
dimension chaotic system:

𝑋̇ = 𝐹 (𝑋,𝑋
0
, 𝜃) , (1)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛 denotes the state vector

of the chaotic system, 𝑋̇ is the derivative of 𝑋, 𝑋
0
= (𝑥
10
,

𝑥
20
, . . . , 𝑥

𝑛0
)
𝑇
∈ 𝑅
𝑛 denotes the initial state of system, and
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Begin
Generate iteration time 𝑡 = 1
Initialized with random vector values and parameters
Evaluate the fitness of each individual (nest) and determine the best individual with the best fitness value
While (stopping criterion is not met or t <MaxGeneration)
Get a Cuckoo randomly by local random walk or Lévy Flights
Evaluate its fitness 𝐹

𝑚

Choose a nest among 𝑛 (say, 𝑛) randomly
If (𝐹
𝑚
< 𝐹
𝑛
)

replace 𝑛 by the new nest𝑚
End If
A fraction (𝑝

𝑎
) of worse nests are abandoned and new ones are built

Keep the best nests with quality solutions
Rank the solutions and find the current best
Update the generation number 𝑡 = 𝑡 + 1

End while
End

Algorithm 1: Basic cuckoo search algorithm.

𝜃 = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑑
)
𝑇 is a set of original parameters. Suppose

the structure of the system (1) is known; then the estimated
system can be written as

̇
𝑋̃ = 𝐹 (𝑋̃, 𝑋

0
,
̃
𝜃) , (2)

where 𝑋̃ = (𝑥̃
1
, 𝑥̃
2
, . . . , 𝑥̃

𝑛
)
𝑇
∈ 𝑅
𝑛 denotes the state vector of

the estimated system; ̃𝜃 = (̃𝜃
1
,
̃
𝜃
2
, . . . ,

̃
𝜃
𝑑
)
𝑇 is a set of estimated

parameters. In order to convert the parameter estimation
problem into optimization problem, the following objective
fitness function is defined:

𝐹 (
̃
𝜃) = √

1

𝑀

𝑀

∑

𝑖=1

(𝑋 − 𝑋̃)

2

, (3)

where 𝑖 = 1, 2, . . . ,𝑀 is the sampling time point and 𝑀
denotes the length of data used for parameter estimation.
The parameter estimation of system (1) can be achieved by
searching the most proper values of ̃𝜃 such that the objective
function (3) is globally minimized.

It can be found that (3) is a multidimensional nonlinear
functionwithmultiple local search optima; it is easily trapped
into local optimal solution and the computation amount is
great, so it is not easy to search the globally optimal solution
effectively and accurately using traditional general methods.
In the paper an improved CS algorithm is proposed to solve
the complex optimization problem.

3. Improved CS Algorithm

3.1. Basic CS Algorithm. The basic CS algorithm is based
on the brood parasitism of some cuckoo species by laying
their eggs in the nests of other host birds. For simplicity
in describing the basic CS, the following three ideal rules
are used [14]: (1) Each cuckoo lays one egg at a time, and
dumps it in a randomly chosen set; (2) the best nests with
high-quality eggs will be carried over to the next generations;

(3) the number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird with
a probability 𝑝

𝑎
∈ [0, 1]. In this case, the host bird can

either get rid of the egg away or simply abandon the nest
and build a complex new nest. Based on the above rules,
the basic CS algorithm is described as shown in Algorithm 1
[14].

Furthermore, the algorithmused a balanced combination
of a local random walk and the global explorative random
walk, controlled by a switching parameter 𝑝

𝑎
. The local

random walk can be written as

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝛼𝑠 ⊗ 𝐻 (𝑝

𝑎
− 𝜀) ⊗ (𝑥

𝑡

𝑗
− 𝑥
𝑡

𝑘
) , (4)

where 𝑥𝑡
𝑗
and 𝑥𝑡
𝑘
are two different solutions selected randomly

by random permutation, 𝐻 is a Heaviside function, 𝜀 is a
random number drawn from a uniform distribution, and 𝑠
is the step size.

On the other hand, the global random walk is carried out
by using Lévy flights [14–17]:

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝛼 ⊕ Lévy (𝑠, 𝜆) . (5)

Here, 𝛼 > 0 is the step size scaling factor; Lévy(𝑠, 𝜆) is the
step-lengths that are distributed according to the following
probability distribution shown in (6) which has an infinite
variance with an infinite mean:

Lévy (𝑠, 𝜆) = 𝜆Γ (𝜆) sin (𝜋𝜆/2)
𝜋

1

𝑠
1+𝜆
. (6)

3.2. ICS Algorithm. In order to further improve searching
ability of the algorithm, the orthogonal design and simulated
annealing operation are integrated into the CS algorithm.The
basic idea of the orthogonal design is to utilize the properties
of the fractional experiment to efficiently determine the best
combination of levels [17]. An orthogonal array of 𝐾 factors
with 𝑄 levels and 𝑀 combinations is denoted as 𝐿

𝑀
(𝑄
𝐾
),
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Step 1. Construct the basic columns
For 𝑘 = 1 to 𝐽

𝑗 =

𝑄
𝑘−1
− 1

𝑄 − 1

+ 1

For 𝑖 = 1 to 𝑄𝐽

𝑎
𝑖,𝑗
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑖 − 1

𝑄
𝐽−𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

mod 𝑄
End for

End for
Step 2. Construct the non-basic columns

For 𝑘 = 2 to 𝐽

𝑗 =

𝑄
𝑘−1
− 1

𝑄 − 1

+ 1

For 𝑠 = 1 to 𝑗 − 1
For 𝑡 = 1 to 𝑄 − 1

𝑎
𝑗+(𝑠−1)(𝑄−1)+1

= (𝑎
𝑠
× 𝑡 + 𝑎

𝑗
) mod 𝑄

End for
End for

End for
Step 3. Increment 𝑎

𝑖,𝑗
by one for 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁

Procedure 1: Procedure constructing the orthogonal array.

Begin
(1) Construct the orthogonal array following the above steps
(2) Randomly select two solutions from the population
(3) Quantize the domain formed by the two solutions
(4) Randomly generate 𝑘 − 1 integers 𝑝

1
⋅ ⋅ ⋅ 𝑝
𝑘−1

(5) Use 𝐿
𝑀
(𝑄
𝐾
) to generate𝑀 potential offspring

(6) Randomly select a solution from the population
(7) Compare the solution with the best solution from the orthogonal𝑀 offspring and obtain the better solution
End

Algorithm 2: Orthogonal design algorithm.

Begin
(1) Given a configuration of the elements of the system, randomly displace the elements on a time,

by a small amount and calculate the resulting change in the energy, Δ𝐸
(2) If Δ𝐸 < 0

Then accept the displacement and use the resulting configuration as the starting point for the next iteration
Else
Accept the displacement with probability 𝑃(Δ𝐸) = exp(−Δ𝐸/𝑘

𝑏
𝑇) where 𝑇 is the current temperature and

𝑘
𝑏
is Boltzmann’s constant

(3) Repetition of this step continues until equilibrium is achieved
End

Algorithm 3: Simulated annealing algorithm.

where 𝑄 is the prime number, 𝑀 = 𝑄
𝐽, and 𝐽 is a positive

integer satisfying 𝐾 = (𝑄𝐽 − 1)/(𝑄 − 1). The brief procedure
of constructing the orthogonal array 𝐿

𝑀
(𝑄
𝐾
) = [𝑎

𝑖,𝑗
]
𝑀×𝐾

is
described as shown in Procedure 1.

The procedure of the orthogonal design algorithm is
elaborated as shown in Algorithm 2 and for more detailed

information on the orthogonal design strategy, please refer
to [17–19].

The procedure of simulated annealing algorithm is simply
stated as shown in Algorithm 3 [20], and for more detailed
information on the simulated annealing, please refer to [20–
22].
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Begin
(1) Initial the parameter values of the algorithm, generate the random initial vector values and set the iteration number 𝑡 = 1.
(2) Evaluate fitness values of each individual and determine the current best individual with the best objective value.

Check whether the stopping criterion is met. If the stopping criterion is met, then output the best solution;
otherwise update the iteration number 𝑡 = 𝑡 + 1 and continue the iteration process until the stopping criterion is met.

(3) Keep the best solution of the last iteration, and get a set of new solutions𝑋new = [𝑥1
(𝑡+1)
, . . . , 𝑥

𝑖

(𝑡+1)
, . . . , 𝑥

𝐾

(𝑡+1)
] by

Lévy flight, the Lévy flight is performed according to (4).
(4) Evaluate the fitness value 𝐹

𝑖

(𝑡+1) of the new solution 𝑥
𝑖

(𝑡+1), and compare 𝐹
𝑖

(𝑡+1) with 𝐹
𝑖

(𝑡) which represents the solution of
the 𝑡th iteration. If 𝐹

𝑖

(𝑡+1) is better than 𝐹
𝑖

(𝑡), then replace 𝑥
𝑖

(𝑡) by 𝑥
𝑖

(𝑡+1), otherwise, not abandoning the solution 𝑥
𝑖

(𝑡+1)

at once but accepting the solution with probability 𝑝 = 𝑒(−|Δ𝑓|/(𝐾 ⋅ 𝑇)), where Δ𝑓 is the change in the fitness value
Δ𝑓 = 𝐹

𝑖

(𝑡+1)
− 𝐹
𝑖

(𝑡). 𝐾 is Boltzmann’s constant. 𝑇 is the current temperature. Select a random variable 𝑟
𝑖
∈ [0, 1], 𝑖 ∈ [1,𝑁],

if 𝑝 ≥ 𝑟
𝑖
, then accept the new solution and use the solution as the starting point for the next iteration. Otherwise,

abandon the solution, then a set of solution𝑋󸀠new = [𝑥11
(𝑡+1)
, 𝑥
22

(𝑡+1)
, . . . , 𝑥

𝑖𝑖

(𝑡+1)
] are obtained.

(5) A fraction (𝑝
𝑎
) of worse nests are abandoned and new ones are built.

(6) Implement the orthogonal design strategy procedures.
(7) Go to step (2)
End

Algorithm 4: Improved cuckoo search algorithm.

Based on the above description of the orthogonal design
strategy and simulated annealing operation, the detailed
procedures for parameter estimation with the ICS algorithm
can be summarized as shown in Algorithm 4.

4. Simulation Results

To demonstrate the effectiveness of the improved algorithm,
the algorithm is used to estimate parameters of Lorenz
chaotic system [23] and Chen chaotic system [24].

4.1. Lorenz Chaotic System. Lorenz chaotic system equation
[23] is expressed as follows:

𝑥̇ = 𝜎
1
(𝑦 − 𝑥) ,

𝑦̇ = 𝜎
2
𝑥 − 𝑥𝑧 − 𝑦,

𝑧̇ = 𝑥𝑦 − 𝜎
3
𝑧,

(7)

where (𝑥, 𝑦, 𝑧) is the state variables; 𝜎
1
, 𝜎
2
, 𝜎
3

are the
unknown chaotic system parameters which need to be
estimated. The real parameters of the system are 𝜎

1
= 10,

𝜎
2
= 28, and 𝜎

3
= 8/3 which ensure a chaotic behavior, in

order to obtain the values of some state variables, the fourth-
order Runge-Kutta algorithm is used to solve (7), and the
integral step is ℎ = 0.01. Then a series of state variables
values are obtained and 100 state variables of different times
({(𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)), 𝑛 = 1, 2, . . . , 100}) are chosen to be
the sample data. The parameters of the algorithm are set as
follows: themax iteration number is𝑁 = 200, the sample size
is𝑀 = 100, the annealing mode is shown in (8) where 𝑛 is
the iteration number, and the initial temperature is 𝑇

0
= 100.

Consider

𝑇 (𝑛) =

𝑇
0

ln (1 + 𝑛)
, (8)

The objective (fitness) function 𝐻 is shown in (9), where
(𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)) is the 𝑛th state variable that corresponds

to the true system parameters and (𝑥̃(𝑛), 𝑦̃(𝑛), 𝑧̃(𝑛)) is the
𝑛th state variable that corresponds to the estimated system
parameters:

𝐻

= √
1

𝑀

𝑀

∑

𝑛=1

[(𝑥̃ (𝑛) − 𝑥 (𝑛))
2
+ (𝑦̃ (𝑛) − 𝑦 (𝑛))

2
+ (𝑧̃ (𝑛) − 𝑧 (𝑛))

2
].

(9)

Figure 1 shows the convergence process of the fitness
values and three parameters (𝜎

1
, 𝜎
2
, 𝜎
3
) during the iterations

in a single experiment.
In order to eliminate the difference of each experiment,

the algorithm is also executed 50 times; then the mean value
of the 50 experiments is taken as the final estimated value; the
mean value and best value of the 50 experiments are listed in
Table 1.The results based on CS (the best parameter setting is
𝑝
𝑎
= 0.25, 𝑝

𝑎
= 0.01), PSO (the best parameter setting is 𝑤 =

0.8, 𝑐 = 1.5, where𝑤 is the inertia weight and 𝑐 is acceleration
factor), and GA (the best parameter setting is 𝑐

𝑟
= 0.8, 𝑚

𝑢
=

0.1, where 𝑐
𝑟
is the crossover rate and𝑚

𝑢
is themutation rate)

are also listed in Table 1.
It can be seen from Table 1 that the best fitness values

obtained by ICS algorithm are quite better than the other
algorithms.Themean values of the established parameters are
also with higher precision than others. The estimated values
are close to the true values infinitely. It can be concluded
in general that the ICS algorithm contributes to superior
performance, CS performs nest-best, PSO is better than GA,
and GA performs worst.

As the actual chaotic systems always associate with noise,
in order to test the performance of parameter estimation
in the noise condition, the noise sequences are added to
the original sample data. The white noise is added to the
state variables {(𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)), 𝑛 = 1, 2, . . . , 100}; the
range of the noise sequences is from −0.1 to 0.1. Figure 2
shows the convergence process of the fitness values and
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Table 1: The statistical results based on different methods in the noiseless condition.

Mean value Best value
ICS CS PSO GA ICS CS PSO GA

𝜎
1

10.000000 9.998736 9.985012 10.082051 10.000000 9.999927 9.995510 10.026911
𝜎
2

28.000000 28.000005 28.014411 27.881034 28.000000 28.000002 28.001304 28.004702
𝜎
3

2.666667 2.666661 2.668102 2.681882 2.666667 2.666665 2.666802 2.669018
𝐻 1.1822e − 010 3.7614e − 004 0.069517 0.331901 1.2933e − 011 2.9556e − 005 0.011377 0.113969

Table 2: The statistical results by different algorithms in the noise condition.

Mean value Best value
ICS CS PSO GA ICS CS PSO GA

𝜎
1

9.996110 10.080014 9.844606 10.217998 9.998941 10.001565 9.881002 10.044011
𝜎
2

28.002272 27.980212 27.860013 27.661201 28.000099 28.001995 28.022441 27.900189
𝜎
3

2.666590 2.658890 2.700198 2.659880 2.666675 2.667704 2.675596 2.670228
𝐻 0.008402 0.0390389 0.221401 0.500227 0.000908 0.001228 0.050931 0.255996
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three parameters (𝜎

1
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3
) during the iterations in a single experi-

ment under the noiseless condition.

three parameters (𝜎
1
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) during the iterations in a single

experiment under the noise condition.
In order to eliminate the difference of each experiment,

the algorithm is executed 50 times, then the mean value of
the 50 experiments is taken as the final estimated value, and
the corresponding results are listed in Table 2.
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Figure 2: The convergence process of fitness function value and
three parameters (𝜎
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, 𝜎
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, 𝜎
3
) during the iterations in a single experi-

ment under the noise condition.

It can be seen from Table 2 that the four algorithms all
have a certain capability of identification of parameters, but
the performance of ICS is much better than the other algo-
rithms; it supplies more robust and precise results; although
the precision of the estimated parameters is declined com-
paredwith the results in the noiseless condition, the precision
is still satisfactory. Then it can be concluded that the ICS
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Table 3: The statistical results by different algorithms in the noiseless condition.

Mean value Best value
ICS CS PSO GA ICS CS PSO GA

𝜎
1

34.999438 35.089675 34.844278 33.535396 34.999945 34.996661 34.782290 35.102699
𝜎
2

2.999951 2.999081 3.012977 3.005031 2.999999 2.999907 2.998694 2.991955
𝜎
3

27.999757 28.043810 27.917648 27.291109 27.999974 27.998427 27.895888 28.053975
𝐻 4.6438e − 007 4.6628e − 004 0.027312 0.115259 2.9658e − 010 3.2051e − 006 0.003312 0.010562

Table 4: The statistical results by different algorithms in the noise condition.

Mean value Best value
ICS CS PSO GA ICS CS PSO GA

𝜎
1

35.421272 35.859540 34.108398 35.962547 34.970096 35.112205 35.313896 10.044011
𝜎
2

2.996796 2.993281 2.970277 3.052984 2.999311 2.997309 2.980455 27.900189
𝜎
3

28.204815 28.418425 27.588450 28.434651 27.985940 28.055617 28.162608 2.670228
𝐻 0.009334 0.038112 0.244276 0.591957 1.5986e − 004 0.001495 0.062901 0.255996

algorithm possesses a powerful capability for parameters
identification in the noise condition.

4.2. Chen Chaotic System. Chen chaotic system equation [24]
is expressed as follows:

𝑥̇ = 𝜎
1
(𝑦 − 𝑥) ,

𝑦̇ = (𝜎
3
− 𝜎
1
) 𝑥 − 𝜎

3
𝑦 − 𝑥𝑧,

𝑧̇ = 𝑥𝑦 − 𝜎
2
𝑧,

(10)

where (𝑥, 𝑦, 𝑧) is the state variables; 𝜎
1
, 𝜎
2
, 𝜎
3

are the
unknown chaotic system parameters which need to be
estimated. The real parameters of the system are 𝜎

1
= 35,

𝜎
2
= 3, and 𝜎

3
= 28 which ensure a chaotic behavior,

the fourth-order Runge-Kutta algorithm is used to solve
(10), and the integral step is ℎ = 0.01. Then a series of
state variables values are obtained and 100 state variables of
different times ({(𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)), 𝑛 = 1, 2, . . . , 100}) are
chosen to be the sample data.Theparameters of the algorithm
are set as follows: the max iteration number is 𝑁 = 200, the
sample size is𝑀 = 100, the annealing mode is shown in (8)
where 𝑛 is the iteration number, and the initial temperature is
𝑇
0
= 100. The convergence process of the fitness values and

three parameters (𝜎
1
, 𝜎
2
, 𝜎
3
) during the iterations in a single

experiment is shown in Figure 3. In order to eliminate the
difference of each experiment, the algorithm is executed 50
times, then the mean value of the 50 experiments is taken as
the final estimated value, and the corresponding results are
listed in Table 2.

It can be seen from Table 3 that the best fitness values
obtained by ICS algorithm are quite better than the other
algorithms. The mean values of the established parameters
are also with higher precision than others. The estimated
values are close to the true values asymptotically. It can be
concluded in general that the ICS algorithm contributes to
superior performance, CS performs nest-best, PSO is better
than GA, and GA performs worst.

As the actual chaotic systems always come along with
noise, in order to test the performance of parameter
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Figure 3: The convergence process of fitness function value and
three parameters (𝜎

1
, 𝜎
2
, 𝜎
3
) during the iterations in a single experi-

ment under the noiseless condition.

estimation in the noise condition, the noise sequences are
added to the original sample data. The white noise is added
to the state variables {(𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)), 𝑛 = 1, 2, . . . , 100};
the range of the noise sequences is from −0.1 to 0.1. Figure 4
shows the convergence process of the fitness values and
three parameters (𝜎

1
, 𝜎
2
, 𝜎
3
) during the iterations in a single

experiment under the noise condition.
It can be seen from Table 4 that the four algorithms all

have a certain capability of identification of parameters, but
the performance of ICS is much better than the other algo-
rithms; it supplies more robust and precise results; although
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Figure 4: The convergence process of fitness function value and
three parameters (𝜎

1
, 𝜎
2
, 𝜎
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) during the iterations in a single experi-

ment under the noise condition.

the precision of the estimated parameters is declined com-
paredwith the results in the noiseless condition, the precision
is still satisfactory. Then it can be concluded that the ICS
algorithm possesses a powerful capability for parameters
identification in the noise condition.

5. Conclusion

In this paper, an energy-efficient and superior ICS algorithm
is proposed to estimate chaotic system parameters. The
estimated results demonstrate the strong capabilities and
effectiveness of the proposed algorithm, compared with the
CS, PSO, and GA algorithms; the ICS algorithm supplies
more robust and precise results. Besides, the algorithm also
has a more powerful capability of noise immunity. In general,
the proposed ICS algorithm is a feasible, energy-efficient,
and promising method for parameters estimation of chaotic
systems.
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ceedings of the World Congress on Nature & Biologically Inspired
Computing (NaBIC ’09), pp. 210–214, IEEE, Coimbatore, India,
December 2009.

[15] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[16] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural opti-
mization problems,” Engineering with Computers, vol. 29, no. 1,
pp. 17–35, 2013.



8 Computational Intelligence and Neuroscience

[17] C. R. Hick, Fundamental Concepts in the Design of Experiments,
Saunders College Publishing, Austin, Tex, USA, 1993.

[18] D. C. Montgomery, Design and Analysis of Experiments, Wiley,
New York, NY, USA, 1991.

[19] Y.-W. Leung, Y. Wang, Y.-W. Leung, and Y. Wang, “An orthog-
onal genetic algorithm with quantization for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 5, no. 1, pp. 41–53, 2001.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[21] M. S. Kim, M. R. Feldman, and C. C. Guest, “Optimum encod-
ing of binary phase-only filters with a simulated annealing
algorithm,” Optics Letters, vol. 14, no. 11, pp. 545–547, 1989.

[22] B. L. Golden and C. C. Skiscim, “Using simulated annealing to
solve routing and location problems,” Naval Research Logistics
Quarterly, vol. 33, no. 2, pp. 261–279, 1986.

[23] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.
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