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Development of the gut microbiota in healthy children in the first ten years of life: 
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ABSTRACT
Background: Increasing evidence indicates that psychopathological disorders are associated with 
the gut microbiota. However, data are largely lacking from long-term longitudinal birth cohorts, 
especially those comprising low-risk healthy individuals. Therefore, this study aims to describe gut 
microbiota development in healthy children from birth till age 10 years, as well as to investigate 
potential associations with internalizing and externalizing behavior.
Results: Fecal microbial composition of participants in an ongoing longitudinal study (N = 193) was 
analyzed at 1, 3 and 4 months, and 6 and 10 years of age by 16S ribosomal RNA gene sequencing. 
Based on these data, three clusters were identified in infancy, two of which were predominated by 
Bifidobacterium. In childhood, four clusters were observed, two of which increased in prevalence 
with age. One of the childhood clusters, similar to an enterotype, was highly enriched in genus-level 
taxon Prevotella_9. Breastfeeding had marked associations with microbiota composition up till age 
10, implying an extended role in shaping gut microbial ecology. Microbial clusters were not 
associated with behavior. However, Prevotella_9 in childhood was positively related to mother- 
reported externalizing behavior at age 10; this was validated in child reports.
Conclusions: This study validated previous findings on Bifidobacterium-enriched and -depleted 
clusters in infancy. Importantly, it also mapped continued development of gut microbiota in middle 
childhood. Novel associations between gut microbial composition in the first 10 years of life 
(especially Prevotella_9), and externalizing behavior at age 10 were found. Replications in other 
cohorts, as well as follow-up assessments, will help determine the significance of these findings.
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Introduction

The gut microbiota, mainly consisting of a vast num-
ber of bacteria,1 inhabits the gut of coelomate ani-
mals and has co-evolved with the hosts.2 These 
resident microorganisms play a crucial role in 
many aspects of health, including nutrition, immu-
nity and neurophysiology.3–5 Evidence is accumulat-
ing that the gut microbiota also plays a crucial role in 
aspects of mental health and behavior.5 Therefore, 
maintaining normal diversity and function of the gut 
microbiota throughout development is essential for 
physical and mental health. The current study inves-
tigates gut microbial development from infancy to 
middle childhood, as well as potential relations of the 
gut microbiota with behavioral measures in healthy 
children.

In humans, infancy is commonly recognized as 
a critically important period for microbiota to colo-
nize the gut.6 Before weaning, a healthy gut micro-
biota community is predominated by 
Bifidobacterium.7 Next to the Bifidobacterium- 
predominated type, researchers have identified sev-
eral other infant gut bacterial types using cluster 
analyses. The identified clusters are characterized 
by Bacteroides, Streptococcus, Enterobacteriaceae or 
Staphylococcaceae,8–10 and are thought to develop 
as a result of complex extrinsic factors, such as child 
sex, birth weight, delivery mode, diet, and 
antibiotics.11–19 Changes in extrinsic factors can 
also lead individuals to transition between different 
clusters.20 While some studies suggested that by age 
3, children have gut microbial profiles that strongly 
resemble those observed in adults,21,22 other cross- 
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sectional studies concluded that an adult-like gut 
microbial ecosystem has not yet been completely 
established at this age.23–25 Compared to healthy 
adults, the fecal microbiota of healthy toddlers is 
characterized by a higher relative abundance of 
Bifidobacterium.23 Remarkably, Bifidobacterium 
remains more abundant in healthy school-aged 
children and older-aged adolescents, as compared 
to healthy adults.24,25 All of these cross-sectional 
studies imply that gut microbiota development 
may extend longer into childhood than previously 
thought, potentially due to long-term impacts of 
early extrinsic factors. However, information on 
healthy gut microbial development from longitudi-
nal studies is largely lacking.

Researchers have gradually revealed 
a bidirectional communication between the gut 
microbiota and the host brain along the microbiota- 
gut-brain axis (MGBA), based on accumulating evi-
dence from both animal and human studies mostly 
focused on clinical mental disorders, such as major 
depressive disorders and bipolar depression.5,26–35 In 
humans, childhood is regarded as a critical phase for 
behavioral problems to start emerging. Numerous 
studies showed that elevated childhood behavioral 
problems, such as internalizing (i.e., behavioral pro-
blems influencing children’s internal psychological 
environment, such as anxiety, depression, somatiza-
tion, and social withdrawal symptoms) and externa-
lizing problems (i.e., behavioral problems manifested 
in outward behavior such as antisocial behavior, 
aggression, hyperactivity, acting out, and 
hostility)36 are associated with higher chances of 
developing mental disorders and risky lifestyles in 
adulthood, which may in turn result in premature 
mortality.37–40 However, investigations about the 
MGBA in childhood are still at an early stage. Most 
of the existing studies are cross-sectional and mainly 
focused on children diagnosed with psychological 
disorders, such as autism spectrum disorder (ASD) 
and attention deficit/hyperactivity disorder 
(ADHD).41–43 Three previous longitudinal studies 
on community samples have reported associations 
of the gut microbiota with temperament, cognition, 
and behavioral problems in children until age 2 
years.44–46 Two papers identified bacterial clusters 
associated with different behavioral patterns,44,45 

while the third found increased internalizing 

problems in a Prevotella-depleted group.46 

However, no studies have longitudinally investigated 
these links in healthy children beyond age 2.

The present study has two goals. First, we aimed 
to describe the normative development of the gut 
microbiota from birth till age 10 in a healthy com-
munity sample. To our knowledge, this has not 
been done before. We evaluated both short- and 
long-term associations of the gut microbial compo-
sition with extrinsic factors (i.e., birth weight, child 
sex, delivery mode, breastfeeding, and antibiotics) 
and determined whether the gut microbiota could 
be clustered into different successional patterns 
throughout the first 10 years on the basis of var-
iance in microbial composition. Second, we aimed 
to investigate potential associations of the gut 
microbiota with internalizing and externalizing 
behavior in middle childhood in the same cohort. 
For this second aim, we raised three broad hypoth-
eses based on scarce literature: internalizing and 
externalizing behavior would (1) differ between 
bacterial clusters; (2) explain general variance in 
microbial composition; (3) be related to alpha 
diversity or relative abundances of specific bacteria.

Results

First aim: gut microbiota development in the first 10 
years of life

Gut bacterial clusters and transition patterns
To track gut microbiota development throughout 
infancy and childhood in the first 10 years of life, 
we stratified the participants into bacterial clusters 
based on their compositional features at the genus 
level by Dirichlet multinomial mixture (DMM) 
models. Based on microbial community composi-
tion, three bacterial clusters were obtained in 
infancy, and four clusters were found in childhood 
(Figure 1). While some individuals maintained the 
same bacterial composition over infancy or child-
hood, others transitioned to a different bacterial 
cluster when becoming older. At 1 month of age, 
70.6% (113/160) of the infants belonged to 
Infancy_1, while fecal microbiota of 10.6% (17/160) 
and 18.8% (30/160) of the infants was classified as 
Infancy_2 and Infancy_3, respectively. Notably, the 
prevalence of Infancy_2 continuously increased with 
age throughout infancy, while the proportions of the 
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other two clusters decreased. From infancy to child-
hood, no obvious transition pattern was observed. At 
age 6, Childhood_1 included 34.5% (50/145) of the 
children, while the other three clusters evenly shared 
the rest. From age 6 to 10, for individuals belonging 
to Childhood_1, 44.0% (22/50) remained in the same 
cluster, and another 36.0% (18/50) converted to 
Childhood_3. Similar transition patterns were also 
discerned in Childhood_2, of which 37.5% (12/32) of 
children remained in the same cluster, and another 
31.3% (10/32) transitioned to Childhood_4. 
Meanwhile, 61.9% (39/63) of the children, belonging 
to either Childhood_3 or Childhood_4, stayed in the 
same clusters at age 10. As a consequence, 63.3% (93/ 
147) of children ended up in Childhood_3 and 
Childhood_4 when reaching age 10.

Characteristics of gut bacterial clusters
Both Infancy_1 and Infancy_2 clusters were predo-
minated by Bifidobacterium, and significantly dif-
fered in relative abundances of Streptococcus, an 
unidentified genus within the Enterobacteriaceae 
and Enterococcus (Figure 2a). Infancy_1 showed 
higher relative abundances of Streptococcus and an 
unidentified genus within the Enterobacteriaceae, 
and lower relative abundance of Enterococcus, in 
relation to Infancy_2. Compared to Infancy_1 and 
Infancy_2, Infancy_3 was depleted in 
Bifidobacterium but enriched in Streptococcus, 
Enterococcus and an unidentified genus from 
Enterobacteriaceae. In childhood, Bifidobacterium 

was among the most predominant genera, albeit at 
varying relative abundances (Figure 2b). In 
Childhood_1 Bifidobacterium was most predomi-
nant as compared to other genera, whereas 
Childhood_2 was predominated by Prevotella_9 at 
an average relative abundance of 24.5 ± 14.4%, which 
was much higher than in other clusters (Chilhood_1, 
4.1 ± 11.4%; Childhood_3, 0.1 ± 1.0%; Childhood_4, 
3.3 ± 4.4%).

To further describe the features of bacterial clus-
ters, we compared the phylogenetic alpha diversity 
and beta diversity between them (Figures S1 and 
S2). Significant differences in alpha diversity 
indices between bacterial clusters reflected the 
results of DMM clustering in the current study.

To describe the potential functional differences 
between bacterial clusters, we exploratorily applied 
the Picrust2 (phylogenetic investigation of commu-
nities by reconstruction of unobserved states) 
method,47,48 based on 16S rRNA gene sequence 
data. In total, 2651 KEGG orthologs and 288 
MetaCyc pathways were obtained over the study 
period. In infancy, 14 KEGG orthologs with aver-
age relative abundances more than 0.5% were sig-
nificantly different between bacterial clusters after 
FDR adjustment (Table S20), while 13 KEGG 
orthologs differed significantly in childhood 
(Table S21). We found the function beta- 
galactosidase was predicted to be decreased in bac-
terial cluster Infancy_3 (0.19 ± 0.16%) compared 
with Infancy_1 and Infancy_2 (0.68 ± 0.17 and 

Figure 1. Transition between bacterial clusters in the first 10 years of life. Nodes represent clusters, with colors identifying a 
compositional cluster. Clusters were identified based on their compositional features at the genus level by Dirichlet multinomial 
mixtures (DMM) models. The size of the node indicates the number of individuals belonging to this cluster, which is displayed in the 
node. Lines are sized and colored based on the transition rate, with adjacent numbers representing the number of individuals 
transitioning from one cluster to another with increasing age. The numbers with transition rates below 6.0% are not shown.
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0.67 ± 0.19%). In later life, beta-glucosidase was 
observed significantly increased in Childhood_2 
(0.84 ± 0.17%) as compared to the other three 
childhood bacterial clusters (0.67 ± 0.16, 0.62 ± 
0.07, and 0.6 ± 0.11%). Regarding MetaCyc path-
ways with average relative abundances more than 
0.5%, 72 of them were significantly different after 

correction in infancy (Table S22), and 88 differed 
significantly in childhood (Table S23). These 
MetaCyc pathways mainly covered degradation 
and biosynthesis of carbohydrates and amino 
acids. In the first several months, pathways of 
Bifidobacterium shunt, mixed acid fermentation, 
L-arginine biosynthesis I and II, and superpathway 

Figure 2. Heatmaps showing the relative abundances of the top 15 predominant genera in the bacterial clusters in infancy (a) and 
childhood (b).
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of aromatic amino acid biosynthesis were signifi-
cantly reduced in Infancy_3 as compared to 
Infancy_1 and Infancy_2. Pathways of L-arginine 
biosynthesis I and II were observed significantly 
depleted in Childhood_2 as compared to the other 
three bacterial clusters in childhood.

In addition to microbial compositional features, 
we also exploratorily investigated whether bacterial 
clusters differed on population characteristics, 
namely delivery mode, child sex, breastfeeding, 
medications, diseases, etc., in infancy and child-
hood (Tables S1 and S2). Delivery mode was sig-
nificantly different between infant bacterial 
clusters, of which Infancy_3 showed highest rates 
in C-section and assisted vaginal delivery. Food 
frequency was also compared between bacterial 
clusters in childhood, and no significant differences 
were observed (Table S3).

Associations of gut microbial composition with 
extrinsic factors
To determine to what extent extrinsic factors (i.e., 
birth weight, child sex, delivery mode, breastfeed-
ing, and antibiotics) can explain the observed var-
iation in microbiota composition, their simple 
effects (i.e., the impact of one factor on gut micro-
biota without taking other factors into account) 
were measured separately per time point, as well 
as for all infancy and childhood samples, respec-
tively (Tables S4 and S5). In infancy, breastfeeding 
significantly explained 1.0%, 1.4% and 1.2% of 
adjusted variances without the biases in microbial 
composition, in separate analyses at age 1, 3 and 4 
months. None of the other factors tested, i.e., deliv-
ery mode, birth weight and child sex, significantly 
contributed to explaining the observed variation in 
microbial composition, in separate analyses at 
infancy time points. In childhood, no significant 
simple effects were observed at single time points.

In analyses pooling all infancy samples together, 
child age was found having the most predominant 
significant effect (1.0%), followed by breastfeeding 
and delivery mode (0.7% and 0.2%). With respect 
to simple effects of extrinsic factors in childhood, 
breastfeeding significantly explained around 0.3% 
of adjusted variance in microbial composition in 
the pooled data of ages 6 and 10. Similar to infancy, 
in the period from age 6 to 10, child age signifi-
cantly explained the most observed variance in 
microbial composition (0.9%) as compared to 
other extrinsic factors of which only breastfeeding 
explained significant variance (0.3%).

Next to it, we measured conditional effects (i.e., 
the impact of individual factors when partitioning 
out effects from other factors) of the significant 
extrinsic factors obtained from pooled data 
(Table 1). These extrinsic factors included (1) Child 
age, delivery mode, and breastfeeding for infancy 
and (2) Child age and breastfeeding for childhood. 
After partitioning out total explained variance, 
selected infancy and childhood extrinsic factors 
were still able to significantly explain partial variance.

To gain more insights into the associations 
between the gut microbiota and extrinsic factors 
with significant conditional effects, we performed 
analyses on the pooled infancy data and the pooled 
childhood data (Figure 3). During infancy, breastfeed-
ing was positively associated with increased relative 
abundances of Bifidobacterium and an unidentified 
genus within Enterobacteriaceae. Infants with 
C-section showed higher levels of Streptococcus and 
Enterococcus, and lower levels of Bifidobacterium. 
With increasing age from 1 to 4 months, 
Bifidobacterium, Actinomyces and Eggerthella also 
increased in relative abundances. Over childhood, 
age was positively related to higher relative abun-
dances of unidentified genera from the 
Ruminococcaceae and Peptostreptococcaceae. In the 

Table 1. Conditional effects of extrinsic factors with significant simple effects on gut microbiota in infancy and childhood.
R2% Adjusted R2% p Value VIF Number of individuals Number of genera

1–4 months
Age 1.051 0.817 0.001* 1.017 411 155
Delivery mode 0.639 0.16 0.001* 1.724 (CS);

1.723 (NAVD)
Breastfeeding 0.791 0.556 0.001* 1.017
6–10 y
Age 1.554 0.869 0.001* 1.001 144 181
Breastfeeding 1.017 0.329 0.010* 1.001

Significance was determined based on 1000 permutations. Asterisks indicate p value < 0.05. VIF: variance inflation factor. CS: C-section. NAVD: non-assisted 
vaginal delivery.
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Figure 3. RDA plots of extrinsic factors with significant conditional effects on gut microbial composition. (a) RDA plot based on 
microbiota profiles at the age of 1, 3 and 4 months. (b) RDA plot based on microbiota profiles at the age of 6 and 10 years. RDA plots 
are displayed based on Bray-Curtis distance matrices computed from log-transformed data at the genus level. Unidentified genera are 
shown at the family level. To clarify, we displayed adjusted variances along axes, which were corrected to be without biases. Generally, 
the value of adjusted variances is less than that of original variances. CS: C-section. AVD: assisted vaginal delivery. NAVD: non-assisted 
vaginal delivery. BP: breastfeeding proportion.
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same age period, higher breastfeeding was associated 
with higher relative abundances of Prevotella_9 and 
Dialister.

Second aim: associations of the gut microbiota with 
internalizing and externalizing behavioral measures 
in middle childhood

Bacterial clusters and behavior
We did not find any significant associations 
between bacterial clusters and child internalizing 
and externalizing behavior (Figures S3 and S4).

RDA models
Before exploring associations between the gut micro-
biota and behavioral measures, we first assessed 
which behavioral measures were capable of signifi-
cantly explaining variance in microbial composition 
with and without accounting for the extrinsic factors 
studied in the first aim, by using Redundancy 
Analysis (RDA) models. Without accounting for 
these factors, internalizing behavior, evaluated by 
the Strengths and Difficulties Questionnaire (SDQ) 
maternal reports at 10 years of age, was able to 
explain the variance in microbial composition at 1 
month of age (p = 0.050; Table S6).

As for samples in childhood (Table S7), mater-
nal-reported externalizing behavior, measured by 
the SDQ at age 10, significantly explained variance 
in gut microbial composition at age 6. Remarkably, 
we found both internalizing and externalizing 
behavior, assessed by the maternal SDQ at age 10, 
were able to significantly explain variation in the 
gut microbiota in the period from age 6 to 10. 
When taking also significant extrinsic factors into 
account, i.e., child age and breastfeeding (Table 2), 
we found that the maternal SDQ reports of exter-
nalizing behavior at age 10 still significantly 
explained variance in microbial composition dur-
ing childhood. However, internalizing behavior was 
no longer significant in this model.

To specifically explain the associations of 
pooled gut microbiota of ages 6 and 10 with 
internalizing and externalizing behavior assessed 
by the maternal SDQ at age 10, partial RDA was 
performed by accounting for age and breastfeed-
ing (Figure 4). Externalizing behavior showed 
positive associations with relative abundances 
of Prevotella_9 and Phascolarctobacterium. In 
addition, more internalizing behavior was 
related to reduced relative abundance of 
Akkermansia, and more externalizing behavior 
was associated with decreased relative abundance 
of Alistipes. Finally, a higher relative abundance 
of Terrisporobacter was found in individuals 
with higher internalizing behavior scores.

PRC models
In order to assess emerging associations of gut micro-
biota composition as measured during early infancy 
and childhood with internalizing and externalizing 
behavior at age 10, we performed Principal 
Response Curves (PRC) analyses (Figure 5). This 
method can be used to assess temporal trajectories 
of dissimilarity between behavior groups with differ-
ent scores, and to select genera with relatively large 
changes in relative abundances across the first 10 
years of life. With respect to internalizing behavior, 
measured by the maternal SDQ at age 10, no obvious 
differences were observed between high (H) and low/ 
medium (L + M) score groups in the first 4 months of 
life, whereas the dissimilarity in microbial composi-
tion between groups started changing somewhere 
between 4 months and 6 years.

Similarly, with respect to externalizing behavior, 
measured by the same questionnaire at the same 
age, differences between behavior groups started 
emerging between 4 months and 6 years. Among 
the time points included in this study, the differ-
ence between groups of externalizing behavior was 
highest at age 6, and then decreased again at age 10. 
Children belonging to the top quartile (H), tended 

Table 2. Partial variance in microbial composition in childhood explained by behavioral problems at age 10 as reported by the mother 
(SDQ).

Behavior R2% Adjusted R2% p Value VIF Number of genera

6–10 y
SDQ_M_10y Internalizing 0.851 0.127 0.148 1.062 181

Externalizing 1.098 0.379 0.005* 1.058

Significance was determined based on 1000 permutations. Asterisk indicates p value < 0.05. VIF: variance inflation factor. CS: C-section. NAVD: non-assisted 
vaginal delivery.
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to show higher levels of Prevotella_9 and 
Clostridium_sensu_stricto_1, and reduced relative 
abundances of the genera Alistipes, Akkermansia, 
Bacteroides and Streptococcus (Figure 5). As the 
coefficients for group H are negative compared to 
the baseline, negative taxon weights indicate posi-
tive correlations.

Furthermore, we compared the differences in rela-
tive abundances of the genera selected from PRCs 
between behavior groups at each age. With respect to 
internalizing behavior, the genera Akkermansia, 
Alistipes, Sutterella, Barnesiella, and two genus-level 
groups of Eubacterium were observed reduced in 
individuals belonging to the H group at age 10, 
although not significantly after FDR adjustment 
(Table S8). As for externalizing behavior, Alistipes 
was depleted, and Phascolarctobacterium, 
Coprococcus_2, Clostridium_sensu_stricto_1 and 
Prevotella_9 were increased in relative abundances in 
the H group at age 6 (Table S9). After FDR correction, 
Clostridium_sensu_stricto_1 and Prevotella_9 were 
observed with p values less than 0.10. At age 10, the 
relative abundance of Clostridium_sensu_stricto_1 
remained higher in H group individuals, albeit insig-
nificant after FDR correction.

MLM models
Multilevel models (MLM) were used due to their 
ability in processing time-series data. These models 
included the following extrinsic factors: child age, 
delivery mode, breastfeeding, birth weight, and child 
sex in infancy, and the same factors, as well as age of 
solid food introduction and antibiotic treatments, in 
childhood. For the maternal SDQ at age 10, we found 
that internalizing behavior was moderately positively 
related to phylogenetic alpha diversity during infancy 
(Table 3), while externalizing behavior was not related 
to alpha diversity or relative abundances of specific 
genera in infancy. In childhood, Alistipes was found to 
be significantly negatively associated with externaliz-
ing behavior assessed by the maternal SDQ at age 10. 
In addition, higher relative abundances of Prevotella_9 
and Phascolarctobacterium were significantly asso-
ciated with increased externalizing behavior. 
Interestingly, similar associations of Prevotella_9 and 
Phascolarctobacterium with externalizing behavior 
were further validated in the SDQ child reports at 
age 10 (Table S10). MLM models were also conducted 
for behavior assessed by the maternal CBCL at age 6, 
however, no consistent associations were found 
(Table S11).

Figure 4. Partial RDA plot indicating associations of genera in childhood with internalizing and externalizing behavior at age 
10 as reported by the mother (SDQ). RDA plots are displayed based on Bray-Curtis distance matrices calculated from log- 
transformed data at the genus level. Child age and breastfeeding were accounted for. To clarify, we displayed adjusted variances 
along axes, which were corrected to be without biases. Generally, the value of the adjusted variance was less than that of the original 
variance. INT: internalizing behavior. EXT: externalizing behavior.
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Discussion

In our study, three distinct bacterial clusters were 
identified in samples taken during the first 4 months 
of life. This is in line with previous studies focusing 
on the first half year of life,8–10 both for the number 
of clusters and the bacterial cluster composition. 
Regarding Infancy_1 and Infancy_2, they were pre-
dominated by Bifidobacterium with numerical 

predominance values at 77.5 ± 20.9% and 75.2 ± 
20.4%, which are similar to the numerical predomi-
nance values of Bifidobacterium-predominated clus-
ters in the three previous studies.8–10 Contrary to the 
Bifidobacterium-enriched clusters, Infancy_3 was 
depleted in Bifidobacterium but enriched in 
Streptococcus and an unidentified genus within 
Enterobacteriaceae; these characteristics were also 

Figure 5. PRC analysis of internalizing (a) and externalizing behavior (b) at age 10 as reported by the mother (SDQ). Behavior 
groups are set based on quartiles. H level includes individuals with scores in the top quartile, and L+M level includes the bottom three 
quartiles. L+M level is used as reference (Low+Medium; baseline). Canonical coefficients indicate the differences between H and L+M. 
The wider the distance between H and L+M, the more dissimilar they are to each other. The taxon weight reflects for which taxa the 
compositional variation is best represented by the PRC model. The direction of abundance change is determined jointly by the signs of 
canonical coefficient and taxon weight. Same signs indicate increased relative abundance, while reverse signs represent reduced 
relative abundance. Genera with absolute values of taxon weights less than 0.60 are not displayed. Genera data was pre-processed 
with log-transformation.
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found in previously reported clusters.8–10 Notably, 
the identification of these Bifidobacterium-depleted 
clusters varies between studies. For instance, Dogra 
et al. found two, rather than one, Bifidobacterium- 
depleted clusters, enriched in Streptococcus and 
Enterobacteriaceae, respectively.10 This may be due 
to the differences in clustering methods and study 
populations. Also, Borewicz et al. described 
a Bacteroides-predominated cluster that was absent 
in our study.8 High intra-individual variability of the 
gut microbiota may explain these different findings, 
since we used the same clustering method and 
included participants from the same country as 
Borewicz et al. Future large-scale studies and meta- 
analyses may help clarify these clustering issues in 
infant populations.

Remarkably, the infant cluster transition patterns 
in our study were highly similar to those previously 
reported by other studies.10,49 The prevalence of 
Bifidobacterium-enriched clusters was increased 
from 1 to 4 months of age, while the ratio of 
Infancy_3 was reduced. Infancy_3 was identified 
with the highest proportion of C-section and assisted 
vaginal deliveries, while no differences in breastfeed-
ing were observed between infant clusters in our 
study. The shift toward a Bifidobacterium-enriched 
microbial community in infants from the Infancy_3 

cluster may imply a quick adaption to environmental 
changes, such as the initiation of breastfeeding. 
Given the similarity between Infancy_1 and 
Infancy_2, generating more specific profiles of 
Bifidobacterium species and strains may help 
enhance their differentiation. In sum, our study pro-
vides further support on the consistency of gut bac-
terial clusters in infancy, regardless of differences 
between studies in sample size, collection period 
and clustering method.

In fecal samples taken at 6 and 10 years of age, 
we distinguished four bacterial clusters and deli-
neated how children transitioned between these 
clusters, with two clusters separately predomi-
nated by Bifidobacterium and Prevotella_9 and 
the other two enriched in Bifidobacterium, 
Blautia and Faecalibacterium. Our clusters 
showed similarities and differences to those of 
a recent study by Zhong et al. in healthy Dutch 
school-aged children (mean age 7.3 years, ranging 
from 6 to 9).50 Our Childhood_1 closely 
resembled the Bifidobacterium-dominated cluster 
reported by Zhong et al. and showed a similar 
relative abundance of Bifidobacterium at 21.6 ± 
12.0%. In adults, the relative abundance of 
Bifidobacterium normally ranges from 2% to 
14%.51 The other three childhood clusters 
observed in our study were within this range. 

Table 3. MLM models for internalizing and externalizing behavior at age 10 as reported by the mother (SDQ).
SDQ_M_10y_Internalizing SDQ_M_10y_Externalizing

Response variable Estimate 95% CI p Value Estimate 95% CI p Value

1–4 months
Phylogenetic diversity 0.127 [−0.014, 0.269] 0.088 −0.052 [−0.189, 0.086] 0.473
Streptococcus 0.08 [−0.075, 0.234] 0.327 −0.081 [−0.232, 0.071] 0.31
Clostridium_sensu_stricto_1 −0.047 [−0.232, 0.138] 0.628 0 [−0.179, 0.180] 0.999
6–10 y
Phylogenetic diversity −0.054 [−0.248, 0.139] 0.61 0.084 [−0.110, 0.278] 0.426
Streptococcus 0.166 [−0.078, 0.407] 0.21 −0.192 [−0.436, 0.047] 0.147
Clostridium_sensu_stricto_1 0.18 [−0.032, 0.393] 0.122 0.186 [−0.025, 0.397] 0.107
Bacteroides 0.089 [−0.077, 0.253] 0.323 −0.172 [−0.338, −0.008] 0.058
Barnesiella −0.181 [−0.440, 0.079] 0.2 −0.143 [−0.402, 0.114] 0.309
Prevotella_9 0.222 [−0.194, 0.637] 0.326 0.614 [0.192, 1.035] 0.009*
Alistipes −0.088 [−0.319, 0.148] 0.489 −0.333 [−0.566, −0.101] 0.010*
Coprococcus_2 −0.024 [−0.289, 0.231] 0.863 0.172 [−0.083, 0.427] 0.219
Ruminococcaceae_NK4A214_group 0.034 [−0.184, 0.250] 0.774 −0.145 [−0.355, 0.072] 0.212
Phascolarctobacterium 0.065 [−0.224, 0.355] 0.677 0.339 [0.046, 0.632] 0.036*
Sutterella −0.117 [−0.365, 0.124] 0.378 0.101 [−0.145, 0.341] 0.448
Akkermansia −0.254 [−0.537, 0.033] 0.103 −0.158 [−0.439, 0.123] 0.304
[Eubacterium]_ruminantium_group −0.097 [−0.321, 0.128] 0.428 0.046 [−0.174, 0.270] 0.703
[Eubacterium]_xylanophilum_group −0.21 [−0.415, −0.005] 0.063 0.071 [−0.131, 0.271] 0.52
Ruminococcaceae_UCG-002 −0.095 [−0.303, 0.107] 0.396 −0.056 [−0.257, 0.149] 0.615
Ruminococcaceae_UCG-005 −0.077 [−0.349, 0.199] 0.606 −0.116 [−0.389, 0.158] 0.435

Numbers of individuals included in MLM models are listed in Table S12. Genera with prevalence less than 0.20 were not included in MLM models. Detailed 
information of genera prevalence can be reached in Table S13. Covariates used to be accounted for and their GVIFs were summarized in Tables S14 and S15. 
Asterisk indicates p value < 0.05.
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Although a Bifidobacterium-predominated micro-
biota is commonly known to be beneficial for 
infants, this type of cluster may lack maturity in 
children and adults.20 Moreover, Childhood_1 
displayed the lowest diversity among all four clus-
ters (Fig. S1; also reported by Zhong et al.). This 
finding further supports the notion of immaturity 
of Childhood_1, as the lower diversity may be 
paired to a corresponding lower functional poten-
tial that may not fully meet the requirements of 
complex carbohydrate utilization and butyrate 
production in later life.50 Childhood_2 was similar 
to a Prevotella-predominated cluster observed by 
Zhong et al., and also to one of the three human 
adult enterotypes.52 These microbial community 
types exhibit approximately 20% of Prevotella, 
a genus positively associated with carbohydrate 
intake and fiber consumption.53,54 In contrast to 
the findings of Zhong et al., in our study, no 
Bacteroides-predominated cluster was found. 
Although Childhood_3 showed the highest level 
of Bacteroides across our clusters, the relative 
abundance of this genus (6.6 ± 4.4%) was lower 
than in the corresponding community type 
reported by Zhong et al. (near 20%). 
Childhood_3 was enriched in a group of near 
evenly distributed genera, including 
Bifidobacterium, Blautia, Faecalibacterium, and 
an unidentified genus within Lachnospiraceae 
(12.3 ± 6.2%, 10.2 ± 3.1%, 10.0 ± 3.5% and 8.49 ± 
5.6%). Childhood_4 had similar levels of 
Bifidobacterium and Blautia (13.3 ± 10.2% and 
8.9 ± 4.2%) as Childhood_3, while comprising 
lower levels of Faecalibacterium and an unidenti-
fied genus within Lachnospiraceae (5.9 ± 3.2% and 
3.7 ± 4.4%) than Childhood_3. Both Childhood_3 
and Childhood_4 showed more diverse and more 
evenly distributed microbiota than 
Bifidobacterium-predominated Childhood_1 and 
Prevotella_9-predominated Childhood_2; these 
features may allow more complex functions in 
Childhood_3 and Childhood_4, and hence may 
mark a mature gut microbiota community for 
children in middle childhood or at a later age.

The differences between the studies may be 
attributed to age, as Zhong et al. included consecu-
tive time points from age 6 to 9, while the present 
study was specifically focused on ages 6 and 10. 
This particular period, spanning 4 years and 

reaching into early puberty, may be of relevance 
for gut microbial development. Indeed, from age 6 
to 10, we observed an overall progressive transition 
of children from Childhood_1 and Childhood_2 to 
Childhood_3 and Childhood_4, both displaying 
higher alpha diversity than the other two clusters, 
hinting at a trend toward increasing microbial 
functional capacity from age 6 to 10. This also 
indicates that in healthy children gut microbial 
development appears to continue at least until 
early puberty. Though diet is regarded as an impor-
tant factor influencing the gut microbiota, we did 
not find differences between childhood bacterial 
clusters with respect to the children’s dietary intake. 
Note, however, that this may be due to the fact that 
we only measured food frequency at age 10, while 
the gut bacteria were assessed at ages 6 and 10.

We further investigated potential functional dif-
ferences of the gut microbiota between bacterial 
clusters in an exploratory manner by using the 
Picrust2 approach. In general, we noticed that 
multiple predicted metabolic functions (i.e., 
KEGG orthologs and MetaCyc pathways) varied 
between bacterial clusters in infancy and child-
hood. For example, in infancy, we observed that 
the level of KEGG ortholog beta-galactosidase, an 
enzyme catalyzing the hydrolysis of beta- 
galactosides like lactose, was lower in Infancy_3 
in comparison with the other two infant bacterial 
clusters. Beta-galactosidase has been found preva-
lent in Bifidobacterium species.55 Consistent with 
this, Infancy_3 showed the lowest level of 
Bifidobacterium; hence, the depletion of 
Bifidobacterium may explain the reduction of beta- 
galactosidase in Infancy_3. In childhood, we found 
that the relative abundance of the KEGG ortholog 
beta-glucosidase, an enzyme hydrolysing various 
glycosides like cellulose coming from plant foods, 
was highest in bacterial cluster Childhood_2. 
Childhood_2 was enriched in a fiber-favoring bac-
terium Prevotella_9. As a consequence, this cluster 
can be considered to have a higher ability of utiliz-
ing cellulose, which is in line with our finding. As 
for differences in MetaCyc pathways, we observed 
that the biosynthesis of precursors (i.e., aromatic 
amino acids) for neurotransmitters (i.e., serotonin, 
dopamine and norepinephrine), was decreased in 
Infancy_3. This bacterial cluster also showed 
decreases in mixed acid fermentation and 
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Bifidobacterium shunt, which might indicate 
a reduction in short-chain fatty acids (SCFAs) 
production. Although the role of SCFAs on the 
MGBA has not been clearly elucidated, they are 
speculated to have considerable impacts.56 In both 
Infancy_3 and Childhood_2, we noticed decreased 
levels in predicted functions of L-arginine bio-
synthesis I and II. L-arginine supplementation 
has been reported to stimulate glutamate decar-
boxylation in Lactococcus lactis, which in turn 
increases the production of the neurotransmitter 
gamma-aminobutyric acid (GABA).57 However, it 
is unknown if other bacteria have similar interac-
tions of L-arginine with GABA. Finally, note that 
there are two main limitations of any function 
prediction tool based on marker genes such as 
Picrust2.47 The first is the bias caused by the 
reference database, and the second is that the 
resolution cannot distinguish strain-specific func-
tionality. Hence, these findings of predicted func-
tions must be seen as exploratory and interpreted 
with caution.

Regarding extrinsic factors, breastfeeding was 
found to explain a moderate amount of variance 
in infant gut microbial composition, similarly to 
our previous findings in which breastfeeding 
explained 2–6% of the variance.58 In line with 
previous studies,18,21,59 increased breastfeeding 
was found related to higher levels of 
Bifidobacterium in the first 4 months of life. 
Surprisingly, early-life breastfeeding was also 
associated with the gut microbiota in the period 
from 6 to 10 years of age. This finding tied well 
with observations by Zhong et al., who uncovered 
a persistent effect of breastfeeding duration on the 
gut microbiota based on community samples at 
school age.50 Although it is widely accepted that 
breastfeeding only prominently affects the gut 
microbiota in infancy or early childhood,18,60 

both Zhong’s and our findings may indicate an 
extended influence of breastfeeding on shaping 
microbial composition and even function. In addi-
tion, we found that breastfeeding was positively 
associated with increased Prevotella_9 in child-
hood. Prevotella, as a genus prevalent in popula-
tions consuming fiber,53 has been found tightly 
linked to glucose metabolism.61 However, in this 
study, it is unknown if the increased level of 
Prevotella_9 is caused by breastfeeding or other 

relevant dietary factors. In a recent study based on 
another population, we found that longer exclu-
sive breastfeeding duration was associated with 
a healthier child diet at age 3 years,62 note though 
that, as mentioned before, diet at age 10 was unre-
lated to child gut microbiota. Further studies aim-
ing to validate this association and explore 
causality are hence needed to clarify these issues. 
With respect to antibiotic use, due to the fact that 
very few infants were treated with antibiotics in 
our study, we did not take early antibiotic use into 
consideration. Note, however, that in populations 
where antibiotic use in infants is commonplace, 
antibiotic treatments should be included as 
a potential confounder as there is evidence that 
they not only affect the gut microbial composition 
but might also affect later neurodevelopment.63–65

Regarding associations between the gut micro-
biota and child behavior, we found no associations 
of the bacterial clusters with internalizing and exter-
nalizing behavior measured by maternal and child 
reports at age 6 and 10. In earlier studies, clustering 
methods were also adopted with the aim of explor-
ing links of the child gut microbiota with subsequent 
temperament at 6 months and cognition at 2 
years.44,45 Compared to these studies in which the 
microbial composition was analyzed at one selected 
time point, in the present study we used five time 
points in the first 10 years of life to more compre-
hensively delineate relations between the bacterial 
clusters and problem behavior. Although we did 
not find that bacterial clusters were related to pro-
blem behavior in our study, this does not imply that 
clustering methods were inappropriate to use. 
Indeed, clustering methods are highly suitable for 
high-dimensional data. Also, it is worth noting that 
there can be a moderate relation between the gut 
microbiota and problem behavior, the substantiation 
of which might require larger datasets to reflect this 
relation. Furthermore, variation in microbial com-
position does not directly provide information about 
differences in microbial function involved in MGBA. 
In other words, different microbial communities 
may hold similar gene potential. Limited by the 
16S rRNA sequencing technique, we were only able 
to explore function with the Picrust2 method in the 
current data. This method has shortcomings that can 
be avoided by using metagenomics in combination 
with metabolomics analyses in future studies.
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With respect to specific bacteria, based on several 
complementary statistical methods, including 
RDA, PRC and MLM models, we found that the 
relative abundances of Prevotella_9 and 
Phascolarctobacterium in samples taken at age 6 to 
10 were positively associated with increased 
mother-reported externalizing behavior at age 10, 
while a negative association was observed in the 
level of Alistipes with the same externalizing beha-
vior at the same age. A previous longitudinal study 
in toddlers found that a higher relative abundance 
of Prevotella at 1 year of age was related to more 
internalizing behavior, but not externalizing beha-
vior, at age 2.46 The large age gap and different 
assessment moments may explain the differences 
between the two studies. Comparing our findings 
with studies focusing on children with psycho-
pathology, we find that autistic children (4 to 
11 years), commonly exhibiting co-occurring exter-
nalizing problems,66 showed increased abundances 
of microbial groups including Prevotella, 
Bacteroides and Porphyromonas, compared to 
healthy controls.67 In contrast, another study 
found that Prevotella was reduced in children with 
autism (3 to 16 years).68 Apart from autism, ADHD 
has also been shown to be associated with externa-
lizing behavior in adolescence.69 For children with 
ADHD, two previous studies reported no changes 
in Prevotella abundance,43,70 whereas Kristensen 
et al. found decreased levels of Prevotellaceae.71 In 
sum, there is no well-defined link between 
Prevotella and behavioral problems and mental dis-
orders, just as at the physical health level, Prevotella 
has been related to the consumption of beneficial 
plant-rich diets, but also to harmful chronic 
inflammation.72 As a large genus, Prevotella 
includes around 40 different species that greatly 
vary in their genetic potential.72 In this case, using 
metagenomic analyses to characterize the Prevotella 
population at higher taxonomic resolution, i.e., 
species or strain level, would be helpful to better 
understand a more specific potential interaction 
with host behavior. With respect to 
Phascolarctobacterium, a systematic review showed 
its relative abundance was higher in patients with 
major depressive disorder (MDD) than controls,73 

while Li et al. reported that it was positively related 
to improved mood in adults with the same dietary 
structure.74 Though these studies reflect that 

Phascolarctobacterium is related to internalization- 
relevant mental problems, it is worth noting that 
internalizing and externalizing behavior can co- 
exist in children and may lead to opposite beha-
vioral problems at a later age.75–77 As for Alistipes, 
earlier studies found its role was divergent in MDD 
and ASD.41,67,73 As described earlier, distinct beha-
vioral issues can co-occur and even predict the 
opposite one in the same child; this does not only 
work for MDD but also for ASD which is often 
accompanied by greater aggression.78 Given the 
complexity of mental problems, the associations 
of Phascolarctobacterium and Alistipes with exter-
nalizing behavior need to be interpreted with 
caution.

Strengths of this study include the prospective, 
lengthy longitudinal design with repeated gut 
microbial sampling in healthy community children. 
Additionally, behavioral measures were reported by 
both mothers and children and at two different 
ages, and a series of sophisticated and complemen-
tary statistical analyses were performed. 
A limitation of the study is the restricted taxonomic 
resolution of the 16S rRNA gene sequence data 
used in this study, which does not permit us to 
distinguish bacteria at the species or strain level.

In sum, in this study we identified three bacterial 
clusters in infancy and four in childhood and 
explored transitional trajectories of individuals 
through these clusters in the first 10 years of life. 
These clusters exhibited similarities as well as differ-
ences to previously identified clusters. Among the 
different extrinsic factors studied, breastfeeding 
stood out by having marked associations with the 
gut microbiota up till age 10, implying an extended 
role in shaping gut microbial ecology. With respect 
to problem behavior, high relative abundances of 
Prevotella_9 and Phascolarctobacterium and a low 
level of Alistipes in middle childhood were associated 
with increased externalizing behavior at age 10. In 
the future, strain-resolved metagenomic sequencing, 
as well as specific sets of qPCR assays, can provide 
a better understanding of the potential role of 
Prevotella_9 in child behavior. Additionally, deter-
mining behaviorally relevant fecal metabolites will 
help bridge the gap between association and causal-
ity. Finally, to take a step further in understanding 
the development of the gut microbiota throughout 
childhood, as well as its relations with child 
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behavioral phenotypes, healthy longitudinal cohorts 
with a higher frequency of gut microbial sampling 
(e.g., yearly samples throughout childhood) are direly 
needed.

Materials and methods

Participants

Participants were identified from an ongoing long-
itudinal Dutch study named BIBO (Basale 
Invloeden op de Baby Ontwikkeling),79 consisting 
of healthy low-risk individuals (N = 193), with 
approval from the ethical committee of the 
Faculty of Social Sciences of the Radboud 
University (ECG300107, ECG13012012, SW2017- 
1303-497 and SW2017-1303-498).

Data collection procedures

Parents were instructed to collect fecal samples in 
sterilized plastic tubes by using the scoop attached to 
the tube cap, when their children were 1, 3 and 4 
months of age, and 6 and 10 years of age. Infancy 
samples were collected from diapers, and childhood 
samples were collected immediately after defecation 
from potties or toilets without contact with the toilet 
water. The tubes were then placed in clean plastic bags 
provided by investigators before being temporarily 
kept in the freezer (−20°C). Samples were transported 
to the Laboratory of Microbiology at Wageningen 
University and stored at −80°C before being pro-
cessed. A total number of 739 fecal samples were 
collected at these five timepoints. Participants with 
at least one fecal sample at these assessment moments 
were included in the present study (N = 187).

Behavioral measures were collected with ques-
tionnaires at 6 and 10 years of age. Additionally, we 
recorded the following variables as extrinsic factors 
that may predict variance in the gut microbiota: 
child age, child sex, birth weight, delivery mode, 
frequency of breastfeeding and formula intake in 
the first 27 weeks of life (mothers were required to 
weekly record the average number of breastfeeding 
and formula intake per day), the age of first solid 
food introduction, and use of antibiotics in the first 
10 years of life.80,81 Finally, we also measured diet-
ary intake at age 10 by a food frequency 
questionnaire.

Measures

Gut microbiota composition
In brief, DNA extraction was performed using the 
Maxwell 16 Total RNA system (Promega, 
Wisconsin, USA) with 0.01–0.13 g of fecal sample 
and Stool Transport and Recovery Buffer (STAR; 
Roche Diagnostics Corporation, Indianapolis, IN), 
as reported previously.82 Amplification was per-
formed on the V4 region of 16S ribosomal RNA 
(rRNA) gene in duplicate, generating amplicons 
with a length of around 290 bp.82 Each PCR reac-
tion comprised of 10 µl of 5x Phusion Green HF 
Buffer (Thermo Scientific, US), 1 µl of 10 µM bar-
coded primers 515 F-n(5’-GTGYCAGCMGCC 
GCGGTAA-3’) and 806 R-n(5’- GGACTACNV 
GGGTWTCTAAT-3’),83,84 1 µl of 10 mM dNTPs 
mix (Promega Corporation, US), 0.5 µl of 2 U/µl 
Phusion Green Hot Start II High-Fidelity DNA 
polymerase (Thermo Scientific, US), 36.5 µl of 
Nuclease-free water and 1 µl of 20 ng/µl DNA 
template. PCR was carried out as previously 
described,82 with modification: initial denaturation 
(98°C, 30 s), 25 cycles of denaturation (98°C, 10 s), 
annealing (50°C, 10 s), extension (72°C, 10s), and 
elongation (72°C, 7 min). The presence and length 
of PCR products was then verified by gel electro-
phoresis. PCR products were purified by the 
HighPrep® PCR kit (MagBio Genomics, Alphen 
aan den Rijn, Netherlands), according to the 
instructions of the kit. DNA concentration of pur-
ified samples was measured using a fluorometer 
(DS-11; DeNovix) with Qubit® dsDNA BR Assay 
Kit (Life Technologies, Leusden, Netherlands). Two 
hundred nanograms of barcoded samples was 
pooled in libraries comprising 69 uniquely tagged 
samples, 2 of which were artificial control commu-
nities representative of human gut microbiota.85 

The mixture was purified again by HighPrep® 
PCR kit to a final volume of 40 µl.

16S rRNA gene sequencing was completed on 
the Illumina sequencing platform at Eurofins 
Genomics, Germany. NG-Tax was used for proces-
sing of 16S rRNA gene sequence data.85,86 Only 
reads with matching barcodes were kept. 
Subsequently, amplicon sequence variants (ASVs) 
were identified on a per sample basis. Taxonomic 
assignment of ASVs was performed referring to 
SILVA_132_SSU 16S rRNA gene reference 
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database.87 A total of 113,413,327 reads were 
obtained from the sequencing. Basic descriptions 
of reads, ASVs and genera numbers were displayed 
in Table S16.

Behavioral measures
CBCL. The Child Behavior Checklist 4–18 (CBCL) 
is a 118-item questionnaire, assessing problem 
behaviors of children from ages 4 to 18, scored on 
a 3-point scale.88 The CBCL includes internalizing 
and externalizing subscales. Higher scores indicate 
more behavioral problems. Mothers were required 
to complete the CBCL when their children were 6 
years old.

SDQ. The Strengths and Difficulties Questionnaire 
(SDQ) is a 25-item scale, evaluating problem beha-
viors in children from ages 4 to 16, and scored on 
a 3-point scale (Table S17).89 The SDQ includes 
internalizing and externalizing subscales. Higher 
scores represent more behavioral problems. 
Although the SDQ is shorter than the CBCL, it 
has verified equivalent ability to assess problem 
behaviors.90 Due to practical reasons, children 
were asked to complete the SDQ rather than the 
CBCL when they were 10 years old. Mothers also 
completed the SDQ when their children were 10. 
Considering known discrepancies between mothers 
and children in assessing problem behaviors at this 
age,91 we included both maternal and child reports 
in the current study.

Questionnaire reliability. To check the internal 
consistency of the questionnaires, we calculated 
ωtotal estimates by using the R package psych.92,93 

Given ωtotal estimates were incalculable for the 
CBCL, we computed Cronbach’s α values for this 
questionnaire instead. The resulting internal con-
sistency estimates were as follows: the maternal 
CBCL, αinternalizing = 0.82, αexternalizing = 0.84; the 
maternal SDQ,  
ωtotal-internalizing = 0.72, ωtotal-externalizing = 0.80; the 
child SDQ,  
ωtotal-internalizing = 0.63, ωtotal-externalizing = 0.59. 
Hence, most estimates indicated acceptable or 
good internal consistency of the subscales. The 
estimates of the child SDQ were considered ques-
tionable, but in line with earlier Dutch studies, 
and thus used in the analyses.94

Extrinsic factors
Extrinsic factors included (1) Child age when stool 
samples were collected; (2) Delivery mode (i.e., 
assisted vaginal delivery, non-assisted vaginal deliv-
ery and C-section); (3) Birth weight; (4) 
Breastfeeding (for samples collected at age 1, 3 
and 4 months, breastfeeding = average number of 
daily breastfeedings with respect to total number of 
daily milk feedings (in percentage) until stool 
collection day; for samples collected at age 6 and 
10 years, breastfeeding = average number of daily 
breastfeedings with respect to total number of daily 
milk feedings (in percentage) in the first 27 weeks.); 
(5) Child age when solid food was first introduced; 
(6) Child sex (female or male); (7) Total number of 
antibiotic treatments from birth to stool 
collection day (infants and children); (8) Whether 
a child at age 6 or 10 took antibiotics in the past 1 
year (yes or no).

Statistical analyses

All analyses were performed in R (version 3.6.1).95

First aim: Gut microbiota development in the first 10 
years of life
Gut bacterial clusters and transition patterns. To 
investigate normative development of the gut 
microbiota, we identified gut bacterial clusters 
based on their compositional features at the genus 
level by Dirichlet multinomial mixtures (DMM) 
models, known for their superior advantage of 
handling sparse data.96 Considering the reproduci-
bility and stability of the optimal clusters, we split 
the samples into two parts, infancy (i.e., 1, 3 and 4 
months) and childhood (6 and 10 years), and per-
formed separate DMM models afterward. The opti-
mal number of clusters was determined by lowest 
Laplace approximation scores. As the combination 
of clusters varied between runnings, we repeated 
DMM models multiple times and then selected the 
combinations that appeared the most frequently 
(Tables S18 and S19).

Characteristics of gut bacterial clusters. The relative 
abundances of the top 15 predominant genera in 
infancy and childhood were displayed in heatmaps 
by the ComplexHeatmap package.97 Phylogenetic 
alpha diversity was computed by using the picante 
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package98 and compared between bacterial clusters 
by Wilcoxon rank sum tests. Obtained p values 
from the comparisons were then adjusted by FDR. 
Beta diversity was compared between bacterial 
clusters by using unweighted or weighted Unifrac 
distance of genera relative abundances via the vegan 
package.99

Additionally, the functional potential of the 
microbial community was predicted by Picrust2 
(phylogenetic investigation of communities by 
reconstruction of unobserved states) 
approach.47,48 Predicted gene family counts (i.e., 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthologs and MetaCyc pathways) for 
each sample were transferred into relative abun-
dance data. Kruskal–Wallis tests for multiple- 
group comparisons were first performed on relative 
abundances of predicted functions between bacter-
ial clusters in infancy and childhood, respectively. 
The predicted function, with an FDR-corrected 
p value less than 0.05 and the average relative 
abundance more than 0.5%, was further compared 
between every two bacterial clusters by Wilcoxon 
rank sum tests.

Effects of extrinsic factors. First, Redundancy 
Analysis (RDA) was used to measure simple effects 
of extrinsic factors on the gut microbiota for each of 
five ages (i.e., 1, 3 and 4 months, and 6 and 10 
years), and then infancy (i.e., 1, 3 and 4 months) 
and childhood (i.e., 6 and 10 years). Child age, 
delivery mode, birth weight, breastfeeding and 
child sex were considered in infancy. Because only 
two infants took antibiotics in the first 4 months of 
life, we did not consider this factor in infancy RDA 
models. Similarly, as only one child started con-
suming solids before the stool collection at 4 
months, this factor was not considered in infancy 
RDA models. As for samples in childhood, all 
extrinsic factors mentioned before were included. 
Quantitative extrinsic factors were converted to 
z-scores before use. Second, RDA was performed 
to measure conditional effects for extrinsic factors 
with significant simple effects. To avoid potential 
strong multicollinearity in RDA when assessing 
conditional effects, we required variance inflation 
factors (VIFs) of all extrinsic factors to be less than 
three.100 Third, RDA tri-plots were drawn by the 
ggplot package.101 All RDA models were built based 

on Bray-Curtis dissimilarity matrices calculated 
from log-transformed relative abundances at the 
genus level, via the vegan package.99 Permutation 
tests with 1000 permutations were used to deter-
mine the significance of variance explained by 
extrinsic factors.

Second aim: Associations of the gut microbiota with 
internalizing and externalizing behavior in middle 
childhood
Behavioral differences between bacterial clusters. To 
compare behavioral measures (i.e., internalizing 
and externalizing behavior) between bacterial clus-
ters, we conducted Wilcoxon rank sum tests with 
FDR adjustment.

RDA models. RDA models were established to 
determine how much variance in microbial com-
position could be explained by behavioral measures 
(i.e., internalizing and externalizing behavior) with 
and without accounting for extrinsic factors with 
significant conditional effects. Internalizing and 
externalizing behavior scores were standardized to 
z-scores before use. Then, RDA tri-plots were 
drawn by the ggplot package.101 The same VIF 
requirements, matrices type and permutation tests 
as for extrinsic factors were also adopted here.

PRC models. Principal Response Curves (PRC) 
analysis is a method that enables contrasting time 
series of experimental groups with a time series of 
a reference group.102 Therefore, it was used to select 
the genera with relatively large differences in rela-
tive abundance across ages between behavior 
groups. Two behavior groups were set for each of 
the behavior types (internalizing and externalizing 
behavior). The experimental group (H) included 
the individuals with behavior scores in the top 
quartile, while the reference group (L + M) con-
sisted of all remaining individuals. Relative abun-
dance data were preprocessed with log- 
transformation. PRC models were generated using 
the vegan package.99 PRC diagrams were visualized 
by the ggplot package.101 The first principal compo-
nent of the variance explained by behavior groups 
in time, called canonical coefficient, was displayed 
on the y-axis. The age points were shown on the 
x-axis. Another vertical axis, named taxon weight, 
was drawn to elucidate the affinity of the different 
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genera with the response. Wilcoxon rank sum tests 
with FDR adjustment were further applied for com-
paring the differences of selected genera from PRC 
models between behavior groups at individual time 
points.

MLM models. Multilevel modelling (MLM) models 
were conducted to measure the associations of 
internalizing and externalizing behavior with diver-
sity and selected genera when accounting for 
extrinsic factors. Selected genera included bacteria 
with absolute values of taxon weights more than 0.6 
and prevalence above 0.2. For MLM models includ-
ing samples in infancy, extrinsic factors consisted of 
age, breastfeeding, delivery mode, birth weight and 
gender. For MLM models in childhood, these fac-
tors, as well as antibiotics and age when solid food 
was introduced, were included. Quantitative extrin-
sic factors, behavior scores and diversity were con-
verted to z-scores before use. Log transformation 
was applied to relative abundance data at the genus 
level. To avoid strong multicollinearity, generalized 
variance inflation factors (GVIFs) were required to 
be less than 3. MLM models were built by the 
lmerTest package.103

Significance
Statistically significant level was required with 
p value less than 0.05.
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