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A tutorial on frailty models

Theodor A Balan and Hein Putter

Abstract

The hazard function plays a central role in survival analysis. In a homogeneous population, the distribution of the time to

event, described by the hazard, is the same for each individual. Heterogeneity in the distributions can be accounted for

by including covariates in a model for the hazard, for instance a proportional hazards model. In this model, individuals

with the same value of the covariates will have the same distribution. It is natural to think that not all covariates that are

thought to influence the distribution of the survival outcome are included in the model. This implies that there is

unobserved heterogeneity; individuals with the same value of the covariates may have different distributions. One way of

accounting for this unobserved heterogeneity is to include random effects in the model. In the context of hazard models

for time to event outcomes, such random effects are called frailties, and the resulting models are called frailty models. In

this tutorial, we study frailty models for survival outcomes. We illustrate how frailties induce selection of healthier

individuals among survivors, and show how shared frailties can be used to model positively dependent survival outcomes

in clustered data. The Laplace transform of the frailty distribution plays a central role in relating the hazards, conditional

on the frailty, to hazards and survival functions observed in a population. Available software, mainly in R, will be

discussed, and the use of frailty models is illustrated in two different applications, one on center effects and the

other on recurrent events.
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1 Introduction

The central concept in survival analysis is the hazard function. It describes the instantaneous risk of the event of
interest for an individual, given that the individual has not experienced the event previously. The hazard function
indirectly also describes the distribution of the time to event; there is a one-to-one relation between the probability
of being alive over time, the survival function, and the hazard function. Individuals may differ with respect to their
survival probabilities, or, equivalently, with respect to their hazards. Females tend to live longer than males, or in
terms of hazards, the mortality rate of males is higher than that of females; patients with more severe disease tend
to die earlier and have a higher hazard than less severely diseased patients. Such characteristics can be accounted
for in survival models by including them in models for the hazards. The most influential of such models is Cox’s
proportional hazards model.1 The proportional hazards assumption specifies that the ratio of the hazards between
any two individuals is constant over time, and the shape of the hazard is given by a non-parametric “baseline
hazard”. If a model is perfectly specified, so that all possible relevant covariates are accounted for, then the
baseline hazard reflects the randomness of the event time, given the value of covariates.

In practice, however, it is rarely possible to account for all relevant covariates. Then the explanatory variables
account for observed heterogeneity, and the unaccounted part is termed unobserved heterogeneity. If this is the case,
then the estimated hazard for a specific set of covariates does not have an individual interpretation.2 Rather, it
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represents an average hazard function, where the average is taken at each time point over the individuals still alive

at that time point. The effects of unobserved heterogeneity on life times are collectively referred to as frailty in

demographic research.3 The frailty is an unobserved individual random effect that acts multiplicatively on the

hazard. The estimated spread of this random effect (e.g. variance) is an indication of the amount of unobserved

heterogeneity. The frailty model quickly gained popularity in econometrics,4 demographics5 and biostatistics.6

Frailty models are useful for two purposes. First, univariate frailty models can be used to explain effects of

selection of healthier subjects over time, and also to explain lack of fit, such as deviations from the proportional

hazards model. Frailty models can be used in this context to offer alternative explanations for the behavior of the

hazard and of hazard ratios over time. These alternative explanations are hypothetical to a large degree, because

of identifiability issues, but useful nonetheless. Second, in shared frailty models, frailties can also be used to model

dependence of survival times in clustered data or recurrent events. Here the frailty term is shared among indi-

viduals in the same cluster, or, in the case of recurrent events, among subsequent events of the same individual.
The aim of this tutorial is to provide an overview of theory and practice in the field of frailty models, while

offering insight into the problems that are addressed by such models. We concentrate on the use of frailty models

in survival analysis. Frailties have also been used in, for instance, infectious disease modeling,7,8 but this is outside

the scope of the present tutorial. For more detailed information, we recommend the books.9–11 In section 2 we

study the effects of unobserved heterogeneity in survival data, univariate frailty models, and we discuss different

frailty distributions. In section 3, we analyze the effect of unobserved heterogeneity in shared frailty models,

covering clustered survival data, recurrent events, and an overview of estimation methods. In section 4, we

compare available software packages for frailty models and the representation of event history data in the R

statistical software. In section 5 we examine different extensions to the frailty models. Finally, in section 6, we

illustrate the application of frailty models in two common situations, the modeling of center effects and the

analysis of recurrent events.

2 Univariate frailty models

2.1 Heterogeneity in the Cox model

Before we introduce the frailty model and start discussing the effects of unobserved heterogeneity, we illustrate

here some of these effects in the more familiar setting of the Cox proportional hazards model.

2.1.1 Heterogeneity over time

The Cox model specifies the hazard of a time to event T as

lim
Dt!0

Pðt < T � tþ Dt jT > t; xÞ=Dt ¼ kðt j xÞ ¼ k0ðtÞexpðb>xÞ (1)

where b is a p� 1 vector of regression coefficients, x is a p� 1 vector of covariates and k0ðtÞ is an unspecified

baseline hazard function. The hazard functions of two individuals with covariate vectors x� and ~x are equal only

when b>x� ¼ b>~x. The exponent expðbjÞ is the hazard ratio between an individual with xj¼ 1 and an individual

with xj¼ 0 (the other covariates being the same for the two individuals). Time-dependent covariates are easily

accommodated in equation (1) and are discussed in section 4. For the time being, we assume that x is time-

constant.
The risk set at time t is composed of individuals that have not yet experienced the event of interest and have not

yet been removed for other reasons, such as censoring. The distribution of the covariates among the individuals in

the risk set changes over time. We illustrate this by considering model (1) and a single covariate following a

standard normal distribution x�Nð0; 1Þ and b > 0, so that individuals with larger values of x have a higher

hazard. At time t¼ 0, the mean and variance of x are 0 and 1, respectively. Because individuals with higher hazards

tend to be the first to die, as time passes, the risk set progressively comprises individuals with lower values of x. For

this reason, the average value and the sample variance of x among the individuals at risk decreases over time.
This is illustrated by simulating a single sample of life times of size n¼ 100, according to equation (1), with a

covariate x�Nð0; 1Þ, b¼ 1, k0ðtÞ � 0:1 and uniform censoring on (20, 50). In this simulated sample, at time 0, x

had mean 0.007 and standard deviation 1.068. The estimated b was 0.943, with a standard error of 0.127. The

mean and standard deviation of x among the individuals in the risk set are shown in Figure 1, as a function
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of time. The message is that, over time, the population of “survivors” (those still at risk) becomes more homo-

geneous and of lower risk than the original risk set at time 0.

2.1.2 Heterogeneity due to missing covariates

The proportional hazards assumption in the Cox model (1) specifies that the ratio kðt j x�Þ divided by kðt j ~xÞ
equals expðb>ðx� � ~xÞÞ, which does not depend on time. When this assumption is violated, the covariate effect b is

time-dependent. The true model is then

kðt j xÞ ¼ k0ðtÞexpðbðtÞxÞ;

with bðtÞ not constant.
Assume that the model (1) is correct and p � 2. Then, if important covariates are omitted from the model, the

proportional hazards assumption does not usually hold for the remaining covariates. This is illustrated by sim-

ulating a single large data set with sample size n¼ 10,000. Two independent covariates x1 and x2 are considered,

both �Nð0; 1Þ, with b1 ¼ b2 ¼ 1; k0 � 1 and uniform censoring on (20, 50). The following output is shown from

Cox models fitted with the standard survival package in R.12 When both covariates are included into the model,

the results are close to the simulation scenario, with both estimated regression coefficients close to 1:

## Call:

## c12 <- coxph(formula¼ Surv(time, status)� x1þ x2, data¼ d)

##

## coef exp(coef) se(coef) z p

## x1 1.0016 2.7225 0.0138 72.7 <2e-16

## x2 1.0240 2.7843 0.0140 73.2 <2e-16

##

## Likelihood ratio test¼ 9014 on 2 df, p¼ 0

## n¼ 10000, number of events¼ 8240

No evidence of violation of the proportional hazards assumption is found, when a test based on Schoenfeld

residuals is used13

## Call: cox.zph(c12, transform¼ identity)

## rho chisq p

## x1 0.00101 0.0081 0.928

## x2 -0.00357 0.1050 0.746

## GLOBAL NA 0.1510 0.927
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Figure 1. Changes in the mean and variance of a covariate x over time among survivors in a proportional hazards model.
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However, when x2 is omitted, the resulting estimate of the effect of x1 is visibly smaller than 1:

## Call:

## c1 <- coxph(formula¼ Surv(time, status)� x1, data¼ d)

##

## coef exp(coef) se(coef) z p

## x1 0.7028 2.0195 0.0124 56.6 <2e-16

##

## Likelihood ratio test¼ 3271 on 1 df, p¼ 0

## n¼ 10000, number of events¼ 8240

Moreover, there is clear evidence against the proportional hazards assumption.
## Call: cox.zph(c1, transform¼ ’’identity’’)

## rho chisq p

## x1 -0.0852 55.3 1.06e-13

This is also illustrated by the plot of scaled Schoenfeld residuals of bðtÞ in Figure 2. It appears that the effect of

x starts close to the true value 1, and then decreases over time. The result given by the Cox model only with x1 is

an “average” effect in this case. The attenuation of the estimated effect of x1 when a covariate is omitted has been

studied in detail in the literature.14–16

The explanation for the phenomenon illustrated in the simulated example is that the individual hazard is

determined by the combined effect of x1 and x2. Since b1 and b2 are both positive, the “high risk” individuals

(high x1, high x2) are the first to experience the event, on average, followed by the “moderate risk” ones (high x1
and low x2, or low x1 and high x2), and eventually the “low risk” ones (low x1 and low x2). This causes the

correlation between x1 and x2, which is initially around 0, to become negative, as can be seen in Figure 3, where

the sample correlation between x1 and x2 over time, among the survivors at the time, is shown in the large

simulated data set. This phenomenon is also known in epidemiology as the obesity paradox.17 The result of

this negative correlation is that if x2 is not accounted for, the individuals with high x1 in the population of

survivors artificially appear at lower risk than before, since they are likely to have a low value of x2, if they

are still alive. This induced loss of independence has profound consequences. Suppose that x1 stands for a

treatment in a randomized clinical trial. Since the treatment has been randomized, at randomization x1 may be

expected to be independent of any measured or unmeasured characteristics influencing the time to the event of

interest. Putting it differently, the distribution of these characteristics is expected to be the same for the random-

ized treatment arms at baseline. The above shows that this independence between x1 and the unmeasured

characteristics can no longer be expected to hold at later points in time, ultimately implying that the hazard

ratio is unsuited as a causal effect measure for survival data in the presence of unobserved heterogeneity.18,19
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Figure 2. Plot of scaled Schoenfeld residuals-based bðtÞ induced by omitting a covariate from a proportional hazards model.
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2.1.3 Conditional and marginal hazards

More generally, suppose that the proportional hazards model (1) holds for a covariate vector x ¼ ðxincl; xomitÞ with
covariate effects b ¼ ðbincl; bomitÞ, so that the true model is

kðt j xÞ ¼ k0ðtÞexpðb>inclxincl þ b>omitxomitÞ (2)

Imagine that a Cox model is fitted only including xincl. If we are aiming for bincl, then this will result in an

estimated effect that is attenuated towards 0 and, usually, a violation of the proportional hazards assumption.

Thus, the proportional hazards model lacks an internal consistency, in the sense that, if equation (2) is the true

proportional hazards model, then the model with only xincl does not obey a proportional hazards structure.20 In

reality, it is possible that some relevant covariates are not measured (here represented by xomit). In this case, these

omitted covariates are said to induce unobserved heterogeneity. The differences between individuals that are

explained by xincl are referred to as observed heterogeneity.
The kðt j xÞ, as defined in model (2), is referred to as the conditional hazard, with bincl summarizing the condi-

tional effect of xincl. When unobserved heterogeneity is present, the resulting kðt j xinclÞ is referred to as the marginal

hazard (although it is only marginal with respect to xomit but still conditional on xincl). The estimated effect from

the marginal model does not have an individual interpretation. Namely, kðt j xinclÞ represents a weighted average

of the individual hazards corresponding to those individuals in the risk set at time t, where the weighting is

determined by the distribution of xomit in this risk set.
Since the effect of xomit cannot be directly observed, one can define the random variable Z ¼ expðb>omitxomitÞ,

and write equation (2) as kðt j xÞ ¼ Zk0ðtÞexpðb>inclxinclÞ. Z is referred to as a “frailty” term that acts multiplica-

tively on the hazard.

2.2 The frailty model

A frailty model is a model for the hazards in which this unobserved heterogeneity is explicitly included as a

multiplicative random effect, the frailty. In the univariate frailty model, the hazard of an individual with frailty Z

is specified as

kðt jZÞ ¼ ZkðtÞ (3)

The frailty Z is a latent random term, assumed to have a certain non-negative distribution. Individuals with a

higher frailty can be thought of as being more frail, and therefore expected to die sooner than other individuals

with the same measured covariates. If the event of interest is a positive outcome, like pregnancy or recovery,

subjects with a higher “frailty” are expected to experience the positive outcome sooner than others with the same

covariates. For identifiability, Z is assumed to be scaled so that EZ ¼ 1. The term kðtÞ � kðt jZ ¼ 1Þ in equation

(3) is the conditional hazard for an individual with Z¼ 1. We refer to kðtÞ simply as the conditional hazard. This

conditional hazard may include covariates, but for simplicity this is not expressed in the notation. The conditional
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Figure 3. Correlation between x1 and x2 among survivors over time.
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cumulative hazard is defined as KðtÞ ¼ R t0 kðsÞds. The conditional survival function for an individual with frailty Z

is then given by

Sðt jZÞ ¼ expð�ZKðtÞÞ (4)

The survival function Sðt jZ ¼ 1Þ ¼ expð�KðtÞÞ corresponds to the survival of an individual with average

frailty value 1. The survival of the heterogenous population, consisting of individuals with different frailty

values, is called the marginal survival curve associated with KðtÞ, and is obtained by taking the expectation of

Sðt jZÞ with respect to Z

�SðtÞ ¼ E½expð�ZKðtÞÞ	 (5)

Unlike S(t), �SðtÞ has a population averaged interpretation. If there are no covariates, �SðtÞ may be seen as a

weighted average of individual survival curves, where the weighing depends on the distribution of Z. The marginal

hazard may be derived from the survival function as kðtÞ ¼ d=dt½�logSðtÞ	. Therefore, the marginal hazard may

be calculated as

�kðtÞ ¼ E Zexpð�ZKðtÞÞ½ 	
E expð�ZKðtÞ½ 	 kðtÞ ¼ E½Z jT � t	kðtÞ (6)

A population averaged interpretation may also be given here: �kðtÞ may be seen as a weighted average of

individual hazards of individuals alive at time t, where the weighting depends on the distribution of Z among

the individuals alive at time t.
The conditional and marginal hazards are equal only if E½Z jT � t	 ¼ 1 for all t, in other words if all frailties Z

are equal to 1. Otherwise, the frailty distribution among the survivors at time t behaves in a similar fashion as the

distribution of an observed covariate among survivors, as shown in section 2.1.1.
If observed covariates are also present, then it is usually assumed that the proportional hazards assumption

holds conditional on the frailty, with

kðt jZÞ ¼ Zk0ðtÞexpðb>xÞ (7)

Then, the population averaged interpretations of �SðtÞ and �kðtÞ hold conditional on x. In other words, for a

hypothetical population of individuals with given covariate values x. This is the same as the interpretation that is

given to the marginal hazard in section 2.1.2.
Regardless of whether the differences between individuals come from observed covariates x or from the frailty,

individuals with higher hazards die earlier. Therefore, the population of survivors is more homogeneous and at a

lower risk for events than the general population at time 0. Before we further study the relation between marginal

and conditional hazards in section 2.4, we first discuss different frailty distributions.

2.3 Frailty distributions

2.3.1 The Laplace transform

The Laplace transform turns out to be a very useful concept in describing relations between the conditional

hazards and the marginal hazards and survival functions. The distribution of a non-negative random variable

Z can be uniquely specified by its Laplace transform

LðcÞ ¼ E expð�cZÞ½ 	

It is immediate that Lð0Þ ¼ 1. The expectation of Z may be obtained as minus the derivative of L evaluated at

0, EZ ¼ �L0ð0Þ. Furthermore, L00ð0Þ ¼ EZ2, and, denoting LðkÞ as the k-th derivative of the Laplace transform, in
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general we have LðkÞð0Þ ¼ ð�1ÞkEZk. The squared coefficient of variation, defined as CV2½Z	 ¼ var½Z	=ðE½Z	Þ2,
may be expressed as

CV2½Z	 ¼ L00ð0Þ
ðL0ð0ÞÞ2 � 1

Let us return to the frailty model of the previous section, where we wrote the hazard as kðt jZÞ ¼ ZkðtÞ, with
kðtÞ the conditional hazard, and Sðt jZÞ ¼ expð�ZKðtÞÞ the conditional survival function. In terms of the Laplace
transform, the marginal survival function from equation (5) may be written as

�SðtÞ ¼ LðKðtÞÞ

and the marginal hazard as

�kðtÞ ¼ d

dt
½�logSðtÞ	 ¼ �L0ðKðtÞÞ

LðKðtÞÞ kðtÞ

The Laplace transform of the frailty distribution of survivors can be easily expressed in terms of the Laplace
transform of Z. First, denote the density of Z as f(z) and the density of Z jT � t as fZjT�tðzÞ. From Bayes’ theorem
and the definition of the conditional survival function (4), it follows that

fZjT�tðzÞ ¼ PðT � t jZ ¼ zÞfðzÞR
zPðT � t jZ ¼ zÞfðzÞdz

¼ Sðt jZ ¼ zfðzÞÞR
Sðt jZ ¼ zÞfðzÞdz

¼ expð�zKðtÞÞfðzÞR
expð�zKðtÞÞfðzÞdz

The Laplace transform of Z jT � t can then be written as

LZjT�tðcÞ ¼ E expð�ZcÞ jT � t½ 	
¼
Z

expð�zcÞfZjT�tðzÞdz

¼
R
expð�zcÞexpð�zKðtÞÞfðzÞdzR

expð�zKðtÞÞfðzÞdz
¼ E½expð�Zðcþ KðtÞÞÞ	

E½expð�ZKðtÞÞ	
¼ Lðcþ KðtÞÞ

LðKðtÞÞ

(8)

The expectation, variance and squared coefficient of variation of Z jT � t follow as

E½Z jT � t	 ¼ �L0ðKðtÞÞ
LðKðtÞÞ ;

var½Z jT � t	 ¼ L00ðKðtÞÞ
LðKðtÞÞ � L0ðKðtÞÞ

LðKðtÞÞ

 !2

;

CV2½Z jT � t	 ¼ L00ðKðtÞÞLðKðtÞÞ
ðL0ðKðtÞÞÞ2 � 1
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2.3.2 Infinitely divisible distributions

A rich family of frailty distributions with tractable Laplace transform are formed by the infinitely divisible

distributions with Laplace transform specified as LðcÞ ¼ expð�awðc; cÞÞ with a > 0 and c > 0. They are called

infinitely divisible because their distributions can be expressed as the probability distribution of a sum of an

arbitrary number of independent and identically distributed random variables from that same family. For LðcÞ to
be a proper Laplace transform, we require wð0; cÞ ¼ 0. The expectation, variance and coefficient of variation of Z,

conditional on survival until time t, can be expressed in terms of derivatives of w as

E½Z jT � t	 ¼ aw0ðKðtÞ; cÞ;
var½Z jT � t	 ¼ �aw00ðKðtÞ; cÞ;
CV2½Z jT � t	 ¼ � w00ðKðtÞ; cÞ

aðw0ðKðt; cÞÞÞ2
(9)

The unconditional expectation, variance and coefficient of variation of Z follow by replacing KðtÞ by 0.
The gamma distribution is a prominent member of the infinitely divisible family. The density of the gamma

distribution with parameters h > 0 and g > 0 is given by fðt; h; gÞ ¼ hg

CðgÞ t
g�1e�ht, where CðgÞ ¼ R10 sg�1e�sds is the

gamma function. Its Laplace transform is given by

LðcÞ ¼ h
hþ c

� �g

which, in terms of equation (9), can be expressed as a ¼ g; c ¼ h, and wðc; cÞ ¼ logðcþ cÞ � logðcÞ. By convention,
the expectation of the frailty is fixed to 1, so the restriction h ¼ g is applied. In this parametrization, Z follows a

gammaðh; hÞ distribution, with E½Z	 ¼ 1 and var½Z	 ¼ h�1 ¼ n. The expectation and variance of the frailty dis-

tribution of the survivors is given through equation (9), resulting in

E Z jT � t½ 	 ¼ h
hþ KðtÞ ;

var Z jT � t½ 	 ¼ h

ðhþ KðtÞÞ2

Both functions reach their maximum over t � 0 at t¼ 0, with expectation 1 and variance h�1, and decrease over

time. For the gamma frailty, it is immediate that �kðtÞ � kðtÞ. In words, the marginal hazard is always smaller than

the hazard of an individual with frailty 1.
A more general family of infinitely divisible distributions is the power-variance-function (PVF) family, with the

Laplace transform L described by

Lðc; a; c;mÞ ¼ exp �a signðmÞ 1� c
cþ c

� �m
( ) !

where signðmÞ is the sign of m, a > 0; m > �1 and m 6¼ 0. It was proposed in a series of papers21–23 and is studied

in detail in Hougaard.9 To obtain E½Z	 ¼ 1 and var½Z	 ¼ h�1, one can set a ¼ hðmþ 1Þ=jmj and c ¼ hðmþ 1Þ.
Particular cases of the distributions in the PVF family include:

• The gamma frailty, obtained as a limiting case when a ! 1 and m ! 0 in such a way that am ! g;
• The inverse Gaussian distribution, when m ¼ �1=2;
• The so-called Hougaard distributions, when m< 0;
• The compound Poisson distribution, when m> 0, which has probability mass expð�aÞ at 0. This is consistent

with a scenario where a part of the population is not susceptible for the event of interest;
• The positive stable distribution, obtained as a limiting case when �1 < m < 0; c ! 0, and a ! 1 in such a

way that cma ! ~a, for some positive constant ~a. The resulting Laplace transform takes the simple form
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LðcÞ ¼ expð�~ac~cÞ, with ~c ¼ �m 2 ð0; 1Þ. This distribution cannot be scaled to have E½Z	 ¼ 1, so usually the
restriction ~a ¼ 1 is imposed. Its expectation is infinite and the variance is not defined (but they are finite for the
conditional distribution ZjT � t, if KðtÞ > 0).

2.3.3 Other frailty distributions

The log-normal distribution has often been used for frailty models, although it is not part of the PVF family. The
normal distribution is infinitely divisible, but the log-normal distribution is not, and its Laplace transform and
expressions for the distribution of survivors are not easily obtained in closed form. Its popularity stems from the
normal random effects in linear models. The log-normal frailty is usually standardized with E½logZ	 ¼ 0 and
var½logZ	 ¼ r2, corresponding to a normally distributed random effect on the scale of the covariates. If matched
by mean and variance, it is virtually indistinguishable from the inverse Gaussian distribution. Other families of
distributions, such as the Addams and Kummer families of distributions were also introduced in the context of
frailty models.24,25

2.4 Frailty effects

The different frailty distributions discussed in section 2.3 represent different ways of expressing unobserved
heterogeneity. Different frailty distributions lead to different selection effects, such as the one illustrated in section
2.1.1. Moreover, they impact the marginal effect of the observed covariates in different ways, generalizing the
phenomenon illustrated in section 2.1.2. An advantage of the PVF family of distributions and their closed form
Laplace transforms is that it facilitates the study of these phenomenons.5,6,26 An overview may be found in Aalen
et al.,24 Chapter 6.

2.4.1 The selection effect

In section 2.3, it was shown that, for the gamma frailty model, the expectation and variance of the frailty
distribution of the survivors decrease over time, in a similar way as illustrated in section 2.1.1. In Figure 4, we
show the expectation and the variance of E½Z jT � t	, when the conditional hazard is given by kðtÞ ¼ t2=20, for
frailty variances 0.2, 0.5, 1 and 2. It follows that the marginal hazard appears as a “dragged down” version of the
conditional hazard, similar to Figure 1. This selection effect is stronger if the frailty variance is larger. In partic-
ular, depending on the variance of the frailty, the marginal hazard may appear to grow, reach a peak and then
decrease beyond a time point, even if the conditional hazard is increasing. As in section 2.1.1, the explanation is
that individuals with a higher hazard die earlier, on average, than individuals with a lower hazard. In particular,
this is true for all frailty distributions discussed in section 2.3. For example, for the compound Poisson distribu-
tion, when individuals with frailty 0 never experience the event of interest, the marginal hazard will eventually
decrease towards 0 after some time.

E[Z|T > t] Var[Z|T > t]

0 2 4 6 0 2 4 6
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Figure 4. Frailty distribution of survivors, gamma frailty, kðtÞ ¼ t2=20.
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2.4.2 The marginal hazard ratio

In section 2.1.2, we illustrated that, when important covariates are omitted from a Cox model, the marginal effect

of the remaining covariates is time-dependent. The same phenomenon happens with the marginal covariate effect

in the case of frailty models. Suppose that only one observed covariate is present, x 2 0; 1f g, and that the frailty

model (7) is true. Then, eb is the hazard ratio between two individuals with the same frailty, one with x¼ 1, the

other with x¼ 0. The marginal hazards for the two subgroups defined by x are given by

�k0ðtÞ ¼ E½Z jT � t; x ¼ 0	 k0ðtÞ;
�k1ðtÞ ¼ E½Z jT � t; x ¼ 1	 ebk0ðtÞ

The marginal effect of x can be quantified by the ratio of these two marginal hazards. This results in

e
�bðtÞ ¼

�k1ðtÞ
�k0ðtÞ

¼ E½Z jT � t; x ¼ 1	
E½Z jT � t; x ¼ 0	 e

b

It follows that the original hazard ratio eb is distorted over time by differential selection effects over time in the

two subgroups, caused by the frailty. As a result, �bðtÞ will generally not be constant over time. If Z is a gamma

frailty with variance h�1, for example, this is

e
�bðtÞ ¼ hþ K0ðtÞ

hþ ebK0ðtÞ e
b

If b < 0; �bðtÞ is an increasing function with a minimum of b and an asymptotic maximum of 0, if K0ðtÞ ! 1.

Conversely, if b > 0, then �bðtÞ is a decreasing function with a maximum of b and asymptotic minimum of 0. The

conclusion is that, at the population level, the covariate effect appears to vanish over time. Therefore, the gamma

frailty shows a similar behavior with the unobserved covariates scenario to that in the simulation in section 2.1.2.
Similar considerations apply for other frailty distributions. For example, for the inverse Gaussian distribution,

the marginal hazard ratio is

e
�bðtÞ ¼ hþ 2K0ðtÞ

hþ 2K0ðtÞeb
� �1=2

eb

In this case, we see that �bðtÞ ! b=2 if K0ðtÞ ! 1, as t ! 1. A peculiar case is that of the positive stable

distribution, for which

e
�bðtÞ ¼ ecb

which does not depend on time, so we have �bðtÞ � �b ¼ c b. Since 0 < c < 1; �b is an “attenuated” version of b.
The effect of different frailty distributions on the hazard ratio is illustrated in Figure 5. For the gamma frailty

distribution, the marginal hazard ratio approaches 1 with time, while for the inverse Gaussian it approaches

expðb=2Þ. For the positive stable distribution, the attenuated marginal effect is observed. For the compound

Poisson distribution, a “crossover” is present, where the marginal hazard ratio actually crosses 1. This is the effect

of having non-susceptible individuals, represented by the mass at 0 of the distribution. As a result, in the risk set at

sufficiently large time points, the proportion of non-susceptible individuals is higher in the high risk group than in

the low risk group.

2.5 Identifiability

In the frailty model, the marginal hazard equals �kðtÞ ¼ kðtÞE½Z jT > t	. If there are no covariates, then only �kðtÞ is
observed. Without strong parametric assumptions on kðtÞ, it is impossible to decide whether frailty is present or

not. In other words, the frailty model is not identifiable in this case. The presence of covariates, together with the

assumption of proportional hazards conditional on the frailty, makes the frailty model identifiable, as long as the
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frailty distribution has finite expectation. This is due to the marginal non-proportional effect of the observed

covariates, as exemplified in Figure 5. This identifiability result has been studied in Elbers and Ridder.27

Without further assumptions, observing a time-dependent covariate effect of the type shown in Figure 5 is

equally compatible with (at least) two explanations. One is that the proportional hazards assumption holds in the

conditional model, and this effect appears distorted at the marginal level as a result of unobserved heterogeneity.

The second is that there is no unobserved heterogeneity, and the observed covariate has a time-dependent effect.

In the first case, the frailty model is the natural choice. The frailty then explains heterogeneity due to unobserved

covariates or other sources of natural variation. Even with an exhaustive set of covariates, the remaining natural

between-subject variation can be explained by the frailty. In the second case, the modeling strategy would include

a stratified analysis or an extended Cox model with interactions of covariates with time [Therneau and

Grambsch,12 Chapter 6.5]. Further explanations of violation of the proportional hazards assumption are dis-

cussed in Van Houwelingen and Putter,28 Chapter 5.
In this context, the result of Elbers and Ridder,27 while theoretically interesting, is of little practical use. Only a

firm – and probably naı̈ve – belief in the conditional proportional hazards assumption can substantiate a claim

towards the presence of frailty. In principle, this situation changes in the case of clustered survival data, because

positive correlation between the event times is induced by the frailty. This is discussed in section 3. The more

information on the correlation structure, the easier it is to distinguish the presence of frailty from non-

proportional hazards. However, when the cluster sizes are small, identifying the appropriate model remains a

difficult problem because presence of frailty and violations of proportional hazards are confounded.29

The positive stable distribution does not have finite expectation, and therefore it does not fall under the result

of Elbers and Ridder.27 As shown in Figure 5, it preserves the proportional hazards assumption at the marginal

level. It is not identifiable with univariate survival data, even with covariates in a proportional hazards model. In

some sense, this may be seen as an advantage, since it illustrates that the identifiability of univariate frailty models
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Figure 5. Marginal hazard ratio between two groups of individuals: a low risk one with k0ðtÞ ¼ t2=20, and a high risk one with
k1ðtÞ ¼ 3k0ðtÞ. For comparability, the distributions are matched by the squared coefficient of variation of the distribution of survivors
at time t¼ 1, with CV2ð1Þ ¼ var½Z j T � 1	=E½Z j T � 1	2.
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is based on a strong assumption about the mechanism that generated the data. The positive stable distribution

does prove useful in the context of clustered failures or recurrent events in section 3.
Since the presence of frailty in a conditional proportional hazards model with univariate frailties is only iden-

tifiable through the distortion of the proportional hazards assumption in the marginal model, it follows that the

frailty distribution is extremely hard to determine from such univariate data. Basically, it can be identified, assuming

proportional hazards for the conditional model, only through the way in which the non-constant bðtÞ behaves in the

marginal model. As a result, quite different estimates of the conditional regression coefficients can result when

(univariate) frailty models with different frailty distributions are fitted on the same data. This is illustrated in

Keiding et al.,30 where the authors argue for the use of the accelerated failure time model in this context.

3 Shared frailty models

In the previous section we used the familiar setting of the Cox model to illustrate some of the “odd effects of

frailty”.24 Also here, before introducing shared frailty models in clustered and recurrent events data, we will
illustrate, again in the Cox model setting with shared covariates, some of the issues that turn out to play a role in

shared frailty models.

3.1 Missing covariates in paired data

Consider the situation of paired event times, where covariate values are shared between individuals from the same

pair. Assume that individuals from a given pair have the same distribution of the event time, denoted as T, with

the hazard function kðt j xÞ ¼ k0ðtÞexpðbxÞ. Conditional on x, all the life times are assumed to be independent.

Further, assume that x is a realization of a random variable X with density fXðxÞ. We denote fðt j xÞ and Sðt j xÞ as
the density and survival function of T, given X¼x. The marginal survival function of T (where the covariate x is

integrated out) is given by �SðtÞ ¼ R Sðt j xÞfXðxÞdx.
Consider one pair, with event times T1 and T2. The marginal survival function of either T1 or T2 is given by �S.

If T1¼ t1 is observed, the shared covariate will cause the conditional survival function of T2 to change.

Heuristically, if a large life time t1 is observed, then it is likely that the pair has a low hazard, which in turn

makes it more likely that the value of x in that pair is low if b > 0 (or high if b < 0). Since x is shared by both
individuals, a low hazard for T1 means that the hazard for T2 is also low, and that in turn makes it more likely that

the corresponding life time t2 is large as well.
All this leads to a positive marginal correlation of the two life times. More specifically, it is straightforward to

show that the marginal survival function of T2, given T1¼ t1, is given by

Sðt2 jT1 ¼ t1Þ ¼
Z

fðx j t1ÞSðt2 j xÞdx

with fðx j t1Þ ¼ fðt1 j xÞfXðxÞ=ð
R
fðt1 j xÞfXðxÞdxÞ, the conditional density of X, given T1¼ t1. Figure 6 shows

Sðt2 jT1 ¼ t1Þ for t1 ¼ 0:1 and t1 ¼ 2, for the case where the conditional distribution of T1 and T2, given x¼ 0,

is exponential with mean 1, and b ¼ 1, and X has a normal distribution with mean 0 and standard deviation r, for
different values of r.

It can be seen that for t1 ¼ 2, the conditional survival curves are higher than the marginal survival curve, while

for t1 ¼ 0:1 this is the other way around. For higher standard deviation of the distribution of X, the conditional

survival curves are more distinct from the marginal survival function. That means that for higher standard
deviation of X, the influence of knowing the value of T1 is higher, and the correlation between T1 and T2 is

higher. In fact, one can derive an explicit expression of the correlation between T1 and T2, when the baseline

distribution of T1 is exponential with rate k. It is given by

corðT1;T2Þ ¼ e2b
2r2 � eb

2r2

2e2b
2r2 � eb

2r2

A plot of the correlation as a function of r2, for b¼ 1, is shown in Figure 7. The form of this correlation

depends on several factors, such as the baseline distribution, the distribution of X and the effect of X on T1 and T2.

However, the phenomenon may be observed by simulation in general scenarios: larger unexplained between-

subject variation leads to larger marginal correlation between the two event times.
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If the correlation of life times cannot be explained by observed covariates (for example, because x is omitted),

then there are two practical approaches. One is marginal modeling, which is in the spirit of general estimating

equation (GEE) models. For the Cox model, this involves adjusting the standard errors of the observed cova-

riates.31 The second is to model the conditional hazard by introducing a “shared” frailty Z, that would take the

place of expðbxÞ in the previous example. The resulting “shared” frailty model is discussed in section 3.1. The

advantage of this approach is that differences between clusters can be quantified, and that the covariate effects

have an individual interpretation, as in the case of univariate frailty models.

3.2 Clustered failures

3.2.1 The shared frailty model

Assume that there are N clusters and ni individuals are part of cluster i. The hazard of the jth individual from

cluster i is specified as

kijðt jZiÞ ¼ Ziexpðb>xijÞk0ðtÞ (10)
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Figure 6. Conditional survival function of T2, given t1 ¼ 0:1 and given t1 ¼ 2; the conditional distribution of T1 and T2 given X¼ x is
exponential with rate kebx , k¼ 1 and b¼ 1, and X has a normal distribution with mean 0 and standard deviation r2, with different
values of r.
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rate kebx and b¼ 1, and X has a normal distribution with mean 0 and variance r2.
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The individuals in cluster i share the frailty Zi, and conditional on Zi their lifetimes are assumed to be inde-

pendent. While in the univariate case individuals are thought to be a random sample from a larger population of

individuals, in the clustered failures case the clusters are thought to be an independent random sample from a

population of clusters, and the individuals within a cluster are considered to be an independent random sample

from a distribution specific to the cluster and further modified by covariates.
In the univariate case, the marginal survival function was derived, and also the marginal hazard. In the

clustered failure case, we can derive the marginal joint survival function of a pair of individuals (or more), and

it is useful to derive the posterior distribution of the frailty, given all information about the cluster, including

observed events and censorings. This is studied in the next section.

3.2.2 Frailty distributions and clustered failures

Consider two individuals j¼ 1, 2 in the same cluster, with conditional hazards k1 and k2. The conditional cumu-

lative hazards for these individuals are given by KjðtÞ ¼
R t
0 kjðsÞdsÞ. Conditional on Z, the joint survival function

of (T1, T2) is defined as

Sðt1; t2 jZÞ ¼ PðT1 > t1;T2 > t2 jZÞ ¼ expð�ZðK1ðt1Þ þ K2ðt2ÞÞÞ

The last equation follows from the assumed conditional independence of T1 and T2, given the frailty. The

marginal joint survival probability is obtained by taking the expectation with respect to Z, which results in

Sðt1; t2Þ ¼ LðK1ðt1Þ þ K2ðt2ÞÞ (11)

There is a close connection with copulas, see for instance.10 The Laplace transform of Z, given that individual 1

and 2 are alive at t1 and t2, is obtained, with the same arguments as in equation (8), as

LZjT1>t1;T2>t2ðcÞ ¼
Lðcþ K1ðt1Þ þ K2ðt2ÞÞ
LðK1ðt1Þ þ K2ðt2ÞÞ

The only difference from the univariate case is that KðtÞ is now replaced by K1ðt1Þ þ K2ðt2Þ.
Assume now that the event time T1 of the first subject is observed at t1, and subject 2 is still seen to be alive at t2.

Recall that the density of Tj is given by kjðtÞexpð�KjðtÞÞ. We obtain

lim
Dt#0

Pðt1 � T1 < t1 þ Dt;T2 > t2 jZÞ
Dt

¼ Zk1ðt1Þexpð�ZðK1ðt1Þ þ K2ðt2ÞÞÞ

¼ � @

@t1
Sðt1; t2 jZÞ

The Laplace transform of Z, given T1 ¼ t1;T2 > t2, defined as

LZjT1¼t1;T2>t2ðcÞ ¼ E½expð�cZÞ jT1 ¼ t1;T2 > t2	

can be calculated from Bayes’ theorem

LZjT1¼t1;T2>t2ðcÞ ¼
E½Zk1ðt1Þexpð�Zðcþ K1ðt1Þ þ K2ðt2ÞÞÞ	
E½Zk1ðt1Þexpð�ZðK1ðt1Þ þ K2ðt2ÞÞÞ	

¼ L0ðcþ K1ðt1Þ þ K2ðt2ÞÞ
L0ðK1ðt1Þ þ K2ðt2ÞÞ
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For a more detailed derivation, see equation (8). If both events are observed, the Laplace transform of Z given

T1 ¼ t1;T2 ¼ t2 can be calculated similarly as

LZjT1¼t1;T2¼t2ðcÞ ¼
L00ðcþ K1ðt1Þ þ K2ðt2ÞÞ
L00ðK1ðt1Þ þ K2ðt2ÞÞ

where L00 is the second derivative of the Laplace transform of Z. A general pattern can be observed, where for

each event observed in the cluster a further derivative of the Laplace transform is involved.
So far the Laplace transforms of the conditional distribution of Z, given T1 and T2, have been expressed

in terms of generic hazard rates. Let us now turn to the situation where we have observed data from a

cluster of arbitrary size, in which all subjects share the same frailty. Some of these observations include

right-censored observations, for others the event of interest has been observed. Suppose we have a model

that, conditional on observed covariates x, specifies the hazard rate kj of each individual j in the cluster. We

can use the relations derived above to derive the posterior distribution of the frailty, given the observed

data in the cluster (rather its Laplace transform). We denote the observed data of the cluster (the event

history of all its individuals up to some horizon s) as F s. Assume that the data comprises NðsÞ observed

events, and let

K
ðsÞ ¼
X
j

Z s

0

YjðsÞkjðsÞds (12)

where YjðsÞ is the at risk indicator of subject j in the cluster, equal to 1 if subject j is at risk at time s, and 0

otherwise. Recall LðkÞ as the k-th derivative of the Laplace transform. The Laplace transform of Z, given the event

history F s of the cluster, is given by

LZjF s
ðcÞ ¼ LðNðsÞÞðcþ K
ðsÞÞ

LðNðsÞÞðK
ðsÞÞ
(13)

The expectation of this distribution follows as minus the derivative of its Laplace transform at c¼ 0

E½Z j F s	 ¼ �LðNðsÞþ1ÞðK
ðsÞÞ
LðNðsÞÞðK
ðsÞÞ

(14)

For the gamma frailty, we obtain that

E½Z j F s	 ¼ hþNðsÞ
hþ K
ðsÞ ; var½Z j F s	 ¼ hþNðsÞ

ðhþ K
ðsÞÞ2

The class of infinitely divisible distributions, discussed in section 2.3.2, allows similar expressions to be derived.

3.2.3 Dependence and the cross-ratio

The estimated frailty variance offers an indication of unobserved heterogeneity between clusters, but it offers little

information on the resulting marginal correlation of the event times. Even for paired data, the formulas for the

bivariate survival function in equation (11) are difficult to interpret.
One measure of bivariate dependence is Kendall’s coefficient of concordance (Kendall’s tau). Denote two pairs

of individuals as ð11Þ; ð12Þ� �
and ð21Þ; ð22Þ� �

, where (ij) refers to individual j of cluster (pair) i. Denote Tij as the

event time of subject (ij). Kendall’s tau is defined as

sK ¼ E½signððT11 � T21ÞðT12 � T22ÞÞ	
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where sign is the sign function. This is proportional to the probability that the order of events is concordant

between the two clusters. The median concordance is a similar measure that only involves one pair

j ¼ E½signððT1 �medianðT1ÞÞðT2 �medianðT2ÞÞÞ	

This is proportional to the probability that the events within the same cluster are concordant, in the sense that

they occur both before the median survival time or after. In frailty models, both sK and j are positive quantities,

since the specification (10) only allows for positive dependence. Under independence, both measures would be 0.

However, the reverse statement is not usually true. Estimation of these coefficients in censored data is detailed in

Hougaard,9 Chapter 4.
A more natural way of exploring the within-cluster dependence structure is via the cross-ratio,32 defined for

pairs of subjects from the same cluster. It compares how the hazard of one subject in the pair would behave if an

event would happen to the other subject, as opposed to an event not happening. Unlike sK and j, it is a

local measure of dependence. To illustrate this, we consider one cluster with individuals 1 and 2. Conditional

on the frailty, their event times T1 and T2 are independent. Denote the hazard of individual 2 if individual 1 is alive

at t1 as

k2ðt jT1 > t1Þ ¼ L0ðK1ðt1Þ þ K2ðtÞÞ
LðK1ðt1Þ þ K2ðtÞÞ k2ðtÞ

and the hazard of individual 2 if individual 1 had an event at time t1 as

k2ðt jT1 ¼ t1Þ ¼ L00ðK1ðt1Þ þ K2ðtÞÞ
L0ðK1ðt1Þ þ K2ðtÞÞ k2ðtÞ

These two hazards concern different hypothetical event histories of the other individual in the cluster. They are

equal only if there is no dependence between the two individuals. The cross-ratio can be expressed as

CRðt1; t2Þ ¼ k2ðt2 jT1 ¼ t1Þ
k2ðt2jT1 > t1Þ

¼ L00ðK1ðt1Þ þ K2ðt2ÞÞ
L0ðK1ðt1Þ þ K2ðt2ÞÞ

L0ðK1ðt1Þ þ K2ðt2ÞÞ
LðK1ðt1Þ þ K2ðt2ÞÞ

 !�1

which is a function of K1ðt1Þ þ K2ðt2Þ. Intuitively, if there is positive dependence between the two event times, we

have CRðt1; t2Þ � 1. It was suggested in Hougaard9 that a more interpretable comparison would be to replace the

denominator by k2ðt2 jT1 > tÞ, to compare the hazard given that “individual 1 died at time t1” with “individual 1

is alive now”. This “adjusted cross ratio” is defined as

CRaðt1; t2Þ ¼ k2ðt2 jT1 ¼ t1Þ
k2ðt2jT1 > tÞ

¼ L00ðK1ðt1Þ þ K2ðt2ÞÞ
L0ðK1ðt1Þ þ K2ðt2ÞÞ

L0ðK1ðtÞ þ K2ðt2ÞÞ
LðK1ðtÞ þ K2ðt2ÞÞ

 !�1

CRa can be interpreted as the ratio between the hazard of individual 1 when individual 2 is dead and the hazard

of individual 1 when individual 2 is alive.
In Figure 8, we illustrate the unadjusted and adjusted cross-ratio functions for the gamma, inverse Gaussian

and positive stable distributions. For comparison purposes, the distributions are matched by Kendall’s tau rather

than variance. Both unadjusted and adjusted cross-ratio functions show that the hazard of individual 2 is larger if

individual 1 has an event. The unadjusted cross-ratio for the gamma frailty is constant, showing that the event of

individual 1 affects the hazard in the same way over time. The shape of the unadjusted cross-ratio for the inverse

Gaussian and positive stable frailties shows that there is a strong immediate dependence that vanishes over time.
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The adjusted cross-ratio paints a slightly different picture. For the gamma, it implies that, if one member of the
pair dies, the hazard for the survivor would appear increasingly larger as compared to the scenario where the
partner would still be alive. For the positive stable distribution, the surviving individual is at a perceived high risk
right after the partner died, but the differences quickly decreases. This can be interpreted as a large correlation
between the life times on the short term. As before, the inverse Gaussian is somewhere in the middle.

The unadjusted cross-ratio may be interpreted as an “instantaneous odds ratio”,33 and for bivariate survival
data it may be used for selecting the frailty distribution (Duchateau and Janssen,10 Chapter 4). One disadvantage
is that it depends on the conditional cumulative hazard; a scaled cross-ratio that overcomes this has been pro-
posed by Paddy Farrington et al.25

The gamma frailty is said to induce “late dependence” (a high probability of events occurring close by at later
time points), the positive stable frailty induces “early dependence” (a high probability of event occurring close by
early in the follow-up) and the inverse Gaussian is somewhere in the middle. The timing of the dependence can be
studied by analyzing the joint distribution of T1 and T2.

9 A disadvantage of this approach is that the marginal
distributions of T1 and T2 must be known separately, which is usually not possible.

3.2.4 Frailty model for recurrent events

Recurrent events are most commonly defined in the framework of counting processes. Each individual is described
by a process N(t) that “counts” the number of events experienced by the individual until time t.

The two common frameworks for modeling N are the Poisson process and the renewal process.34 If unobserved
individual heterogeneity is present, then there are two approaches that may be used in practice. One is the
marginal approach, where the unobserved heterogeneity is treated as a nuisance.35 In that case, the focus of
analysis is the marginal rate of N, which is defined as the probability of observing an increase in N in the small
interval ðt; tþ dtÞ.

The second approach is to model the intensity of N. While the hazard is defined as the instantaneous prob-
ability of an event given that the individual is alive, the intensity is defined as the instantaneous probability of an
event given the whole previous event history of the individual. One way of incorporating the previous event history
of the individual is to assume that the intensity at time t depends in some way on the number of events observed
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Figure 8. Cross-ratio (top row) and adjusted cross-ratio (bottom row, at t1 ¼ 1) for the gamma, inverse Gaussian and positive stable
distributions, for different values of Kendall’s tau. The individual hazard, conditional on Z¼ 1, is taken as kðtÞ ¼ t2=20.
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prior to time t. When the Poisson and renewal processes depend explicitly on the past, they result in so-called

modulated Poisson and renewal processes. Another way is to implicitly model the dependence on the event history

through a frailty Z. The conditional intensity of N, given Z, is then specified as

kðt jZÞ ¼ YðtÞZk0ðtÞexpðb>xÞ (15)

where Y(t) is an indicator function that is 1 if the individual is under observation at time t and 0 otherwise.

Similarly to the univariate frailty, the variance of Z describes between-individual unobserved heterogeneity.
The marginal intensity is obtained by replacing Z by E½Z j F t�	, with F t� now representing the event history of

the individual until just before time t. As in the case of univariate frailty in section 2.4, the effect of the covariates

in the marginal intensity is usually time-dependent. Similar to the clustered failures scenario, E½Z j F t�	 includes
information on previous event times.

The intensity in equation (15), with t referring to “time since origin of the recurrent event process”, is referred

to as the calendar time or Andersen-Gill formulation. In the Andersen-Gill formulation, N is assumed to be a

Poisson process, conditional on Z, meaning that its intensity conditional on Z does not depend on the history F t�.
Alternatively, in the gap-time scale, t refers to “time since the previous event”. The intensity may then be

expressed as kðt jZÞ ¼ kðt� BðtÞ jZÞ, where B(t) is the time of the event before time t. From a practical point

of view, the gap time scale has a very similar representation to (10), where kijðt jZÞ is interpreted as the hazard of

the j-th event, on the time scale since the last observed event. Conditional on Z, N is then a renewal process.
In the case of recurrent events, the frailty mainly expresses that, if two individuals with identical covariates were

observed over the same period of time, the expected number of events is larger for the one with the higher frailty.

The number of events carries the most information on the frailty9 (Chapter 9). Therefore, the measures of

dependence discussed in subsection 3.2.3 are of little interest in this context.
Modeling recurrent events is a complex task and several types of models may be accommodated with counting

processes (Therneau and Grambsch,12 Section 8.5). Furthermore, time-dependent covariates representing, for

example, the number of previous events, may also be added in the model (Aalen et al.,24 Chapter 8). A compre-

hensive reference on recurrent event modeling may be found in Cook and Lawless.34

3.3 Estimation and inference for frailty models

Depending on the nature of the baseline hazard or intensity k0, the frailty models may be classified as semi-

parametric or parametric. In semi-parametric models, no assumptions are made on the baseline hazard or inten-

sity k0 and the maximum likelihood estimate of k0 has mass only at the event times, as is the case for the Breslow

estimator.36 In parametric models, k0 is determined by a small number of parameters, such as the exponential,

Weibull or Gompertz models, or flexible parametric approaches employing spline-based estimators.

3.3.1 Likelihood and EM-based approaches

The likelihood construction for counting processes is detailed in most survival analysis textbooks.24,37 To cover all

the scenarios described previously, assume that i denotes the cluster, (i, j) the j-th individual within the cluster i

and tijk denotes the k-th event or censoring time observed on individual (i, j). We define the event indicator dijk as 1
if tijk is an event time and 0 otherwise. Suppose that the conditional hazard of subject (i, j), conditional on the

frailty Zi is given by kijðt jZiÞ ¼ ZikijðtÞ with kijðtÞ ¼ k0ðtÞexpðb>xijÞ. Denote the at risk indicator of subject j in

cluster i by YijðtÞ and let Ki
ðsÞ ¼
P

j

R s
0 YijðtÞkijðtÞdt, with s the horizon, be the sum of conditional cumulative

hazards of cluster i, as defined in equation (12).
Assuming that the frailties Zi are observed, the conditional likelihood contribution of cluster i is given by

Liðb; k0 jZiÞ ¼
Y
jk

kijðtijk jZiÞ
� �dijk � exp �ZiKi
ðsÞð Þ

and the likelihood for all the individuals is a product of all Lis. The clustered failure data is represented by having

only one time point per individual (k � 1), while the recurrent events case is represented by having only one

individual per cluster (j � 1). An implicit assumption here is that censoring is independent. In terms of counting

processes, the at-risk process Y(t) is assumed to be independent of N(t), given the covariates and event history up

to time t.
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In the first part of this expression, Zi appears to the power Ni
, the total number of events from the cluster i.

The marginal likelihood contribution of cluster i is obtained by taking the expectation over Zi

Liðb; k0; hÞ ¼
Y
j;k

kijðtijkÞdijk E ZNi

i exp �ZiKi
ðsÞð Þ

h i
(16)

The parameters to be optimized are b, the vector of regression coefficients, k0, the baseline hazard, and h, the
parameters of the frailty distribution, usually the frailty variance. For valid inference based on Lðb; k0; hÞ, the
censoring or at-risk process must also not involve the frailty, for reasons outlined in Nielsen et al.38 This assump-

tion is similar to that of regular Cox models, where dependent censoring arises, for example, if the censoring

process depends on unobserved covariates. In models where the baseline hazard k0 is parametric, direct optimi-

zation of the likelihood is feasible. When the baseline hazard is non-parametric, as in a (conditional) Cox model,

the dimension of k0 is usually equal to the number of total distinct event time points in the data. This prevents a

direct maximization of the likelihood.
For semi-parametric gamma frailty models, the Expectation-Maximization (EM) algorithm39 has been pro-

posed.38,40 It can be extended in a straightforward way to the class of infinitely divisible distributions described in

section 2.3.2.9,41 This involves iterating between two steps:

1. The “E” step, which involves calculating the expected log-likelihood

E‘ðb; k0; hÞ ¼
X
i

E logLiðb; k0 jZÞ½ 	

In practice, this involves calculating E½Zi j F s	 and possibly E½logZi j F s	.

2. The “M” step, where b; k0 and h are updated, by maximizing E‘ðb; k0; hÞ.

The advantage of this approach is that the M step may be calculated via Cox’s partial likelihood,42 effectively

eliminating the problem of the high-dimensional k0. For the E step, the “posterior” distribution of Zi, given the

event history F s of cluster i, needs to be evaluated. It has the density kernel

fZi
ðz j F sÞ / zNi
expð�zKi
ðsÞÞfZi

ðzÞ

This is available in closed form only for the gamma frailty, and is typically difficult to calculate for other frailty

distributions. The expectation of this distribution, E½Zi j F s	, is also known as the empirical Bayes frailty estimate.

It can be calculated via the Laplace transform, as discussed in section 3.2.2, see equation (14). This may involve

having to take many derivatives of the Laplace transform, if Ni
 is large. In principle, for the “E” step, also

E½logZi j F s	 is needed. Calculation of E½logZi j F s	 can be avoided via a “profile EM” algorithm, which involves

performing the EM algorithm described here for fixed values of h, and maximizing over h in an outer loop.38 As an

alternative for the EM algorithm, a Monte Carlo EM algorithm may be employed, which involves a stochastic

approximation of the E step.43

3.3.2 Alternative approaches

The penalized likelihood method44,45 is a very popular way of estimating gamma and log-normal semi-parametric

frailty models. The basic idea behind it is that, for fixed h, the logZi’s may be treated as regular parameters (on the

same scale with the regression coefficients b). Afterwards, a penalization of a specific form is imposed upon them.

Depending on the penalization, the results are equivalent to those of a gamma or a log-normal distributional

assumption. This approach is typically the fastest for semi-parametric models, and is implemented in coxph in the

survival package. A downside is that it is not immediately possible to extend the estimation to other frailty

distributions.
Other approaches include a pseudo-likelihood method,46 which leads to consistent estimators and may be

employed for a larger number of frailty distributions, and the h-likelihood method.47,48 This approach relies on
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maximizing the joint likelihood of the observed and unobserved data. It has been developed for the gamma and

log-normal distributions.

3.3.3 Inference

For parametric models, the variance–covariance matrix is typically obtained directly, as the inverse of the numeric
Hessian matrix. This is usually provided directly by optimization software. For models estimated with the EM

algorithm, Louis’ formula may be used49 to obtain standard errors of the estimates. It has been shown that the

baseline hazard may be regarded, for practical purposes, as an ordinary finite dimensional parameter and the
information matrix may be constructed from the matrix of second derivatives.50

For the profile EM algorithm, the variance covariance matrix for ðb; k0Þ is obtained under the assumption of

fixed h. Similarly to the penalized likelihood methods, the variance–covariance matrix for b, based on the partial
likelihood, is also obtained under fixed h. The complete variance–covariance matrix for b; k0 or for b should then

be adjusted for the variability of h (Hougaard9 Chapter B3),51 although this is usually ignored in practice.
Inference regarding the frailty variance is more challenging. The limiting case, when the variance is 0, is a

proportional hazards model without frailty. A likelihood ratio test based on a 50:50 mixture of v2 distributions

with 0 and 1 degree of freedom can be employed to test the difference between these two models.52,53 Another

issue is that, since the variance must be positive, symmetric confidence intervals are not very meaningful. An
alternative is to calculate likelihood-based confidence intervals, as is illustrated in Therneau and Grambsch,12

Chapter 9.

4 Frailty models in practice

4.1 Software

Support for frailty models exists in major statistical packages such as R,54 SAS55 and Stata.56 The PHREG com-

mand in SAS implements the penalized likelihood method for the gamma and log-normal frailty models. The
streg procedure in Stata implements parametric gamma and inverse Gaussian frailty models. In what follows, we

will focus on packages for R.
Semi-parametric gamma and log-normal frailty models may be estimated via the penalized likelihood method

in the survival package.12,57 Semi-parametric frailty models with the infinitely divisible class of frailty distributions

discussed in section 2.3.2 may be estimated via the profile EM algorithm with the frailtyEM package.58 Log-

normal frailty models (including correlated frailties, discussed in section 5) may be estimated with the coxme
package.59 Similar models may be fitted with the Monte Carlo EM algorithm with the phmm R package.60 Log-

normal and gamma frailty models can also be estimated via h�likelihood with the frailtyHL package.61 The

pseudo-likelihood approach is implemented in the frailtySurv package,62 supporting some of the infinitely divis-
ible distributions from the PVF family.

Parametric and flexible parametric frailty models for the gamma and log-normal distributions are supported by

the frailtypack package63,64 (including correlated random effects, nested random effects and numerous other
scenarios). Parametric frailty models with support for some of the PVF family distributions are implemented

in the parfm package.65

4.2 Data representation

In R,54 the canonical resources for survival analysis are found in the survival package.57 Event histories corre-
sponding to survival times or to recurrent events have a very similar representation, as described in detail in

Therneau and Grambsch.12

An event history is represented by a collection of observations, which are vectors ðtL; tR; d; xÞ where (tL, tR) are
two time points that define an “at-risk” interval, d is equal to 1 if the interval ended with an event and 0 otherwise,

and x is a vector of covariate values that are constant on this interval. In R, the tuple ðtL; tR; dÞ is referred to as
(tstart, tstop, status). Univariate survival times and clustered failures are usually represented by having tL¼ 0

and a simplified (tstop, status) notation. Furthermore, the ðtL; tR; dÞ notation may also be used to express:

• Recurrent events in calendar time (or “Andersen-Gill” representation). In this case, for an individual, tR are

event times and tL is usually 0 or the time of the previous event. Usually, the last observation is censored with

the last tR being the end of follow-up.
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• Recurrent events in gap time. In this case, tL¼ 0 and tR are observed gap times. The last observation may be

censored, indicating an incomplete gap time at the end of follow-up.
• Left truncated survival times, where tL is the time point after which the individual enters the study.
• Time-dependent covariates. In this case, if the value x changes at time ~t 2 ðtL; tRÞ, this results in two obser-

vations corresponding to time intervals ðtL; ~tÞ and ð~t; tRÞ, with the first one being artificially censored.

In the presence of frailty, an observation is interpreted as a contribution to the conditional likelihood of the

form

Lðb; k0 jZ; tL; tR; d; xÞ ¼ Zk0ðtRÞeb>x
n od

� exp �ZðK0ðtRÞ � K0ðtLÞÞeb>x
� 	

For a collection of observations sharing the same frailty Z, the software maximizes

EZ

Y
intervals

Lðb; k0 jZ; tL; tR; d; xÞ

 �

which is the contribution of one cluster to the marginal likelihood (16). This is appropriate in the case of recurrent

events and time-dependent covariates, or for clustered survival times without left truncation.
For left truncated survival times, however, this is generally incorrect. In the univariate case, the frailty distri-

bution of a left truncated individual is that of Z jT � tL, referred to as the distribution of survivors (until time tL)

in section 2.4.
In the case of clustered survival times, the event of observing the whole cluster must be taken into account.66–68

If the individuals from the same cluster have truncation times tL;1; tL;2; . . . tL;J that are independent given Z, then

the frailty distribution of the cluster is that of Z jT1 > tL;1; . . .TJ > tL;J.
More complicated selection schemes arise when the left truncation times are not independent, even conditional

on the frailty.69 In the case of recurrent events, such selection schemes may arise when individuals are included

into the study only if they experience a certain number of events.70 Such scenarios usually require ad-hoc esti-

mation procedures and are not generally supported by the main software packages.
In R, one of the reasons why the same notation is used to denote both recurrent events and left truncation is

because they lead to the same likelihood in frailty-less models. In the case of frailty models, the treatment depends

on the package used. For example, the survival package calculates the correct likelihood for the recurrent events

case, parfm calculates the correct likelihood for the left truncation case. In frailtypack and frailtyEM, both

scenarios are supported.

5 Extensions

The standard shared frailty model assumes that the frailty is shared among all individuals in the same cluster. This

assumption can be relaxed by assuming that the frailty terms of individuals in the same cluster are not shared, but

correlated.7,11,71,72 Correlated frailty models address the limitation that shared frailty models may only be

employed for positively correlated event times.
Furthermore, so far the random effect Z has been assumed to be time-constant. This is consistent with the

interpretation that Z accounts for individual specific or cluster specific characteristics that are fixed from the time

origin, and have an effect that is constant over time. However, the unobserved heterogeneity might be time-

dependent, thus better explained by an unobserved random process that unfolds over time. Several approaches

based on this idea have been proposed. The frailty may be modeled with diffusion processes73,74 or Levy pro-

cesses.75 More recently, an approach on birth-death Poisson processes has been proposed.51 Simpler, piecewise

constant, frailty models have also been considered.76,77 A limited implementation combining the birth-death

processes and the piecewise constant frailty is implemented in the R package dynfrail.78 Related approaches

include the constructions of auto-regressive frailty processes based on log-normal frailties79,80 or gamma

frailties.81

Since the models presented in sections 2 and 3 are intended for the analysis of one stochastic event process, it

has been assumed that the censoring does not depend on the frailty included in the time to event model. This

assumption may be tested,82 and in case a violation of this independence assumption is detected, the event and
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censoring processes can be modeled jointly. An example is when the observation recurrent event process may be

stopped by death83 or when the frailty is also associated with the censoring.84

Moreover, we assumed that in case of time-dependent covariates, the vector xðtÞ is “external” to the event
process, in the sense of Kalbfleisch and Prentice.37 If x contains internal time-dependent covariates, such as

repeated individual measurements, the processes should be modeled jointly (Rizopoulos,85 Chapter 2). In this

case, the frailty is shared by the model for the time-dependent covariate (or biomarker) and the model for the

event process. Software for estimating joint models is also available in R.86

More advanced random effect structures may be, in theory, considered. For example, if individuals experience

recurrent events and are nested within clusters, a hierarchical random effects model may be considered. This is,

however, not easily done in practice, and there is no standard software that currently supports such models.

6 Illustration

We end by discussing two illustrations of the use of frailty models. The first is a study on center effects in a breast

cancer study, the second on recurrent events in patients with chronic granulomatous disease. The R code for the
analyses performed is available as Supplementary Material.

6.1 Frailty models for center comparisons

The data originate from a clinical trial in breast cancer patients, conducted by the European Organization for

Research and Treatment of Cancer (EORTC-trial 10854). The objective of the trial was to study whether a short

intensive course of perioperative chemotherapy yields better therapeutic results than surgery alone. The trial
included patients with early breast cancer, who underwent either radical mastectomy or breast conserving therapy

before being randomized. The trial consisted of 2795 patients, randomized to either perioperative chemotherapy

or no perioperative chemotherapy. Results of the trial were reported in literature.87,88 The data have been studied

in a multi-state model in Putter et al.89 and Van Houwelingen and Putter.28 This data is based on a subset of all
2687 patients with complete information on all covariates used below. For descriptives on these covariates, see

Van Houwelingen and Putter,28 Appendix A.2.
In the trial, patients have been included in 15 participating centers. The size of the centers varies between 6

patients (the smallest one) and 880 (the largest), as illustrated in Figure 9.
For this illustration, the endpoint of interest is overall survival. In Figure 10, we show the Kaplan–Meier

estimates corresponding to each center (gray) and the overall estimate (black). These survival curves do not make

it easy to compare centers. One of the reasons is that the survival curves are not controlled for possible differences

between the distribution of covariates across centers (so-called case-mix), another is that it is difficult to disen-
tangle randomness from systematic differences between centers.
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Figure 9. Histogram of center sizes.
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For the inclusion of covariates, we start with a proportional hazards model, where the hazard of subject j from
center i, given its covariates xij, is given by

kijðtÞ ¼ k0ðtÞexpðb>xijÞ

This model does not yet include any differences between centers. Estimating it is straightforward in principle,
but for the standard maximum likelihood approach, the event times of the individuals are assumed to be inde-
pendent. This assumption might not hold when observations come from the same center. Generalized estimating
equations (GEE), with independent working covariance, may be used to obtain valid (sandwich) standard errors
in this case. The results, with unadjusted and adjusted (robust) standard errors, are shown in Table 1, under “Cox
model”. The hazard ratios expðbÞ have a marginal interpretation, in the sense that they are averaged over all
unmeasured covariates (such as, for example, center effects). Therefore, the estimated regression coefficients apply
to an individual selected at random from the population.

To explain more of the underlying heterogeneity, we account for center effects. The centers are included in a
fixed effects model. The underlying model would be given by

kijðtÞ ¼ k0ðtÞexpðci þ b>xijÞ

Such a model can be fitted using center as a factor variable, taking one of the centers, usually the first, as
reference center. The resulting estimates of the regression coefficients are shown in Table 1, under Fixed Effects.
We can visually assess the differences between centers via a caterpillar plot, shown in Figure 11. The error bars
denoted with “fixed effects” correspond to the estimates and 95% confidence intervals of the fixed effects esti-
mates. In the Cox model estimated above, the first center is taken as reference, with an implicit c1 ¼ 0. Denote c as
the vector of regression coefficients of the remaining centers, and �c as their average. For this visual representation,
we center the c’s at 0, i.e. we set ~ci ¼ ci � �c, and ~c1 ¼ ��c, with �c the average of the original estimates of the c’s.
The standard errors are then also calculated accordingly. The confidence intervals suggest that there is a lot of
variability in estimated center effects in this way. Most of the confidence intervals include 0, with the exception of
center E, which shows a lower mortality, and centers M, N, and O, which show a higher mortality.

More naturally, we would think about the centers as being randomly drawn from a population of centers, and
their effects as being realizations from a frailty distribution. The underlying model would be

kijðtÞ ¼ Zik0ðtÞexpðb>xijÞ
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Figure 10. Kaplan–Meier survival estimates, overall and by center.
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where Zi is the (random) center effect corresponding to center i. The frailty variance can then be used to quantify
the degree of between center variability. The result of fitting a gamma frailty model is shown in Table 1, under
frailty model. The frailty variance is estimated as 0.122. The 95% confidence interval for the frailty variance, given
by (0.048, 0.324), is based on the profile likelihood function (see section 3.3.1). This means that there is a one-to-
one correspondence between the confidence interval for the frailty variance and the profile likelihood ratio test.
Although the frailty variance is not really large, the likelihood ratio test deems the differences in mortality rates
between centers, after adjustment for covariates, as statistically significant. Figure 11 shows a caterpillar plot of
the center effects from the fixed effects model and from the frailty model. For the frailty model, for each center,
the estimate shown is the empirical Bayes estimate, and the 95% interval is given by the 2.5% and 97.5%

Table 1. Estimates from the Cox model, the fixed effects model, the gamma and log-normal frailty models.

Cox model Fixed Effects Gamma frailty Log-normal frailty

Coef SE Robust SE Coef SE Coef SE Coef SE

Type of surgery Mastectomy with RT

Mastectomy without RT 0.25 0.11 0.17 0.16 0.13 0.16 0.12 0.16 0.12

Breast conserving �0.07 0.10 0.10 �0.09 0.10 �0.08 0.10 �0.08 0.10

Tumor size <2 cm

2–5 cm 0.35 0.10 0.10 0.35 0.10 0.35 0.10 0.35 0.10

>5 cm 0.89 0.15 0.16 0.83 0.16 0.84 0.16 0.84 0.16

Nodal status Node negative

Node positive 0.97 0.11 0.26 0.77 0.11 0.79 0.11 0.78 0.11

Age � 50

>50 0.01 0.10 0.12 0.10 0.10 0.09 0.10 0.09 0.10

Adjuvant chemo No

Yes �0.38 0.13 0.35 �0.15 0.14 �0.17 0.13 �0.17 0.14

Tamoxifen No

Yes �0.17 0.12 0.31 0.12 0.13 0.08 0.12 0.08 0.12

Perioperative chemo No

Yes �0.12 0.07 0.06 �0.13 0.07 �0.13 0.07 �0.13 0.07

Frailty variance 0.122 0.132

Note: Estimated center effects of the fixed effects model have been omitted from the table.
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Figure 11. Center effects from the fixed effects and frailty models, expressed in hazard ratios.
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percentiles of the posterior frailty distribution, given the data in the center, as detailed in equation (13) in

section 3.2.2.
It may be observed that, particularly for the extreme centers, the frailty estimates are shrunken towards the

mean (1). In terms of interpretation of the frailty estimates, it is helpful to study the form of the empirical Bayes

estimates. For the gamma frailty model, it may be shown that the empirical Bayes estimate for center i is given by

ẑi ¼ ĥ þNi

ĥ þ K̂i


where ĥ is the estimate of the inverse variance parameter, Ni the number of events in center i and K̂i
 the sum of

the cumulative hazards of all individuals from center i, evaluated at the end of follow-up of each individual, cf.

equation (12). While Ni is the “observed” number of events, K̂i
 may be interpreted as the expected number of

events in center i, based on the case-mix and the length of follow-up of the patients in the center. We can re-write

ẑi as

ẑi ¼ k
Ni

K̂i

þ ð1� kÞ

with

k ¼ K̂i

ĥ þ K̂i


Therefore, ẑi is a weighted average of the ratio between observed and expected number of events and the overall

average (1). In particular, smaller centers (with smaller K̂i
) will show more shrinking.
The proportional hazards assumption may be checked with, for example, with a test based on residuals.13 In

the case of the Cox model, this tests shows evidence against non-proportionality for tumor size and nodal status.

For the frailty model, the same test can be carried out on the same Cox model, but with the logarithm of the log-

frailties as offset. In this case, the conclusions are unchanged and indicate that further modeling of these variables

may be required. Note that this may not be the case if the clusters would be smaller in size; we discuss this in

section 7.
For comparison, we also estimated the same model with log-normal instead of gamma frailty. The maximized

likelihood of this model was �5449.4 versus �5450.9 for the gamma frailty, suggesting a better fit to the data. The

estimates of the regression coefficients are also shown in Table 1. The results from the two models are virtually

identical, except for the estimated frailty variance which is slightly larger than the one from the gamma frailty.

6.2 Frailty models for recurrent events

The data are from a placebo controlled trial of gamma interferon in chronic granulomatous disease (CGD) and

are available in the survival package. It contains the time to recurrence of serious infections, observed from

randomization until end of study for each patient. The follow-up and event history of each individual are visu-

alized in Figure 12. Most individuals, in fact, have no events during their follow-up; see Figure 13 for a histogram

of the number of recurrences per individual.
A preliminary Cox model fit reveals that the treatment is highly significant, and that age, inherit and steroid

usage are also significant. For the purpose of illustration, we will include these variables, plus sex, from now on.

The results from the Cox model with these selected covariates are shown in Table 2. The covariates explain part of

the differences between intensities in the occurrence of infections between the individuals. To quantify the

unobserved heterogeneity in the intensities, we fit a shared gamma frailty model to the data. The frailties reflect

the increase or decrease in infection rates of different individuals. The result is shown in Table 2. The frailty

variance is estimated as 0.555, with (profile) likelihood ratio test-based 95% confidence interval ð0:067� 1:449Þ. A
histogram of the empirical Bayes frailty estimates is shown in Figure 14.

It is possible to question our choice for the gamma frailty. Partially due to software limitations, other dis-

tributions are rarely considered in practice. Table 2 also shows estimated frailty variances with 95% confidence
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intervals, as well as marginal log-likelihoods of fitted frailty models with other frailty distributions, including the

inverse Gaussian, compound Poisson (m¼ 0.5), and positive stable distributions. Recall that the inverse Gaussian

is a particular case of the PVF distributions. So is the compound Poisson distribution, where the parameter m,

initially chosen as 0.5, determines the actual distribution. A grid search among possible values of the m parameter

of the compound Poisson distribution (from 0.2 to 2.0 in steps of 0.1) identified m¼ 1.1 as optimal value, in terms

of maximizing the log-likelihood. The small differences between the log-likelihoods for different values of m,

however, indicate that no clear difference can be seen between any of the compound Poisson distributions. It is

notoriously difficult to choose between frailty distributions; in practice this choice is usually made by convenience.
The positive stable distribution is interesting to note. As mentioned before it does not have finite mean or

variance; in contrast to the other frailty models, the fit of the positive stable frailty model is not deemed signif-

icantly better than that of the Cox model without frailty, by the likelihood ratio test.
In a sense, a frailty model implies that the marginal intensity of the counting process, given the past, depends

on the previous number of events, through E½Z j F t�	, with F t� representing the event history of the individual

until just before time t. The past can also be incorporated directly, by including the number of previous events, or

a pre-specified function of it, as a covariate in a proportional hazards model. Including the number of previous

0

50

100

0 100 200 300 400
Time

Pa
tie

nt

Figure 12. Event history of the CGD data. The length of the line indicates the length of follow-up, and the dots indicate the
infections.

0

20

40

60

80

0 2 4 6
Number of events / individual

C
ou

nt

Figure 13. Histogram of number of events per individual.

Balan and Putter 3449



events leads to a regression coefficient of 0.182 (SE¼ 0.101), p¼ 0.069, with a log-likelihood of �323.396.

Including the logarithm of the number of previous events leads to a regression coefficient of 0.615

(SE¼ 0.252), p¼ 0.015, with a log-likelihood of �322.086, which is, interestingly, higher than the log-

likelihoods of all frailty models considered here.

7 Practical modeling advice

In practice, one would fit the frailty model for clustered survival data or recurrent event modeling. For univariate

survival data, estimating frailty models involves a large degree of speculation, and their practical value is therefore

limited. Nevertheless, they are useful tools in situations where there is a strong a priori evidence for heterogeneity,

as for example in modeling time to pregnancy,90 or when the objective is to understand or provide alternative

explanations of the shape of the hazard.91

In the context of clustered survival data, one would fit a frailty model for estimating covariate effects while

adjusting for, and with the objective of quantifying the between-cluster heterogeneity. In the context of recurrent

Table 2. Estimates of the regression coefficients and fit summary from the Cox model and shared frailty models, with gamma, inverse
Gaussian, positive stable and compound Poisson (with parameters 0.5 and 1.1) distributions, fitted on the CGD data.

Inverse Positive Compound Poisson

Cox model Gamma Gaussian Stable (m¼ 0.5) (m¼ 1.1)

Treatment Placebo

IFN-g �1.10 (0.26) �1.01 (0.30) �1.03 (0.30) �1.10 (0.30) �1.00 (0.30) �1.00 (0.31)

Sex Male

Female �0.68 (0.39) �0.70 (0.48) �0.67 (0.47) �0.63 (0.45) �0.71 (0.48) �0.72 (0.48)

Age (years) �0.04 (0.01) �0.04 (0.02) �0.04 (0.02) �0.04 (0.02) �0.04 (0.02) �0.04 (0.02)

Pattern of X-linked

inheritance Autosomal 0.64 (0.28) 0.60 (0.33) 0.59 (0.34) 0.61 (0.34) 0.60 (0.33) 0.61 (0.33)

Use of No

corticosteroids Yes 1.40 (0.56) 1.56 (0.78) 1.49 (0.73) 1.41 (0.62) 1.59 (0.80) 1.60 (0.82)

Log-likelihood �324.939 �322.206 �322.431 �324.837 �322.160 �322.149

Frailty variance 0.555 0.557 0. 544 0.529

95% CI (0.067, 1.449) (0.049, 1.865) (0.071, 1.328) (0.072, 1.234)

LRT p-value 0.0085 0.0110 0.2568 0.0081 0.0080
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Figure 14. Histogram of the estimated frailties.
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event data, one would fit a frailty model for estimating covariate effects without assuming that the recurrent event

process is Poisson and quantifying the between-subject heterogeneity. The usage of random effects is particularly

sensible when the clusters (or individuals, in the case of recurrent events) are considered to be a random sample

from a larger population.
The starting point for modeling is typically a marginal model, using the GEE approach. The point estimates for

covariate effects are obtained from a proportional hazards model, and the standard errors are calculated using a

sandwich estimator. With coxph, for example, this may be obtained with the þcluster() option. In some cases, this

explanation may suffice. The hazard ratios in such a marginal model quantify the effect of the covariates at the

population level.
When the clusters are large in size, or when individuals have numerous recurrent events, one may consider

including cluster-specific (or individual-specific, in the case of recurrent events) fixed effects. The variability of

these fixed effects may be assessed informally, as illustrated in section 6.1. A meaningful variability would indicate

the presence of unobserved heterogeneity. One issue with this is that the fixed effects estimates of the clusters with

few subjects will have a large variability, and shrinkage towards the mean would be desirable. This was also

illustrated in the same section. All frailty distributions will provide some degree of shrinkage, but only for the

gamma and a limited set of other frailty distributions closed-form results are easily available. One way to formally

evaluate the presence of unobserved heterogeneity is with the Commenges-Andersen score test. In practice, a

frailty model may be useful to be estimated anyway, to be able to quantify the heterogeneity and formally evaluate

the improvement in model fit via the likelihood ratio test.
In terms of choosing which frailty distribution is most appropriate, we start with the practical considerations.

The gamma frailty model is the simplest and most well understood frailty model, and may be estimated by the

base R survival package. Furthermore, theoretical results indicate that the gamma distribution is the limiting

distribution of the frailty of long-time survivors,92 irrespective of the frailty distribution at baseline. The log-

normal frailty model is conceptually simple as well, since it involves considering an additive random effect on the

same scale as the other covariates. This can also be estimated by the survival and coxme packages. In both cases, a

likelihood ratio test can be carried out to formally explore whether the frailty models provide significantly better

fits to the data. This aspect is illustrated in section 6.2.
In principle, different frailty models may be compared via their log-likelihoods. Such a procedure might be

useful for selecting a well-fitting frailty distribution from a larger class of frailty distributions, such as the power

variance family, but since the frailties are latent, there typically is not a lot of information in the data to make a

well informed choice, as could also be seen in section 6.2. Since the gamma frailty distribution is the most popular

frailty distribution, a number of procedures for testing goodness-of-fit of the frailty distribution in the shared

gamma frailty model have been proposed. Shih and Louis93 suggest to visually assess the fit of the gamma frailty

distribution by plotting the empirical Bayes estimators of the frailties given the observable data so far over time.

For the gamma frailty model, these should be constant over time. This test was later extended by Glidden.94

Geerdens et al.95 developed a goodness-of-fit test by constructing a class of frailty model that extend the gamma

frailty model using polynomial expansions that are orthogonal to the gamma density. The aforementioned tests

focus on the goodness-of-fit of the gamma frailty distribution in the gamma frailty model. When evaluating the fit

of a proportional hazards frailty model, another aspect is the validity of the (conditional) proportional hazards

assumption. This assumption may be assessed in a similar way as in a regular survival model, by including the

logarithm of the empirical Bayes frailty estimates as an offset in the proportional hazards model, and studying the

Schoenfeld residuals.12 This is most sensible when cluster sizes are relatively large (e.g. above 10 subjects). When

this is not the case, the presence of frailty and the proportional hazards assumption may still be, to some extent,

confounded.29
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