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Abstract

Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is cru-

cial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene

regulation. While recent advances in biotechnology have brought the opportunity for building bind-

ing affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape

still remains a challenging problem.

Results: Here we propose a novel sequence embedding approach for modeling the transcription

factor binding affinity landscape. Our method represents DNA binding sequences as a hidden

Markov model which captures both position specific information and long-range dependency in

the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm,

called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature

space and uses these embedded features to build a predictive model. Our method is a novel com-

bination of the strength of probabilistic graphical models, feature space embedding and deep

learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets

which were measured by different high-throughput experimental technologies. Sequence2Vec out-

performs alternative machine learning methods as well as the state-of-the-art binding affinity pre-

diction methods.

Availability and implementation: Our program is freely available at https://github.com/ram

zan1990/sequence2vec.

Contact: xin.gao@kaust.edu.sa or lsong@cc.gatech.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In 1967, seminal works in the phage k switch and the lactose metab-

olism in Escherichia coli discovered that repressors interact with

short DNA segments in a sequence-specific fashion to prevent tran-

scription of downstream genes (Gilbert and Müller-Hill, 1967;

Ptashne, 1967). Interactions of transcription factors (TFs) with

DNA binding sites have since then been appreciated as general mo-

lecular mechanisms to control the recruitment of RNA polymerase

and to regulate transcription (Alberts et al., 2002). Importantly, TFs

discriminate DNA binding sites and selectively interact with specific
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sequence targets, allowing cells to orchestrate a spatiotemporal

regulation of their endogenous genes (Ptashne, 2013; Von Hippel

and Berg, 1986).

A key determinant of the sequence specificity is affinity differ-

ences of all possible binding sites in the genome; in the in vivo con-

centration range, each TF molecule diffuses around and recognizes a

DNA site with higher binding affinity much more frequently than

that with lower binding affinity. Thus, an accurate characterization

of TF-DNA affinity landscape is crucial to a quantitative under-

standing of the molecular mechanisms underpinning endogenous

gene regulation. This knowledge is also expected to facilitate better

insights into how phenotypes are established and maintained

(Davidson, 2006), how organisms might have evolved their gene

regulatory systems (Wray, 2007), and how artificial gene circuits

can be designed and optimized (Fan et al., 2015; Gertz et al., 2009;

Kuwahara et al., 2013). The most commonly used approach to de-

scribe the specificity of each TF is to use a consensus DNA sequence

based on the assumption that the nucleotides in a sequence-specific

binding site contribute independently to the binding affinity.

However, several studies gave compelling evidence that the

TF-DNA binding affinities could depend strongly on their context

(Bulyk et al., 2002; Hochschild and Ptashne, 1986). In particular, by

showing strong interdependence among nucleotides in the binding

affinity landscape of zinc finger TFs, Bulyk et al. (2002) suggested

that accurate prediction of binding affinity would require an affinity

dataset with large numbers of sequence variants. With advances in

biotechnology, there are now several in vitro high-throughput meth-

ods available to measure TF-DNA binding affinity of large numbers

of DNA variants. These methods include a DNA microarray-based

method called protein-binding microarray (PBM) (Berger and

Bulyk, 2006), a microfluidic-based method called mechanically

induced trapping of molecular interactions 2.0 (MITOMI 2.0)

(Fordyce et al., 2010), and a second-generation DNA sequencing-

based method called high-throughput sequencing – fluorescent lig-

and interaction profiling (HiTS-FLIP) (Nutiu et al., 2011). Although

the increase in the availability of high-throughput datasets from

such methods has propelled the development of data-driven predic-

tion methods (e.g. Agius et al., 2010; Annala et al., 2011; Barrera

et al., 2016; Berger and Bulyk, 2009; Hassanzadeh and Wang,

2016; Lee et al., 2011; Wang et al., 2014; Wong et al., 2013, 2015;

Zhou et al., 2016), the accurate characterization of TF-DNA bind-

ing affinity landscape still remains a challenging problem that has

not been entirely solved (Deplancke et al., 2016; Levo et al., 2015).

In this paper, we propose a novel embedding approach to the

modeling of the TF binding affinity landscape, which combines the

strength of probabilistic graphical models, feature space embedding

and deep learning. Our method represents DNA binding sequences

as a hidden Markov model (HMM). However, instead of perform-

ing standard maximum likelihood estimation for these models, we

devised a new message passing-like embedding approach, called

Sequence2Vec, which maps these HMMs into a common nonlinear

feature space and uses these embedded features to build a nonlinear

predictive model. Importantly, unlike many existing methods that

consider the feature extraction and regression as two separate steps

(e.g. Annala et al., 2011; Agius et al., 2010; Berger and Bulyk, 2009;

Bulyk et al., 2002; Chen et al., 2007; Foat et al., 2006; Lee et al.,

2011; Liu et al., 2002; Siebert and Söding, 2016; Stormo, 2000;

Wang et al., 2014), Sequence2Vec enables end-to-end learning of

nonlinear features together with the predictive model directly from

the data. In addition, since embedded features that are derived from

an HMM can capture potential long-range dependencies in a se-

quence, a TF-DNA binding affinity landscape model learned from

our new method can be used to illuminate how the sequence con-

texts, such as flanking regions of a core sequence motif (Levo et al.,

2015; Nutiu et al., 2011), can quantitatively affect the TF-DNA

interaction. Comprehensive experiments demonstrated that the pro-

posed method significantly outperforms previous state-of-the-art

methods and learns meaningful sequence motifs.

2 Related work

2.1 Position weight matrix and linear models
A common technique to characterize binding affinity is the position

weight matrix (PWM). PWMs characterize the DNA sequence pref-

erence of a TF as a D�L matrix, where D is the number of possible

bases (4 for DNA), and L is the length of the binding sequences.

There are different variants of PWM, but their common characteris-

tic is that they assume independence of base positions. Methods

have also been developed to encode short-range information by

building larger matrices for subsequences (k-mers) (Berger and

Bulyk, 2009; Bulyk et al., 2002). Recently, Siebert and Söding pro-

posed a Bayesian method for motif discovery by encoding sequence

order dependency through Markov models (Siebert and Söding,

2016). Their method significantly outperformed PWM on discover-

ing motifs from ChIP-seq data.

Annala et al. (2011) proposed a linear model, HK ! ME, that

represents binding affinity as the sum of the binding affinity contri-

butions of the constituent subsequences. The k-mers present in the

training sequences are represented as a design matrix H, so that

hs, t¼1, if k-mer t is found in sequence s, and 0 otherwise. The k-

mer affinity contributions are obtained by solving a linear system

p ¼ Haþ �, where p is a vector containing binding affinities of the

training sequences, a is a vector of k-mer affinity contributions, and

� presents noise. This method was ranked top in the Dialogue for

Reverse Engineering Assessment and Methods 5 (DREAM5) TF-

DNA Motif Recognition Competition.

2.2 Kernel methods
Kernel methods are a successful family of methods for building pre-

dictive models (Schölkopf et al., 2004). Such methods work by first

defining a so-called kernel function between pairs of inputs, and

then learning a predictive model based on these kernel function val-

ues. One can think of these functions as a similarity measure where

a pair of inputs, v and v0, are first transformed into a common fea-

ture space, /(v) and / v0ð Þ respectively, and then their inner product

is used to define the kernel, i.e. k v; v0ð Þ ¼ h/ vð Þ;/ v0ð Þi (Leslie et al.,

2002, 2004; Rätsch et al., 2005).

Many string kernels are designed based on the idea of ‘bag of k-

mers’, where each sequence is represented as a vector of counts for

short k-mers. For instance, the spectrum kernel and variants for

strings fall into this category (Leslie et al., 2002). Recently, Wang

et al. (2014) proposed a two round support vector regression (SVR)

model based on weighted degree kernels. Among different types of

string kernels, Wang et al. (2014) showed that weighted degree

(WD) kernels with shifts and mismatches (Leslie et al., 2004; Rätsch

et al., 2005) work best for binding affinity prediction by accounting

for alternations in DNA subsequences. Their method showed signifi-

cant improvements over PWM and HK! ME (Wang et al., 2014).

However, the feature design in these kernels is fixed before learning,

with each dimension corresponding to a particular k-mer which is

independent of the supervised learning task at hand. Furthermore,

typically only short k-mers are used to keep the kernel computation

tractable.
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Another class of kernels uses probabilistic graphical models

(GMs) to describe the noisy and structured data, and then designs

kernels based on the GMs. For instance, one can use HMMs for se-

quence data, which is the key idea of the Fisher kernel (Jaakkola and

Haussler, 1999). Typically the parameterization of these GM ker-

nels is chosen before hand. Although the process of fitting generative

models allows the kernels to adapt to the geometry of the input

data, the resulting feature representations are still independent of

the discriminative task at hand.

2.3 Deep learning approach
In recent years, deep learning methods have achieved the state-of-

the-art performance in many machine learning applications (Bengio,

2009; Schmidhuber, 2014). Deep learning models, unlike their pre-

decessor artificial neural networks (ANNs), consist of multiple hid-

den layers which make them more expressive in modeling complex

structures in input data than their shallow counterparts.

Multi-layer neural networks (DNNs), where the hidden layers

are fully connected, have been successfully applied to computational

biology problems, such as learning the tissue-regulated splicing code

(Leung et al., 2014). However, such fully connected layers do not

take into account the sequence nature of DNA and may require a lot

of examples to train.

Convolutional neural networks (CNNs), where the first layer con-

tains convolutions, have also been applied to computational biology

problems recently. For instance, Alipanahi et al. (2015) developed a

CNN-based method, DeepBind, to predict the binding sites of DNA-

and RNA-binding proteins. DeepBind takes input sequences and feeds

them into a convolutional layer which detects motifs in those se-

quences. The convolutional layer essentially consists of filters (motif

detectors) which are small matrices, for example k�D where k is

called the filter length (motif length) and D is the dimension of the

1-hot representation of each sequence position (D¼4 for DNA se-

quences). These filters are convolved with the input, i.e. they are

moved spatially across the input and the dot product is calculated at

each position, which results in feature maps (motif scan). The next

stage is a ReLU layer which is referred to as a rectified motif scan.

After convolution and rectification, there is a max pooling layer,

which takes the feature maps from all the filters as inputs and oper-

ates on each feature map to reduce the spatial dimension. The output

is then fed into a fully connected layer which learns how to combine

the motif detectors and produces a real-valued score.

3 Materials and methods

In this section, we present a novel method, Sequence2Vec, for

embedding DNA sequences into nonlinear feature spaces, and learn-

ing a regression model from features to the binding affinity. Our

method is designed to take two aspects into account: long-range

interaction between distant positions, and joint learning of sequence

features and the regression model.

3.1 Overview
Our method models DNA sequences as an HMM where each nu-

cleotide in the sequence is associated with an observed variable and

a latent variable, and these latent variables are linked together by a

Markov chain (see Fig. 1 for illustration). Note that for one tran-

scription factor, there is one single HMM and each sequence is an

independent realization of it. In such a model, the posterior distribu-

tion of each latent variable given the entire input DNA sequence are

supposed to be good sequence features, since they are generally

different in different nucleotide positions (position specific), and

they are conditioned on the entire DNA sequence (captures potential

long-range interaction) (Section 3.2).

To extract these features, traditional graphical model approaches

need to first learn the model parameters and then perform inference,

such as message passing, to compute these posteriors. However,

these feature extraction steps can be time-consuming and further-

more the parameterization of the model is independent of the bind-

ing affinity prediction task. We will instead design a nonlinear

embedding approach which combines the graphical model learning

and inference (message passing) steps using an alternative param-

eterization (Section 3.3).

More specifically, suppose we are provided with a training data-

set D ¼ fv nð Þ; y nð ÞgN
n¼1, where each v(n) is a DNA sequence and y nð Þ

2 R is the corresponding binding affinity value. The DNA sequence

v nð Þ ¼ x
nð Þ

1 ;x
nð Þ

2 ; x
nð Þ

3 ; . . . ;x
nð Þ

L

h i
can be considered as a string of

length L, where the character x
nð Þ

i at position i is taking values from

the alphabet R ¼ fA;T;C;Gg. Furthermore, xi is of dimension jRj,
which is represented by one hot vector that encodes the label from

the alphabet. For simplicity of exposition, we assume L is a constant

within a given dataset. That is, the DNA sequences are of the same

length, though our method can work with sequences of different

lengths in general.

The nonlinear feature embedding f : RL 7!Rm will transform

each DNA sequence v(n) into a vector of dimension m. Furthermore,

we will design f to be a composition of two nonlinear operations h

: RL 7!Rd�L and g : Rd�L 7!Rm, such that

f v nð Þ
� �

¼ g h v nð Þ
� �� �

; and h v nð Þ
� �

¼ l!1; l!2; . . . ; l!L

� �
: (1)

Here li
! captures features at position i and potential long-range

interactions, and g is an aggregation operator which generates a

fixed dimensional vector representation for the entire sequence.

The nonlinear embedding operators will be parameterized as

deep learning models (Section 3.4), and we will learn them jointly

with the regression model (Sections 3.5, 3.6 and 3.7). That is, we

will learn these models via mean square error minimization,

min
f ; v!

l f ; v!
� �

:¼ 1

2

XN
n¼1

y nð Þ � v!>f v nð Þ
� �� �2

; (2)

where v! 2 Rm is the parameters for the linear regression. Since f

can already extract nonlinear features, the linear regression model

here is expressive enough to model complex relations. Furthermore,

we will learn all model parameters end-to-end using stochastic gra-

dient descent, which makes it very scalable for large datasets.

Finally, to understand the trained model and the sequence fea-

tures, we also propose an approach to visualizing these features

Fig. 1. The proposed graphical model for embedding a 12-mer DNA binding

sequence. The xi is the nucleotide at position i in the binding sequence, Hi is

the hidden variable at position i, and Kd is the affinity value of this binding

sequence
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(Section 3.8). We will explain the details of these steps in the subsec-

tions below.

3.2 Graphical model of a sequence
In our work, we model DNA sequences as an HMM. However, in-

stead of explicitly learning its parameters (e.g. transition probabil-

ities and emission probabilities), we will learn it discriminatively via

a novel embedding process. The theoretical background can be

referred to (Dai et al., 2016).

Formally, the nucleotide at each position corresponds to an

observed variable xi. To take into account potentially noisy observa-

tion and long-range interactions, an additional hidden variable Hi is

associated to each observation xi (see Fig. 1 for illustration).

Given the graphical model parameters (or the potentials), the poster-

ior marginals for the hidden variables, p Hi j fxjgL
j¼1

� �
for i¼1,. . ., L,

can be viewed as the features of a sequence. Such features capture se-

quence uncertainties, since they model distributions; they also capture

position specific information, since each position is associated with such

a distribution; and furthermore, they capture long-range dependencies,

since each distribution is conditioned on the entire sequence.

However, computing these posterior distributions (i.e. the infer-

ence problem in graphical models) is not a trivial task and involves

multidimensional integration. Fortunately, the forward and back-

ward message passing (Bishop, 2006; Pearl, 2001) has been designed

to perform this operation efficiently.

More specifically, let mi, j be the message passed from position i

to position j. During the forward pass, the algorithm sets m0,1¼1

and computes messages from variable Hi to Hiþ1, which are unnor-

malized distributions, for i ¼ 1; . . . ;L� 1, as

mi;iþ1 Hiþ1ð Þ :¼ T 1 � Hiþ1;xi;mi�1;i Hið Þ
� �

; (3)

where T 1 is an abstract marginalization operator defined on Hiþ1,

xi and the incoming message mi–1,i. We can define the backward

message mi,i–1 similarly with the same operator.

Denote qi Hið Þ ¼ p HijfxjgL
j¼1

� �
. For i ¼ 2; . . . ;L� 1, we have

qi Hið Þ :¼ T 2 � Hi;mi�1;i Hið Þ;miþ1;i Hið Þ
� �

; (4)

where T 2 is another abstract product operator defined on Hi and

two incoming messages, mi–1,i and miþ1,i.

Typically, EM or other local search heuristics need to be used for

learning the HMM parameters. During learning, one also needs to

perform multiple rounds of forward and backward message passing.

In summary, although qi’s are good features for representing se-

quences, they are not easy to compute. Furthermore, it is not clear

how good qi is for the predictive task since the parametric form of the

distribution is chosen before seeing the binding affinity values. We

will instead learn an alternative representation of the graphical model

which simultaneously considers both the learning and inference steps.

3.3 Feature space embedding of distributions
We use the idea of distribution embedding to represent the posteriors.

We will first provide a brief review. Feature (or Hilbert) space embed-

ding of distributions maps distributions into nonlinear feature spaces

(Borgwardt et al., 2006; Smola et al., 2007; Song et al., 2007),

l!H :¼ EH / Hð Þ½ � ¼
ð
H
/ Hð Þ q Hð Þ dH; (5)

where /(H) is a generic nonlinear feature transformation. When the

embedding is injective (Sriperumbudur et al., 2008), l̂H can be

viewed as a sufficient statistics of the original density q(H). Such

nonparametric embedding approach has been successfully applied to

other computational biology problems (Borgwardt et al., 2006;

Song et al., 2007).

The injective property of feature space embedding allows us to

express computation on distributions using their embeddings only.

We will extensively exploit this property of injective embeddings to

express the message passing algorithm in HMMs, by assuming that

there exists a rich enough nonlinear feature space such that the

embeddings are injective.

Specifically, we embed the marginal distributions p Hijfxjg
� �

by l!i ¼
Ð
H/ Hið Þp Hijfxjg

� �
dHi, and the messages mi;j as

�!ij ¼
Ð
H/ Hj

� �
mij Hj

� �
dHj.

With the assumption that there is an injective embedding for

each forward and backward message, mi, iþ1 and mi, i–1, respect-

ively, and for each posterior marginal p Hijfxigð Þ, we can express

the message passing operation (3) and the marginal computation in

(4) as

�!i;iþ1 ¼ ~T 1 � xi; �
!

i�1;i

� �
; (6)

�!i;i�1 ¼ ~T 1 � xi; �
!

iþ1;i

� �
; (7)

l!i ¼ ~T 2 � xi; �
!

iþ1;i; �
!

i�1;i

� �
; (8)

where ~T 1 and ~T 2 are the operators corresponding to T 1 and T 2.

One can think of these embeddings as extracting some nonlinear

features associated with the messages mi, iþ1 and mi, i–1, and the pos-

terior p Hijfxjg
� �

at position i. The nonlinear feature l!i represents

position specific features which have already incorporated long-

range dependencies using message passing.

3.4 Parameterizing the embedding operators
The operators ~T 1 and ~T 2 have a nonlinear dependency on the

node and edge potentials of the HMM, and generally there is no

restriction on the parametric form. Instead of first learning the

graphical model potentials and then computing (or approximating)

these nonlinear feature embeddings, we will directly param-

eterize the embedding operators using neural networks. We

choose neural networks because they are universal approximators

given a large enough number of hidden units (Barron, 1993), and

they are also easy to learn using gradient based methods as we

show later.

Algorithm 1 Extracting position specific feature

1: Input: parameter W in ~T 1 and ~T 2, and a sequence v.

2: Initialize �!ð0Þij ¼ 0
!

, for all ði; jÞ; ji� jj ¼ 1; i; j ¼ 1; . . . ;L.

3: for t¼1 to T do

4: for i¼1 to L do

5: �!ðtÞi;iþ1 ¼ rðW1xi þW2 �
!ðt�1Þ

i�1;i Þ:
6: �!ðtÞi;i�1 ¼ rðW1xi þW2 �

!ðt�1Þ
iþ1;i Þ:

7: end for

8: end for

9: for i ¼ 1; . . . ;L do

10: l!i ¼ rðW3xi þW4 �
!ðTÞ

i�1;i þW4 �
!ðTÞ

iþ1;iÞ:
11: end for

12: Return h ¼ ½ l!1; l!2; . . . ; l!L�.
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Specifically, we assume that d hidden units are used. In practice,

d is chosen via cross-validation as we show in results. This will cor-

respond to a nonlinear embedding of li and vij into Rd. Then

�!i;iþ1 ¼ r W1xi þW2 �
!

i�1;i

� �
; (9)

�!i;i�1 ¼ r W1xi þW2 �
!

iþ1;i

� �
; (10)

l!i ¼ r W3xi þW4 �
!

iþ1;i þW4 �
!

i�1;i

� �
; (11)

where r(�) is a nonlinear activation function. For example, if we use

rectified linear unit, then r �ð Þ :¼ maxf0; �g, and W ¼ fW1;W2;W3;

W4g is the collection of weights in the neural network, where W1;

W3 2 Rd�jRj and W2;W4;2 Rd�d. A bias term, which is typically

used in a fully connected neural network, is also included.

3.5 Extracting position specific features
Once we have learned parameters W ¼ fW1;W2;W3;W4g in the

embedding operators ~T 1 and ~T 2 [we will learn them together with

the regression model as explained in (2)], we can then extract position

specific nonlinear features using the message passing algorithm. So

far, for simplicity, we have explained the message passing algorithm

with a full sequential forward and backward pass. However, to avoid

the sequential dependency between the messages and for implementa-

tion efficiency, we use a parallel version of the message passing algo-

rithm (Gonzalez et al., 2009), where all messages are initialized to

zeros at the first iteration; and then each node performs the forward

and backward message updates simultaneously as in (9) and (10).

The algorithm to extract position specific features is summarized

in Algorithm 1, which will also serve as the building block for our

learning algorithm described later. Algorithm 1 performs T rounds of

parallel message update iterations. The number of rounds, T, for the

message update controls the range of dependencies captured by the al-

gorithm. If we unroll these iterations into computational layers, then

the algorithm can be viewed as a recurrent neural network system

(Supplementary Fig. S1), where the parameters are shared across

layers. The output of this algorithm is a collection of position specific

features h ¼ l!1; l!2; . . . ; l!L

� �
as we mentioned in (1).

3.6 Extracting sequence level features
In this section we derive the sequence level feature g(�) in (1), which

takes as input function h obtained from the last section. Earlier re-

search discovered that weighted degree (WD) kernels with shifts and

mismatches work best for binding affinity prediction by accounting

for alternations in DNA subsequences (Wang et al., 2014). We also

take this into account when we design our sequence level features. A

natural idea is to use a local sequence aggregation (pooling) first,

then collect all these local pooled features to get the target embed-

ding for the entire sequence. The max pooling operator will mimic

the functionality of the shift operation in string kernels. By focusing

on the maximum in each local context, the shifting of features in a

small range will not affect the results.

Formally, suppose we have obtained the embedding

h ¼ l!1; l!2; . . . ; l!L

� �
, we perform pooling in each local context

f l!i�1; l!i; l!iþ1g (three adjacent positions). That is

g l!1; l!2; . . . ; l!L

� �� �
¼
XL

i¼1

maxf l!i�1; l!i; l!iþ1g; (12)

where maxf�g finds maximum among its arguments. Note that max

f�g is performed dimension-wisely here on its arguments and returns

a vector of the same dimension as l!i. The boundary case is taken

care of by setting l!0 ¼ l!Lþ1 ¼ 0
!

.

Due to this sequence level feature aggregation operation, the

final feature embedding f is in Rm, which is independent of the input

sequence length L. That is, our method can handle inputs of differ-

ent lengths.

3.7 End-to-end discriminative training
In previous sections, we assumed that the parameters in the nonlin-

ear feature embeddings are given. In this section, we will explain the

learning algorithm for these parameters. We will learn them jointly

with the regression model. That is, we will learn these models

via mean square error minimization, min
W; v!l f ; v!

� �
:¼ 1

2

PN
n¼1

y nð Þ � v!>f v nð Þ� �� �2
; where v! 2 Rm are the parameters for the lin-

ear regression. We will use stochastic gradient descent to learn these

parameters. The derivations of gradients with respect to parameters

W and v! are shown in Supplementary Section S1. Though we

described the case where the stochastic gradient is computed using a

single pair of sequence and label, in practice we use a mini-batch of

examples to reduce the variance of the stochastic gradients and to

speed up training.

The overall training algorithm is summarized in Algorithm 2,

which learns the parameter W in the feature embedding operators

and the parameter v! in the regression model. The algorithm shares

similarities to the one for training recurrent neural networks (Jaeger,

2003). It is recurrent since the parameters involved in the message it-

erations are shared, which is also reflected in the gradient computa-

tion. See Supplementary Section S2 for an illustration.

3.8 Interpreting the learned features
After we train the Sequence2Vec model, we can also obtain the im-

portant k-mers for interpretation. Since our sequence level features f

can handle inputs of different lengths, we can enumerate all possible

k-mers, and check the corresponding prediction values using the

fully trained model. Specifically, for v 2 Rk, the corresponding affin-

ity prediction is given by v!>f vð Þ. For instance, if k¼3, we have 64

possible k-mers, and we obtain the pairs of the k-mer and its pre-

dicted score as f½AAA; v!>f AAAð Þ�; ½AAC; v!>f AACð Þ�; . . . ; ½TTT;

v!>f TTTð Þ�g: For k¼8, the number of possible k-mers is 65 536,

which is still easy to handle in our model. The k-mers that yield

large binding affinity are the important ones predicted by the model.

We use this criterion to rank all the k-mers.

4 Results and discussion

4.1 Datasets
We first applied the proposed method to model the binding affinity

landscape of Gcn4p in Saccharomyces cerevisiae based on the data-

set from HiTS-FLIP (Nutiu et al., 2011). Gcn4p is a transcriptional

activator of more than 30 amino acid biosynthetic genes

(Hinnebusch and Natarajan, 2002; Natarajan et al., 2001).

Therefore, accurate modeling of the binding affinity landscape be-

tween Gcn4p and its promoter sites is crucial not only for elucidat-

ing the regulatory mechanisms involved in such stress-response

pathways, but also for designing a synthetic Gcn4-induced response

pathway in yeast (Hinnebusch, 2005).

The HiTS-FLIP dataset contains the binding affinity values (Kd)

of 83 252 12 bp DNA sequences, where the binding affinity is

defined as the concentration of the TF at which the DNA region is

occupied 50% of the time at equilibrium. The Kd values in the

HiTS-FLIP dataset range from 8 to 1000 nM, where a small Kd
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represents a high binding affinity. In contrast to (Wang et al., 2014)

which tested their string kernel-based SVR model only on the subset

with Kd less than 100 nM (1391 12-mers), here we tested the per-

formance of all methods on the entire HiTS-FLIP dataset. The entire

dataset was randomly partitioned into 10 subsets to perform 10-fold

cross-validation (CV). The reported results for all methods in this

paper are the average over the same 10-fold CV.

We further tested the proposed method on 28 Saccharomyces

cerevisiae TF datasets (Fordyce et al., 2010). For each of the 28 TFs,

the relative binding affinities to oligonucleotides covering all pos-

sible 8 bp DNA sequences were measured by MITOMI 2.0, which is

capable of constructing binding affinity landscape through the meas-

urement of binding interactions at equilibrium by a microfluidic de-

vice. Each dataset contains the relative binding affinities for

nucleotide sequences with 52 bp in length. After removing the se-

quences with ‘nan’ (not a number) and taking average relative affin-

ities for the same sequences, the number of 52 bp sequences in each

dataset ranges from 1084 to 1456, with their corresponding relative

binding affinities ranging from -0.27 to 0.99. It is worth noting that

these 28 datasets are much more difficult for the computational

methods to model than the aforementioned HiTS-FLIP dataset, be-

cause the sequences in these datasets are much longer than those in

the HiTS-FLIP dataset (52 versus 12 bp), while the number of avail-

able samples is much smaller (1084–1456 versus 83252). Again,

each dataset was randomly split into 10 folds, and the results re-

ported for all methods are the average over the same 10-fold CV.

Finally, we evaluated the performance of the proposed method on

protein-binding microarray (PBM) data from the revised DREAM5

TF-DNA Motif Recognition Challenge (Weirauch et al., 2013). The

PBM data represent 86 different mouse TFs, each measured using two

independent array designs. Twenty of these TFs have their array in-

tensity values given for both array types. Thus they were given to the

participants for validating their models and were not used for the test-

ing phase of the challenge. For the rest 66 TFs, participating teams

were given the probe intensities for only one array design and had to

make predictions on intensity values of the other array.

We chose these 66 DREAM5 TF datasets because they were used

in the recently proposed DeepBind method (Alipanahi et al., 2015)

to evaluate their method. Since DeepBind was optimized and avail-

able on these datasets, we chose them to have a fair comparison be-

tween our method and DeepBind. We obtained the 66 TF datasets

directly from the supplementary materials of Alipanahi et al. (2015).

Following the same preprocessing step, we removed per-probe

multiplicative bias from the training sets. Following the same train-

ing and testing procedure of DeepBind, for each TF Sequence2Vec

was trained by cross-validation on one array and tested on the other

array.

4.2 Compared methods
We compared the proposed method with seven other methods,

including four state-of-the-art binding affinity prediction methods

and three powerful machine learning methods. These include the

PWM model, the recently proposed Bayesian Markov model

(BaMM) (Siebert and Söding, 2016), the DREAM-winning HK !
ME model (Annala et al., 2011), the weighted degree kernel-based

SVR model (Wang et al., 2014), the multi-layer neural network

(DNN), the convolutional neural network (CNN) (DeepBind when

evaluated on the DREAM5 datasets) and the SVR model with the

Fisher kernel (Jaakkola and Haussler, 1999).

For PWM, following Wang et al. (2014), we used the PWM

model by solving the function A � x ¼ K where A is an n�u matrix,

where n is the number of training sequences, u ¼ 4L where L is the

length of each training sequence, and K is the vector containing the

binding affinity values for all the training sequences. A i; j½ � is set to 1

if the ith sequence contains the specific nucleotide at the specific pos-

ition indicated by the index j, otherwise 0. The x is a 4 L-dimen-

sional column vector, which is the column concatenation of the

PWM to be trained. Once the PWM is learned, for a query sequence,

its binary vector representation is multiplied by the PWM to predict

the binding affinity of this sequence.

For BaMM, since it was not designed for regression, we trained

the generative model by varying the binding affinity threshold of

defining positive/negative sequences (i.e. to convert our datasets

with real-valued affinities to binary classification datasets). And for

the same reason, the RMSE metric is not applicable to BaMM. We

carefully tuned the parameters including the split threshold in

f0:1;0:3;0:5;0:7;0:9g, the degree of HMM in {2, 3, 4} and the

usage of inverse-complete training via cross validation.

For the HK!ME model, and the SVR models with the WD ker-

nel and the Fisher kernel, in each of the 10-fold CV, we trained the

model by fine tuning their parameters and used the best parameters

on the training fold to make predictions on the test fold. We used

HMM as the generative model for the Fisher kernel, where the num-

ber of hidden states M 2 f4; 5; 6;7;8; 9g is also fine tuned.

In addition, we implemented both DNN and CNN as a baseline

for comparison. Both of the deep learning models were implemented

using Keras (https://github.com/fchollet/keras). RMSprop optimizer

(Tieleman and Hinton, 2012) was used for training with mean

squared error as a loss function, and its parameters were left at their

default values as recommended. The DNN architecture consists of 3

stacked ReLU layers with 512 256 and 128 neurons, respectively.

The CNN model follows the same architecture of DeepBind

(Alipanahi et al., 2015), which consists of a convolutional layer with

16 filters as shown in Figure 2. Note that for the datasets on which

DeepBind provided their optimized models (i.e. the DREAM5 data-

sets), we directly used the available DeepBind for comparison. For

other datasets, we re-trained the CNN model with the same archi-

tecture as DeepBind and used it to evaluate the performance of

DeepBind on these datasets. The filter length was searched within

Algorithm 2 End-to-end parameter training

Input: Dataset D ¼ fðvn; ynÞgNn¼1.

Initialize parameters U0 ¼ fv0;W0g randomly.

for r¼1 to R do

Sample ðvr; yrÞg uniform randomly from D.

Feed forward embedding computation:

Compute feature embedding by Algorithm 1 with Wr�1.

f ðvrÞ ¼ gð½ l!r
1; . . . ; l!r

L�Þ ¼
XL

i¼1

maxf l!i�1; l!i; l!iþ1g:

Make prediction ~yr ¼ v!r�1>
f ðvrÞ.

Back propagation of gradients:

Calculate loss l ¼ 1
2 ðyr � ~yrÞ2.

Calculate gradients @l
@v ;

@l
@W as in Supplementary Section S1.

Update v!r ¼ v!r�1 � gr
@l

@ v! where gr is the learning rate.

Update Wr ¼Wr�1 � gr
@l
@W.

end for

Return UR ¼ fvR;WRg.
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f14; 16; 24; 32g by cross-validation and finally fixed to 24.

Alternative values for the filter length were tested as well, but it did

not bring much improvement. The convolutional layer is followed

by a max pooling layer, and then a fully connected ReLU layer.

Dropout was used as a regularizer to prevent overfitting in both

models. We tuned the number of neurons for the fully connected

layer N 2 f32;64;128; 256; 512; 1024g and dropout probability

P 2 f0:25; 0:50; 0:75g by cross-validation. Batch size of 16 was

chosen via cross-validation.

For our method, we tuned the number of message passing

iterations to be T 2 f2; 3;4; 5g, the embedding dimension

d 2 f32; 64;128g, and also learning parameters such as the

batch size and the learning rate via cross-validation. For each

held-out fold, all the parameters were tuned on the training set

only, and the performance reported was the average over the 10

folds.

4.3 Performance measures
We measured performance using the root mean square error

(RMSE), Pearson product-moment correlation coefficient (PCC)

and Spearman‘s rank correlation coefficient (SCC), which are

defined as in Supplementary Section S3.

For the 66 TF datasets from DREAM5, we used the same evalu-

ation criteria as DeepBind where they used area under the curve

(AUC), computed by setting high-intensity probes as positives and

the remaining probes as negatives, instead of RMSE. We used the

code provided by DeepBind to calculate the AUC.

4.4 Comparison on predictive performance
The performance of the seven compared methods on the HiTS-FLIP

dataset is shown in Table 1. The Fisher kernel-based SVR model

could not finish in one day of running on this dataset and thus was

not reported. The proposed Sequence2Vec method models this data-

set well (see Fig. 3a) and outperforms the other methods under all

the performance measures. Specifically, the RMSE, the PCC and the

SCC of Sequence2Vec improve over the second best method under

each measure by 4.4%, 2.5% and 5.6%, respectively. The CNN

model is the second best method, followed by the WD kernel-based

SVR model and the DNN model. The PWM model, on the other

hand, has surprisingly poor performance, which suggests that the as-

sumption of each mononucleotide contributing independently to the

binding affinity is not accurate.

We next experimented with the more comprehensive and diffi-

cult MITOMI 2.0 datasets for 28 TFs in Saccharomyces cerevisiae

(Fordyce et al., 2010), as shown in Table 2 and Supplementary

Table S1. Compared to the HiTS-FLIP dataset, these datasets con-

tain much longer DNA binding sequences and much fewer samples.

Note that RMSE in the two tables are not directly comparable be-

cause in the HiTS-FLIP dataset, the target value is binding affinity

Kd (in nM), whereas in the MITOMI datasets, the target values are

relative binding affinities.

Overall, the Sequence2Vec model performed best among all

the compared methods in terms of all the performance measures

(Table 2 and Supplementary Table S1). Specifically, Sequence2Vec

has the lowest RMSE on 19 of the 28 datasets. The average RMSE

of Sequence2Vec reduces that of the second best method, the CNN

model, by 10.3%. The advantage of Sequence2Vec becomes even

more significant in terms of the two correlation coefficients.

Sequence2Vec achieves the highest PCC on 26 out of the 28 datasets

and the highest SCC on 20 out of the 28 datasets. The average

PCC of Sequence2Vec is 37.8% higher than that of the second

best method, the CNN model, whereas the average SCC of

Sequence2Vec is 11.5% higher than that of the second best method,

the Fisher kernel-based SVR model. Our results demonstrate that
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Fig. 3. (a) The scatter plot between the true and predicted Kd values by

Sequence2Vec on one fold of the HiTS-FLIP dataset; (b) the 7-mer sequence

logo made by the top-ranked 7-mers, predicted by Sequence2Vec, of the

HiTS-FLIP dataset; and (c) the scatter plot between the AUC of DeepBind and

that of Sequence2Vec over the 66 PBM datasets

Table 1. Comparison of different methods on the HiTS-FLIP dataset

with 83 252 12 bp DNA sequences (Nutiu et al., 2011)

Measure PWM BaMM LM SVR DNN CNN S2V

RMSE 181.87 N/A 128.61 115.16 116.70 113.70 108.70

PCC 0.27 0.39 0.73 0.79 0.79 0.80 0.82

SCC 0.01 0.33 0.63 0.71 0.70 0.71 0.75

Note: PWM, position weight matrix; BaMM, Bayesian Markov Model

motif discovery (Siebert and Söding, 2016); LM, the DREAM-winning HK

!ME linear model (Annala et al., 2011); SVR, the two round WD kernel-

based SVR model (Wang et al., 2014); DNN, the multi-layer neural network

model; CNN, the convolutional neural network model (Alipanahi et al.,

2015); S2V, the proposed Sequence2Vec method. The best performance under

each measure is in bold.

Table 2. Comparison of the average performance of different meth-

ods over the MITOMI 2.0 datasets for 28 TFs in Saccharomyces cer-

evisiae (Fordyce et al., 2010)

Measure PWM BaMM LM SVR DNN CNN FS S2V

RMSE 0.049 N/A 0.080 0.042 0.044 0.039 0.043 0.035

PCC 0.06 0.24 0.26 0.41 0.16 0.45 0.34 0.62

SCC 0.07 0.23 0.11 0.23 0.13 0.20 0.26 0.29

Note: PWM, position weight matrix; BaMM, Bayesian Markov Model

motif discovery (Siebert and Söding, 2016); LM, the DREAM-winning HK

!ME linear model (Annala et al., 2011); WD, the two round weighted degree

kernel-based SVR model (Wang et al., 2014); DNN, the multi-layer neural

network model; CNN, the convolutional neural network model (Alipanahi

et al., 2015); FS, the Fisher kernel-based SVR model (Jaakkola and Haussler,

1999); S2V, the proposed Sequence2Vec model. The best performance under

each measure is in bold.

Fig. 2. The architecture of the baseline CNN model
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the proposed Sequence2Vec method performs well for both large

datasets and long sequences.

Finally, we compared Sequence2Vec with DeepBind on the 66

TF datasets from the DREAM5 challenge. The performance of

DeepBind was directly taken from (Alipanahi et al., 2015) as

their model was already optimized on these datasets. Overall,

Sequence2Vec outperforms DeepBind in terms of PCC, SCC and

AUC (and Supplementary Table S2). Both methods can achieve a

quite high average AUC which suggests that both perform well on

these TF datasets. Detailed analysis reveals that among the 66 TFs,

Sequence2Vec outperforms DeepBind on 46 TFs in terms of PCC,

on 36 TFs in terms of SCC, and on 55 TFs in terms of AUC (and

Supplementary Table S2 and Fig. 3c).

4.5 Interpreting the learned features
It is known that 7-mer motifs are important for binding affinity of

the DNA binding sequences for Gcn4p (Hill et al., 1986; Sellers

et al., 1990). We thus measured the importance of all the 7-mers in

our trained Sequence2Vec model. For this purpose, we fed each con-

secutive 7-mer motif (47 ¼ 16 384 possibilities) as the input to our

trained model because our model can accept different lengths of in-

puts. We then used the corresponding prediction values as the im-

portance scores for these 7-mers.

Among all the 7-mer motifs, the top five motifs predicted by

Sequence2Vec to have the best binding affinity are TGAGTCA,

TGACTCA, TTAGTCA, TGACTAA and GAGTCAT. Among them,

TGAGTCA and TGACTCA are exactly the most well known 7-mer

motifs for Gcn4p (Hill et al., 1986; Sellers et al., 1990), whereas

TTAGTCA and TGACTAA are single nucleotide variants of this

motif, which are also expected to be important. Interestingly, although

our fifth ranked motif, GAGTCAT, is quite different from the known

motif, it was actually reported as one of the most significant motifs for

Gcn4p found from the deletion mutant microarray data (Chen et al.,

2004). The sequence logo made by the top-ranked 7-mers is shown in

Figure 3(b). Sequence logos for 28 Saccharomyces cerevisiae TF data-

sets are shown in Supplementary Section S6 and Supplementary Table

S3, which are in good agreement with the known motifs or their re-

verse complements (Fordyce et al., 2010).

4.6 Convergence and computational efficiency
We plotted the convergence curves with respect to the training

RMSE for Sequence2Vec on all the datasets (Supplementary Section

S7 and Supplementary Tables S4–S10). It is clear that over 94 out of

the 95 datasets evaluated, Sequence2Vec managed to converge be-

fore reaching the maximum number of iterations. In terms of the

runtime for training and testing, Sequence2Vec is quite efficient

(Supplementary Section S8 and Supplementary Table S11). For ex-

ample, it took Sequence2Vec roughly 40 min to finish training on

the HiTS-FLIP dataset, whereas it only took it 4.66 s for testing, on

a workstation with Intel Xeon CPU E5-1620 v2 @ 3.70 GHz and

32 G Memory.

4.7 Parameter sensitivity analysis
We conducted comprehensive experiments to analyze the sensitivity

of the hyper-parameters on the performance of Sequence2Vec,

including the range of dependencies our method encodes (controlled

by the number of message passing rounds, T), the nonlinearity (con-

trolled by the activation function, r �ð Þ), the embedding size (m) and

the batch size used during training. The overall conclusion is that

Sequence2Vec is quite robust with respect to the hyper-parameters

(Supplementary Section S9 and Supplementary Tables S12 and S13).

Generally speaking, when larger amount of training data are pro-

vided, the nonlinearity plays a more important role; and more

rounds of message passing can often result in a higher accuracy. We

further tested Sequence2Vec on synthetic datasets with implanted

motifs, Sequence2Vec performed almost perfectly with respect to

different levels of noise (Supplementary Section S10 and

Supplementary Table S14).

5 Conclusion

In this paper, we proposed Sequence2Vec, a novel embedding ap-

proach for modeling the transcription factor binding affinity land-

scape. Different from the traditional kernel embedding methods

which fix the embedding space beforehand, our method learns such

embedding space discriminatively with the supervised information

together. We demonstrate that by incorporating the sequence struc-

ture explicitly and utilizing the sequence location information, our

method significantly outperforms alternative deep learning methods,

as well as the state-of-the-art binding affinity prediction methods.

Our method is expected to work well with a wide range of in vivo

and in vitro datasets by providing a generic recipe to deal with many

other structured datasets in computational biology, such as protein

sequences, drug molecules, or even molecular dynamic trajectories.

Essentially, we can model structured data as latent variable models

and embed these models into nonlinear feature spaces. In our frame-

work, both the feature embedding space and the discriminative

model are learned jointly. Such a strategy leads to significant im-

provements in prediction which we believe will have an impact on a

wide range of computational biology applications.
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