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ABSTRACT

Characterization of the specific expression and chro-
matin profiles of genes enables understanding how
they contribute to tissue/organ development and the
mechanisms leading to diseases. Whilst the number
of single-cell sequencing studies is increasing dra-
matically; however, data mining and reanalysis re-
mains challenging. Herein, we systematically curated
the up-to-date and most comprehensive datasets of
sequencing data originating from 2760 bulk sam-
ples and over 5.1 million single-cells from multi-
ple developmental periods from humans and mul-
tiple model organisms. With unified and systematic
analysis, we profiled the gene expression and chro-
matin accessibility among 481 cell-types, 79 tissue-
types and 92 timepoints, and pinpointed cells with
the co-expression of target genes. We also enabled
the detection of gene(s) with a temporal and cell-
type specific expression profile that is similar to or
distinct from that of a target gene. Additionally, we
illustrated the potential upstream and downstream
gene−gene regulation interactions, particularly un-
der the same biological process(es) or KEGG path-
way(s). Thus, TEDD (Temporal Expression during De-
velopment Database), a value-added database with a

user-friendly interface, not only enables researchers
to identify cell-type/tissue-type specific and tempo-
ral gene expression and chromatin profiles but also
facilitates the association of genes with undefined bi-
ological functions in development and diseases. The
database URL is https://TEDD.obg.cuhk.edu.hk/.

INTRODUCTION

Cell fate decisions play a pivotal role in the development of
multicellular organisms from a zygote to functionally dif-
ferentiated cell types, tissues, and organs. Mammalian de-
velopment consists of multiple stages, including embryonic,
fetal, neonatal, childhood and adult stages. In humans, each
of these stages involves complex cellular processes, includ-
ing proliferation, differentiation and reprogramming. These
complex programs are regulated by precise gene expression
patterns and further translational regulation in cells (1). The
dynamic expression of genes and regulatory networks in
each cell define the cell fate and control its cellular processes
(2). Developmental processes are precisely regulated, which
is reflected in the dynamic and distinct gene expression pat-
terns in each cell. The emergence of transformative tech-
nologies such as single-cell omics sequencing unlocked the
capability to understand the underlying mechanisms of cell
fate decisions and cellular processes and how they are con-
trolled and determined during organ development. Thus,
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we can gain insight into diseases in both human and model
organisms (3–5).

Dramatic advances in single-cell RNA sequencing
(scRNA-seq) technologies have occurred in the past decade.
This technology provides an unprecedented opportunity to
obtain the precise gene expression profiles of tens of thou-
sands of cells at a single-cell resolution. The gene expression
profiles of individual cells provide meaningful insights that
could elucidate the mechanisms involved in organ develop-
ment and disease pathogenesis (6). Owing to the practical
challenges of sample collection, human development, par-
ticularly from fertilized ovum to term birth, has remained
a poorly understood ‘black box’ (8–10). Model organisms
(such as mouse and zebrafish) are widely utilized to study
developmental biology, with the aim of recapitulating and
understanding the mechanisms of human embryonic and
organ development. A comprehensive atlas of the develop-
ing mouse neocortex has been generated by sampling the
neocortex daily throughout embryonic corticogenesis and
at early postnatal ages (7). Although the general driving
mechanisms of implantation, gastrulation, organogenesis,
and basic processes of forming diverse tissue types appear
to be largely conserved among species (such as human and
mouse), studies have suggested differences in cellular com-
positions and the time course of human tissue formation
compared with other organisms. For example, superficial
cortical layers are expanded in humans but not in mice
(11), and clear timing differences in intestinal maturation
stages are observed between mice and humans (12). In ad-
dition, comparative studies of humans and other mammals
have revealed both conserved and divergent transcriptional
programs, such as preimplantation and gastrulation pro-
cesses (8,9), brain processes (10–12), immune system pro-
cesses (13,14), and musculoskeletal processes (15).

Various types of single-cell omics databases have been
developed to share, retrieve, analyze, and visualize raw
data (including expression matrices) and value-added in-
formation (Table 1). First, the Gene Expression Omnibus
(NCBI/GEO) (16), Single Cell Expression Atlas (EMBL-
EBI/SCEA) (17), Mouse Cell Atlas (MCA) (18), and Sin-
gle Cell Portal and Cell-omics Data Coordinate Platform
(CDCP) (19) are devoted to archiving and sharing raw data
or expression matrics produced in scRNA-seq and/or bulk
RNA-seq studies. Second, several databases were developed
for a certain project or species, such as the Human Cell
Atlas Portal (HCA) (20) and Mouse Cell Atlas (MCA)
(18). Third, a few value-added databases were developed
for hosting curated gene expression profiles and integrating
certain disease information in single-cell expression maps
across various human cancers (CancerSCEM) (21), single-
cell transcriptomes for human diseases (SC2disease) (22),
single-cell atlases for exposing molecular characteristics of
COVID-19 (SCovid) (23) and Deeply Integrated human
Single-Cell Omics data (DISCO) (24). While these resources
are essential, the establishment of a reference database that
integrates the most up-to-date and comprehensive datasets
involving the timepoints throughout the lifespan of human
and model animals, such as mouse, zebrafish, and nematode
(both fetal and adult), is urgently needed. With such an up-
to-date reference repository, researchers can (i) character-
ize the emergence and dynamics of cell-type and tissue-type

specific expression and chromatin accessibility patterns dur-
ing development (such as tissue formation) in bulk-sample
and single-cell levels, (ii) profile the convergence and di-
vergence of gene−gene interactions (such as co-expression)
in cell-type, timepoint and sex categories and (iii) identify
gene(s) that have similar or distinct temporal and cell-type
specific expression patterns from that of a target gene, par-
ticularly for those from the same Gene Ontology (GO) or
KEGG pathway.

Herein, we present TEDD, the Temporal Expression dur-
ing Development Database, which was constructed by col-
lecting data from bulk-sample RNA-seq (2760 samples),
scRNA-seq (3 814 231 cells from over 1000 samples) and
scATAC-seq (1 329 392 cells from 174 samples) data from
publicly available datasets in human and mulitple model or-
ganisms (mouse, zebrafish, and nematode). With an user-
friendly interface of TEDD, users could easily explore the
dynamics of gene expression and chromatin accessibility
profiles across different developmental stages in each cell
subtype to pinpoint the specific tissue-type(s), cell-type(s)
and timepoint(s) expression patterns for a gene to under-
stand its contribution to tissue/organ development and the
mechanism(s) leading to diseases. In addition, the associ-
ations among certain genes (such as co-expression) at the
cell-type, timepoint and sex categories by the expression
correlation analysis provide a foundation to illustrate the
potential upstream and downstream gene−gene regulation
to uncover the biological functions related to development
and diseases (28,29).

DATA COLLECTION AND DATABASE CONTENT

To provide scientists with the most comprehensive expres-
sion profiles and signatures of key genes contributing to
the regulation of embryogenesis, organogenesis and devel-
opment in human and model species, three kinds of publicly
accessible datasets produced in studies related to the tran-
scriptomic regulation of development in humans and the
three most important model organisms (mouse, zebrafish,
and nematode) were collected and curated in this study
(Figure 1A). The curated and integrated datasets include
the scRNA-seq data of 3 814 231 cells from over 1000 sam-
ples, the scATAC-seq data of 1 329 392 cells from 174 sam-
ples and the bulk-sample RNA-seq data of 2760 samples.

ScRNA-seq datasets were retrieved from a literature
search in PubMed with the keywords ‘single-cell RNA seq’
or ‘single-cell ATAC seq’, ‘homo sapiens’, ‘mus muscu-
lus’, ‘danio rerio’, ‘nematode’ or ‘cross-tissue’ and ‘tempo-
ral’. Overall, 27 articles with scRNA-seq datasets and two
with scATAC-seq datasets with data and information from
Homo sapiens, Mus musculus, Danio rerio and Nematode
from at least one timepoint were included in this study (Fig-
ure 1A, Supplementary Table S1). The datasets were down-
loaded from multiple scRNA-seq data repositories, includ-
ing Gene Expression Omnibus (NCBI/GEO) (16), Human
Cell Atlas Portal (HCA) (20), Single Cell Expression At-
las (EMBL-EBI/SCEA) (17) and Mouse Cell Atlas (MCA)
(18).

All scRNA-seq datasets were processed with a unified an-
alytical pipeline (Figure 1B) with functions in Seurat v4.0.6
(25). First, quality control for each dataset was performed
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Table 1. Comparison of database features

Name of database Species curated Features of data resource
Features of database analytical and
visualization functions

Temporal Expression
during Development
Database (TEDD)

human and model animal
species, include mouse,
zebrafish, and nematode

curation, integration and
visualization of RNA-seq, scRNA-
seq/scATAC-seq datasets from
human and model animal
species studies; focuses on
providing temporal gene expression
and chromatin accessibility profiles
during embryonic, fetal, neonatal,
childhood, and adult development.

1. temporal gene expressions in
bulk-sample and single-cell
levels, PCA analysis and UMAP
visualization;

2. temporal chromatin
accessibilities in single-cell
level, PCA analysis, and UMAP
visualization;
3. clustering of multiple genes
(from the same GO or KEGG
pathway) based on the expression
levels;
4. co-expression analysis;
5. temporally regulated genes
6. stably expressed genes

Gene Expression Omnibus
(NCBI/GEO)

all species include plants
and animals

archiving of raw data or expression
matrics for all transcriptome
sequencing resource.

Not available

Single Cell Expression
Atlas (EMBL-EBI/SCEA)

animals, protists, plants
and Fungi

curation and visualization of
scRNA-seq/scATAC-seq studies in
model and non-model species.

1. gene expression in single-cell
levels, and PCA analysis;

2. chromatin accessibilities in
single-cell level, and PCA analysis;
3. clustering of marker genes

Mouse Cell Atlas (MCA) Mouse single-cell RNA sequencing of
major mouse organs from early
embryonic stage to the mature
adult stage.

1. gene expression in single-cell
levels, and PCA analysis;

2. clustering of marker genes;
3. identifying cell types in users’
data

Cell-omics Data
Coordinate Platform
(CDCP)

23 organisms curation and visualization of
scRNA-seq/scATAC-seq studies in
model animal species.

1. gene expression in single-cell
levels, and PCA analysis;

2. clustering of marker genes;
3. online single-cell data analysis

Single Cell Portal 10 organisms curation and visualization of
scRNA-seq/scATAC-seq studies in
model and non-model species.

1. collection of single-cell genomics
data;

2. gene expression in single-cell
levels, and PCA analysis

Human Gene Expression
During Development
(Descartes)

Human, mouse, worm
and fly

scRNA-seq/scATAC-seq for
human and model species
development; for human, focuses
on 15 organs in fetal samples

1. collection of scRNA and
scATAC data;

2. gene expression in single-cell
levels, and PCA analysis;
3. exploration on cell trajectory for
organ development

Human Cell Atlas Portal
(HCA)

Human scRNA-seq/scATAC-seq/snRNA-
seq for mapping the human body at
the cellular level; focuses on data
collection of single-cells derived
from 9 human tissue-types and
immune system

1. collection of scRNA and
scATAC data from human tissues
or diseases;

2. gene expression in single-cell
levels, and PCA analysis;

Cancer Single-cell
Expression Map
(CancerSCEM)

Human focuses on cancer samples 1. gene expression in single-cell
levels, and PCA analysis;

2. gene correlation;
3. cell component comparison;
4. cell interaction network;
5. survival analysis



Nucleic Acids Research, 2023, Vol. 51, Database issue D1171

Table 1. Continued

Name of database Species curated Features of data resource
Features of database analytical and
visualization functions

Single-Cell Transcriptome
for human diseases
(SC2disease)

Human focuses on human multiple diseases
and cancer studies

1. providing browse for the
expression of interested genes;

2. searching for cell-type markers;
3. searching for the biomarkers of
multiple diseases;
4. comparing the expression
profiles of various types of cells in
disease and non-disease states

Deeply Integrated human
Single-Cell Omics data
(DISCO)

Human focuses on 14 tissue types in human
and PBMC samples in COVID-19
atlas

1. data exploration at sample and
integrated level;

2. CELLiD cell type identification;
3. online integration;
4. mapping user single-cell data to
a specific atlas with Cell Mapper.

Single-cell atlases for
exposing molecular
characteristics of
COVID-19 (SCovid)

COVID-19 focuses on COVID-19 across 10
human tissues

1. providing a browser of the
molecular characteristics of
COVID-19 on independent
datasets of different tissues;
2. obtaining the molecular roles in
different tissues by searching genes;
3. obtaining significantly
differentially expressed genes in a
specific cell type;
4. providing access of differentially
expressed genes’ expression profiles
based on single-cell datasets of
COVID-19 and controls

The Genotype-Tissue
Expression (GTEx)

Human genome sequencing and exome
sequencing, RNA-Seq and
snRNA-seq; focuses on differential
expressions among different
tissue-types for human adult cases

1. gene expression in bulk-sample
and single-cell levels, and PCA
analysis;

2. providing enquiry and
visualization of the QTLs by
gene/variant in the Locus Browser
3. providing a browser of H3K27ac
ChIP-seq, m6A methylation, and
WGBS DNA methylation data in
IGV Browser
4. providing search and request for
the GTEx archived biospecimens

by filtering out (i) cells with < 200 expressed genes and
(ii) genes expressed in <10 cells. Then, ‘NormalizedData’
in Seurat v4.0 was applied to normalize the sparse single-
cell gene expression matrix. We classified the datasets into
different categories based on the species, sequencing types
(scRNA-seq or scATAC-seq) and tissue types. Of note, in-
tegration was not performed for datasets generated from
different species. For those categories with only one sin-
gle dataset, no integration was performed, and the ana-
lyzed results were used directly for data query and visual-
ization. For categories with more than one dataset, inte-
gration was performed by applying ‘SCTransform’ (26) for
normalization and ‘Harmony’ to reduce batch correction
(27) of gene expression data across different datasets. No-
tably, the data matrices consisting of gene-level chromatin
accessibility scores from 69 scATAC-seq datasets (>1.3 mil-
lion single-cells from 68 distinct cell types in humans) from
20 tissue types in adults and 14 tissue types in fetuses (28)
were collected. Genes with highly variable expression pat-

terns were identified by ‘FindVariableGenes’, and the top
2000 highly variably expressed genes were used for the di-
mensionality reduction using principal component analysis
(PCA). The top 30 PCs were selected and used for clustering
with FindNeighbors (SNN). The robustness of our analy-
sis was further verified by comparing the results with those
generated by the original studies (see Supplementary Mate-
rials, Supplementary Figures S1–S3).

Publicly available bulk sample-based RNA-seq data pro-
duced in studies related to the transcriptomic regulation
of development in humans and three model species and
the corresponding sample information (such as sample type
and collected timepoint) were collected from ENCODE for
further analysis (29). The retrieval of RNA-seq datasets was
performed with the following keywords: (i) ‘total RNA-seq’
and ‘ployA plus RNA-seq’, in combination with (ii) ‘Homo
sapiens’ and ‘Mus musculus’. In addition, all datasets were
generated from tissues, primary cells, cell lines or in vitro dif-
ferentiated cells of normal tissues (Figure 1A). As a result,
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Figure 1. Overview of data collection, data processing and functional modules under each domain of TEDD database. (A) Diagram of bulk-sample RNA-
seq and single-cell RNA-seq and ATAC-seq data collection. (B) Analytical steps of data processing. (C) Overview of functional modules under the domains
of ‘Bulk Expression’, ‘Single-cell Atlas’, ‘Co-expression’ and ‘Temporal & Dynamic’.
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2760 RNA-seq datasets were included, as shown in Supple-
mentary Table S2. The expression of each gene was calcu-
lated in TPM format (transcripts per million) by a unified
analytical pipeline (the mapping of the reads was performed
using the STAR program (30), and the quantification of
genes and transcripts was conducted with the RSEM pro-
gram (31)). The expression matrices were then integrated
and indexed based on the sample information. Overall, the
bulk RNA expression data of 52 tissue types, 77 primary
cells, 43 cell lines and 15 in vitro differentiated cells from
four developmental periods were curated.

CONSTRUCTION AND DESCRIPTION OF FUNC-
TIONS

TEDD is a publicly and freely accessible web-based browser
for researchers, and the web application was deployed on a
Linux server. The VUE framework (https://vuejs.org/) was
used for rendering and the interactive operations of front-
end pages, and CodeIgniter was used as the basic architec-
ture of the backend system. In addition, MySQL served as
a container for data storage, and Apache2 acted as a back-
ground server. Echarts and d3.js were adopted for construc-
tion of the interactive graphs, while a bootstrap table was
used to build the data tables. The displaying modules also
enable intuitive visualization of the gene expression signa-
tures at the bulk-tissue level or at a single-cell resolution
from multiple developmental periods. It provides gene ex-
pression patterns from across gestational weeks (for hu-
mans), days (for mice), hours (for zebrafish), or minutes
(for nematodes) to demonstrate the regulatory expression
patterns during embryogenesis and organogenesis. Figure 1
shows the schematic workflow (Figure 1B) and main func-
tional modules of this database (Figure 1C).

Overall, the main focuses of this database (Figure 2) in-
clude the following: (i) allowing researchers to understand
the differences in cell-type, tissue-type and timepoint spe-
cific expression patterns and chromatin accessibility profiles
of an enquired gene at the bulk-sample and single-cell levels;
(ii) providing an integrated network to identify cells with the
co-expression of target genes in the cell-type, timepoint, and
sex categories; (iii) profiling and clustering the expression
patterns of gene(s), particularly for those under the same
GO or KEGG pathway; and (iv) identifying gene(s) with an
expression profile that is similar to or distinct from that of
an enquired gene across the selected cell types, tissue types
and timepoints.

For the TEDD interface, the navigation menu contains
seven drop-down menus, including ‘Home’, ‘Datasets’,
‘Bulk Expression’, ‘Single-cell Atlas’, ‘Co-expression’,
‘Temporal & Dynamic’ and ‘Help’, which could lead users
to the corresponding interfaces. On the ‘Home’ page, there
are three main elements in addition to the header and
the main navigation menu, including (i) a direct search
engine for single gene expression profiles in bulk-sample
and single-cell levels, (ii) a comprehensive navigation panel
showing each hyperlinked module, and (iii) three diagrams
of cell-type/tissue/organ sampling sites in humans (three
phases: embryonic, fetal and adult) curated by TEDD (Sup-
plementary Figure S4). If a researcher would like to focus
on a particular cell type/tissue type/organ at specific stages

(e.g. embryonic, fetal, and adult), they could click on the cell
type/tissue-type/organ of interest in the diagrams. This will
direct the researcher to the page showing all datasets related
to this cell type/tissue-type/organ. A detailed description
of the functions and usage guidance under each module is
provided in the Supplementary Materials (Supplementary
Figures S5–S8).

The ‘Single-cell Atlas’ domain provides comprehensive
and interactive functions to illustrate gene expression and
chromatin accessibility profiles at the single-cell level. It
consists of five modules (Supplementary Figure S6). The
‘Single-gene Enquiry’ module provides the subclassification
of each tissue type into further subgroups based on cell
types and timepoints as well as the percentage of cells with
the targeted gene expression identified. In addition, under
the ‘Multi-gene Enquiry’, researchers can fill in a gene to
identify putative GO or KEGG pathways in which the gene
participated, and they can further input a list of genes (up
to 50) for clustering of expression data after selection of the
tissue type, cell type and timepoint. Furthermore, the ‘Dy-
namic Composition’ module provides the cell-type compo-
sitions based on the sampling timepoints from each dataset.
Most importantly, under the ‘Principal Component Analy-
sis’ module, when a researcher fills in a gene name, TEDD
provides UMAP results of the dataset with four options
of cell labeling (cell type, tissue type, timepoint and sex),
and the cells with expression of the targeted gene are la-
beled by the expression abundance. To conveniently com-
pare the patterns of expression or chromatin accessibility of
the same gene in different datasets (with different parame-
ters of species, cell types/tissue types, timepoints and data
types) or with another gene, a concurrent interface is set if
users click the ‘Add Compare’ button.

Within the ‘Co-expression’ domain, after defining the
species, tissue-type and the options of clustering (cell type,
timepoint and sex), TEDD allows the submission of mul-
tiple genes (up to 5) to investigate those cells with co-
expressions of the submitted genes from scRNA-seq and
scATAC-seq datasets. The overall number of each cell-type
and the percentage of cells with the identified co-expressions
are provided for the researchers to investigate whether the
targeted genes are expressed in the same cell-type at a par-
ticular timepoint and tissue-type.

The ‘Temporal & Dynamic’ domain includes three mod-
ules. ‘Temporally Regulated Genes’ provides the identifi-
cation of genes with differential expression among the se-
lected timepoints (with tissue-type and cell-type selected).
It provides an option to set a gene at a specific tissue-
type (and cell-type) and timepoint as an anchor to iden-
tify any other tissue-types/cell-types/timepoints that the
targeted gene in the anchor shows significantly differen-
tial expression, and to further investigate gene(s) with an
expression pattern that is similar to or distinct from that
of the targeted gene (such as with significantly higher
or lower expression) in the anchor compared with these
tissue-types/cell-types/timepoints. The ‘Temporally Reg-
ulated Genes among Chromosomes’ module provides a
genome-wide distribution of these temporally regulated
genes with a customized cutoff (logFC) and a maximum
number (MaxNumber) of genes being displayed. Under
the ‘Stably Expressed Genes’ module, researchers can iden-

https://vuejs.org/
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Figure 2. Summary of analytical utility of TEDD. Enquiries are shown in circles and actions are shown in rectangles. TEDD provides analytical utility for
users when there is target of single-gene, multiple genes or even no targeted gene.

tify gene(s) with expression patterns identified among the
tissue-types or timepoints selected.

Last, on the ‘Help’ page, a graphical operation guide is
provided for new users to start each function, and this will
help them fully utilize the resources in TEDD.

APPLICATION CASE

To exemplify how TEDD can help researchers understand
the temporal patterns of expression and chromatin acces-
sibility of the gene(s) of interest, we used the AFP (Alpha
Fetoprotein) gene as an example. Alpha fetoprotein is a
well-established marker for the diagnosis and prognosis of
hepatocellular carcinoma (3), and its role primarily is to
transport heavy metal ions and various insoluble molecules
in fetal blood circulation (32). As a paralog of AFP, the
ALB gene is found to have a similar expression pattern
in embryonic stem cell-derived hepatocytes (6).The AFP
gene is involved in the Hippo signaling pathway (hsa04390),
which regulates organ size, cell fate, and carcinogenesis in
the liver (5) through the activation of YAP (gene YAP1)
and TAZ (gene WWTR1) (33). By activating YAP, which
is likely the upstream regulator of AFP (Supplementary
Figure S9A), significant upregulation of the fetal hepato-
blast marker AFP was observed compared with the control
in primary hepatocytes and ±Dox (doxycycline) YAP Tg
organoids ((34), Supplementary Figure S9B).

First, by enquiring the AFP gene using the ‘Single-
gene Enquiry’ module of the ‘Bulk Expression’ domain,
the expression levels of the AFP gene were significantly
high in human fetal hepatocytes and HepG2 cancer cell

lines derived from hepatocellular carcinoma but was ab-
sent in adult liver tissue (Figure 3A). In comparison, users
can carry out ‘Principal Component Analysis’ from the
‘Single-cell Atlas’ domain with scRNA-seq or scATAC-
seq datasets. After selection of ‘Homo sapiens’ (species),
‘Liver’ (tissue), ‘21–30 (year old), 51–60 (year old), GW13
(gestational weeks), GW16, GW17, GW26’ (timepoint),
‘Tedd.10 Liver scRNA’ (sequencing type), and filling in
‘AFP’ as the enquiry, the UMAP result showed a high ex-
pression level of AFP in hepatoblasts of liver tissue from
humans in the early gestational weeks (such as GW13).
This high expression level continued to decline during de-
velopment (from GW13 to GW17), and no expression was
identified in adulthood. This is consistent with the re-
sults shown from the bulk sample RNA-seq data. In addi-
tion, the result of the scATAC-seq data with selection of
‘Homo sapiens’ (species), ‘Liver’ (tissue), ‘51–60 (year old),
GW13, GW16, GW17’ (timepoint), ‘Tedd.10 Liver scatac
(sequencing type)’ and with ‘AFP’ as the enquiry, also
shows a significantly higher level of chromatin accessibility
scores in hepatoblasts from fetal livers (Figure 3B), support-
ing the evidence that AFP is involved in fetal liver develop-
ment. Furthermore, by enquiring ‘AFP’ in the ‘Single-gene
Enquiry’ from the ‘Single-cell Atlas’ domain, the distribu-
tions of cell type-specific and timepoint-specific expression
patterns were provided (Supplementary Figure S10A and
B).

TEDD also provides a function to directly identify genes
with expression patterns that are similar to or distinct from
those of a targeted gene (i.e. AFP) in the anchor com-
pared with those tissue-types/cell-types/timepoints that the



Nucleic Acids Research, 2023, Vol. 51, Database issue D1175

A

C

B

Figure 3. Investigation of temporally and tissue/cell-type specifically expressed gene(s). (A) Bulk-sample RNA-seq data indicate the absence of AFP gene
expression in adult liver tissues but a significantly higher expression identified in fetal hepatocytes. Y axis indicates the sample type with specific timepoint,
and X axis reveals the abundance of gene expression (in TPM format). (B) Principal Component Analysis with scRNA-seq and scATAC-seq datasets shows
the cells labelled by cell-type (left) and by timepoint (middle) as well as the cells with AFP gene expression (or gene-level chromatin accessibility scores,
right). The upper panel shows the UMAP results from scRNA-seq datasets, while the lower panel reveals the UMAP results from scATAC-seq datasets.
(C) Identification of significantly differentially expressed gene(s) and clustering based on the expression levels. A box next to each gene is colored by red
or green, respectively, if the gene is significantly higher or lower expressed in the selected tissue-type and timepoint (as an anchor) compared with other
tissue-types/timepoints. Each box in the clustering figure indicates the abundance of gene expression in log10 transformation.

targeted gene showed significantly differential expression.
With the ‘Temporally Regulated Genes’ function under
the ‘Temporal & Dynamic’ domain, after selecting ‘Homo
sapiens’ (species) and ‘AFP’ (as gene), a list of clusters
(tissue-type and timepoint) in which AFP showed signif-
icantly temporally expressed among the same tissue-type
was provided. Alternatively, users can directly select a clus-
ter (with defined tissue-type, cell-type and timepoint) as
an anchor. For instance, after selection of a cluster [such
as ‘Liver ALL GW13 (fetal liver tissue collected in 13
gestational weeks with all cell-types selected)’] as an an-
chor for comparison (see Supplementary Methods), we
further selected the tissue-type (‘Liver’), cell-type (‘All’),
and the timepoints of interest [‘21–30 (year old)’, ‘51–
60 (year old)’, ‘GW13’, ‘GW16’, ‘GW17’ and ‘GW26’],
a clustering of genes with significantly differential expres-
sions was shown (Figure 3C). Both AFP and ALB genes
showed a significantly higher expressed in fetal liver tis-
sue at GW13 compared with the other selected tissue-
types/timepoints, echoing the current knowledge that the
AFP and ALB genes are likely co-expressed in fetal liver
tissues (35).

In addition, there were another two genes (APOA1 and
H19) showing significantly higher expressions (similar to
AFP gene), whereas another six genes showed significantly
lower expressions (distinct from AFP gene). The tempo-
ral expression indicated by our analysis was supported by
the reported studies. For instance, HBA1, HBA2, HBB and
HBG2 are known to play an important role in human
haematopoiesis from fetal liver (36). Previous study demon-
strated that all of them showed an increasing expression pat-
tern during fetal development (36). In addition, as erythro-
poiesis mainly taking place in the bone marrow in late ges-
tation and after birth (37), it explains the reason why there
was absence of expression of these genes in adult liver in our
result. In comparison, T�4 encoded by gene TMSB4X did
not reveal any significant reactivity in the vast majority of
liver cells during human gestation and at birth (38), while a
following study demonstrated a strong diffuse accumulation
of in the hepatocytes in some adults (39). It supported the
significantly lower expression of TMSB4X in fetal liver at
GW13 compared with the other timepoints. Lastly, signifi-
cantly higher expression of H19 in liver tissues in fetal stages
compared to adults (nearly absent) has been shown (40),
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Figure 4. Co-expression network. Temporal and cell-type specific co-expression with multiple genes exemplified by AFP and ALB genes. Identification of
cells with co-expression of the targeted genes in cell-type (A), timepoint (B) and sexual categories (C). Each bar indicates the percentage of cells in each
category with co-expression identified. In each figure, the column with the percentage of cells with co-expression of AFP and ALB gene identified shown
is indicated by an orange arrow.

which also supported our finding. Taking together, these
studies supported the robustness of our analysis.

To detect the temporal expression patterns of AFP and
its relation to other genes from the GO biological functions
or KEGG pathways that it is involved, we first identified
those GO or KEGG pathways in humans that AFP was an-
ticipated to participate in by using the ‘Multigene Enquiry’.
There was one KEGG pathway (Hippo signaling pathway:
hsa04390) and 10 GO processes in which AFP was involved.
Genes from the same GO or KEGG pathway, or even no re-
lationship reported before, were used as input for the clus-
tering of the temporal, tissue-type, and cell-type specific ex-
pressions (gene number up to 50). We investigated the ex-
pression patterns of the genes AFP, YAP1 and WWTR1
(hsa04390) in human liver development across fetal and
adult stages. After selection of species (‘Homo sapiens’),
tissue-type (‘Liver’), cell-type (all types) and timepoints
[‘21–30 (year old)’, ‘51–60 (year old)’, ‘GW13’, ‘GS16’,
‘GW17’ and ‘GW26’], the results indicated that the expres-
sion levels of the genes YAP1 and WWTR1 were both de-
tected from GW13 to 17, but both were absent from GW26
toward adult stages (Supplementary Figure S9C and D). A
similar expression pattern was observed for the AFP gene.
Therefore, TEDD analysis showed a result that is consistent
with the current knowledge that the activation of YAP, the

potential upstream regulator of AFP, results in the signifi-
cant upregulation of the AFP gene (34).

Last, researchers can also use the module of ‘Co-
expression’ to investigate the cell type(s) and timepoint(s)
with co-expression of the targeted genes (up to 5, Fig-
ure 4). Under the domain of ‘Co-expression’, by selecting
species (‘Homo sapiens’), tissue-type (‘Liver’), and cluster-
type (‘cell-type’) and entering ‘AFP’ and ‘ALB’ as genes
stepwise, the results showed that 83.89% of fetal hepato-
blasts with the expression of both ‘AFP’ and ‘ALB’ were
identified from the scRNA-seq data (Figure 4A). In ad-
dition, the scATAC-seq data showed that 17.26% of cells
had accessible chromatins identified in both the ‘AFP’ and
‘ALB’ genes (Figure 4A). Furthermore, when changing
‘timepoint’ as the cluster-type, the result showed the high-
est percentage of cells with the expression of both genes
occurred in GW13 but declined from GW13 to GW17
(Figure 4B), while there was no significantly difference of
the percentage of cells with co-expressions identified be-
tween female and male in both scRNA-seq and scATAC-
seq datasets (Figure 4C). This result indicates that similar
expression patterns were observed between the two genes
and suggests that the expression levels of both (in hepato-
blasts) are temporally regulated (during fetal liver develop-
ment). As the data were archived by combining all datasets



Nucleic Acids Research, 2023, Vol. 51, Database issue D1177

(scRNA-seq and scATAC-seq) related to liver, TEDD also
provides UMAP results of independent datasets to show the
cells with the co-expression of the targeted genes.

SUMMARY AND FUTURE PERSPECTIVES

To date, a rapidly increasing number of studies have
investigated gene expression patterns and transposase-
accessible chromatin across different species, cell-types, and
tissue-types during different developmental timepoints by
the state-of-the art sequencing technologies (bulk-sample
RNA-seq, scRNA-seq and scATAC-seq) (41,42). We have
devised and established a reference database (such as mul-
tiorgan developmental atlases) by systematically summa-
rizing and reanalyzing datasets that enable the decipher-
ing the underlying mechanism(s) across different develop-
mental periods. We believe this resource will not only en-
able cross tissues/organs and timepoint analyses to pin-
point the critical cell-type(s), tissue-type(s) and timepoint(s)
of each gene but also facilitate the identification of co-
expression patterns for deciphering the potential contribu-
tions of genes with unknown biological functions related
to development/diseases. Here, we presented a freely ac-
cessible online database, TEDD, to address such a demand
with the integration of scRNA-seq and scATAC-seq data.
In this study, we curated data from 481 cell types, 79 tis-
sue types and 92 timepoints in humans and multiple model
organisms. Of note, we applied the recommended modules
(43), including SCtransform (26) and Harmony (27), for
normalization and integration of the datasets to recapitu-
late the expression and chromatin accessibility patterns of
the whole tissues/organs or whole embryos/fetuses. Batch
effects among studies have been significantly reduced but
cannot be excluded completely. Therefore, we retained some
modules with selections of the datasets from a single study
to minimize such potential effects. In addition, although
TEDD has incorporated scRNA-seq, scATAC-seq data and
all related bulk RNA-seq data from multiple tissues/organs
and even from whole embryos in humans and most impor-
tant model organisms, it still lacks datasets from spatial
transcriptomic analysis. Further improvement for incorpo-
rating such data is warranted in the future. Nonetheless, re-
searchers are advised to keep these limitations in mind.

To further improve the database, we seek feedback and
suggestions from the community, which will be addressed
in a timely manner to improve the performance and sci-
entific value of the database. Furthermore, datasets from
the state-of-the-art technologies, such as temporal-spatial
multiomics from multiple tissues, during various pivotal
timepoints will also be curated and integrated. In addition,
continuing curation of datasets generated in future studies
will be conducted and incorporated on a regular basis. This
database is the foundation for continuing genetic research
on human diseases and developmental biology for the sci-
entific community. Thus, we expect to update the datasets
semiannually with the most up-to-date published datasets
and to develop and incorporate new analytical functions
biannually. Overall, we developed a freely accessible online
database, namely, TEDD, with the integration of RNA-seq
and ATAC-seq data to facilitate the understanding of gene
expression and chromatin accessibility profiles as well as co-

expression networks during development (such as embryo-
genesis and organogenesis) and to provide a reference for
understanding the etiologies of genetic defects.
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