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Harmonisation of in‑silico 
next‑generation sequencing 
based methods for diagnostics 
and surveillance
J. Nunez‑Garcia1, M. AbuOun1, N. Storey1, M. S. Brouwer2, J. F. Delgado‑Blas3, S. S. Mo4, 
N. Ellaby5, K. T. Veldman2, M. Haenni6, P. Châtre6, J. Y. Madec6, J. A. Hammerl7, C. Serna3, 
M. Getino8, R. La Ragione8, T. Naas10, A. A. Telke4, P. Glaser9, M. Sunde4, B. Gonzalez‑Zorn3, 
M. J. Ellington5 & M. F. Anjum1,8*

Improvements in cost and speed of next generation sequencing (NGS) have provided a new pathway 
for delivering disease diagnosis, molecular typing, and detection of antimicrobial resistance (AMR). 
Numerous published methods and protocols exist, but a lack of harmonisation has hampered 
meaningful comparisons between results produced by different methods/protocols vital for global 
genomic diagnostics and surveillance. As an exemplar, this study evaluated the sensitivity and 
specificity of five well‑established in‑silico AMR detection software where the genotype results 
produced from running a panel of 436 Escherichia coli were compared to their AMR phenotypes, with 
the latter used as gold‑standard. The pipelines exploited previously known genotype–phenotype 
associations. No significant differences in software performance were observed. As a consequence, 
efforts to harmonise AMR predictions from sequence data should focus on: (1) establishing universal 
minimum to assess performance thresholds (e.g. a control isolate panel, minimum sensitivity/
specificity thresholds); (2) standardising AMR gene identifiers in reference databases and gene 
nomenclature; (3) producing consistent genotype/phenotype correlations. The study also revealed 
limitations of in‑silico technology on detecting resistance to certain antimicrobials due to lack 
of specific fine‑tuning options in bioinformatics tool or a lack of representation of resistance 
mechanisms in reference databases. Lastly, we noted user friendliness of tools was also an important 
consideration. Therefore, our recommendations are timely for widespread standardisation of 
bioinformatics for genomic diagnostics and surveillance globally.

Next Generation Sequencing (NGS), a DNA sequencing technology, has become an established technique with 
hundreds of publications each year detailing the use and advancement of this technology, often replacing other 
gene-based typing tools such as PCRs, and  microarrays1–3. Furthermore, NGS high-throughput platforms, which 
in recent years have seen radical improvements in quality, running times and cost, have revolutionised the 
diagnosis of health-related issues in animals and humans. This includes infectious disease diagnosis, where 
in-silico (or computer based) genetic data analysis is aiding and, in some cases, substituting more complex and 
costly laboratory  techniques4. The COVID-19 pandemic is a testimony of the usefulness of this technology for 
both research and  surveillance5,6. Similarly, by using NGS technologies such as sequencing the whole genome of 
bacterial isolates, transmission chains of pathogens and a global overview of their population structure is being 
identified, helping inform surveillance and to trace  outbreaks7. For antimicrobial resistance (AMR) detection 
in bacteria, which is another global threat leading to decreasing therapeutic options and increasing treatment 
failures, antimicrobial susceptibility testing which produces a phenotype, is progressively being substituted by 
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detection of the underlying genetic mechanisms using whole genome sequencing (WGS) of bacterial isolates. 
Nevertheless, performing correlations between pheno- and geno-types remains essential, as phenotypes are still 
accepted as the gold standard due to genotypes being based only on already known AMR genes so new variants 
may be missed. WGS analysis also facilitates the identification of bacteria such as Escherichia coli, their lineage, 
and plasmids, in addition to genetic features such as resistance to critically important antimicrobials for thera-
peutics, and chromosomal mutations, deletions and insertions that may be associated with AMR  phenotypes8–13. 
Characterisation of bacterial plasmids, which often transfer AMR genes due to their mobility, is particularly 
important and has become more achievable by combining short and long read WGS so complete AMR plasmid 
genomes can be  determined14–16.

However, a major barrier to the application of bioinformatics software for AMR detection beyond individual 
research applications, to diagnosis and national and/or international surveillance, is the standardisation of both 
DNA-based laboratory techniques and in-silico analysis. The availability of a plethora of bioinformatics tools 
and pipelines, with continual rapid advancement in this area, has resulted in no standardised methodology or 
nomenclature making comparisons across compartments (e.g. humans, animals, and environment) or institutes 
difficult. In 2019, Hendriksen et al.17 reported at least 47 bioinformatics tools were freely available, and no doubt 
this has increased further. However, to understand the epidemiology of AMR in an One-Health context, it is vital 
to harmonise in-silico AMR detection methods, as has been established for bacteria such as Methicillin-resistant 
Staphylococcus aureus (MRSA), where ideal requirements for molecular typing techniques have been clearly 
 defined18,19. There have been similar discussions for in-silico AMR  detection20, and although the recommenda-
tions have not been properly evaluated, a small multi-centre study with nine institutes that performed predictions 
of AMR genotypes from 10 samples harbouring carbapenem-resistant organisms, showed that differences in 
the database selected and gene coverage thresholds were some of the factors contributing to variation in AMR 
 results21. Such evaluations are required at a much larger scale because supranational organisations such as the 
World Health Organisation (WHO), European Centre for Disease Control (ECDC) and the European Food 
Safety Authority (EFSA) have recommended the use of genomics within international surveillance programmes 
that compare AMR trends across countries in Europe and worldwide, to help tackle the spread of multi- and 
extensive drug resistant bacteria which are the cause of great  concern22–24.

In-silico AMR detection methods are based on a three-step process: i) sample preparation such as bacterial 
culture and DNA extraction; ii) whole genome sequencing; and iii) in-silico analysis of data produced from 
isolate WGS. This process offers attractive possibilities for diagnostic test automation, including parallelising 
tests for multiple characteristics and even retrospective exploration for novel AMR genotypes without having 
to repeat steps i) or ii). AMR detection pipelines are based on existing knowledge of AMR genotype–phenotype 
 associations25.

To detect the genotype or underlying genetic mechanism for resistance by screening the WGS data obtained 
from isolated bacteria, the bacterial DNA is compared against a reference set of DNA sequences, also known as 
a database (normally in FASTA or text-based format) containing the genotypes (i.e. AMR genes or point muta-
tions) responsible for known AMR phenotypes.

Bacterial DNA can be compared against the database using two different techniques: either by mapping the 
WGS short-reads onto the reference DNA sequences in the database, or by basic local alignment  search26 using 
the assembled genome contigs as a query against the database. While the first approach may be faster (< 10 min 
for a single core computer) and straight forward, it involves dealing with large raw data files (e.g., paired short-
reads raw data files of up to 300 Mbytes for a 5 Mbase genome such as Escherichia coli). The second method may 
require a longer running time (~ 25 min) as the raw data files must be de novo assembled prior to comparison 
against the database. Many laboratories perform the assembly step as a routine for other purposes, so the extra 
running time might not be a burden. Once assembly for the bacterial genome has been stored, re-running the 
pipeline to screen for a novel AMR gene should be a matter of a few seconds.

As part of the One-Health European Joint Programme Project ARDIG (Antibiotic Resistance Dynamics: the 
influence of geographic origin and management systems on resistance gene flows within humans, animals and 
the environment)27, nine partners compared the software performance of five pipelines for AMR detection based 
on WGS of E. coli isolates, and this paper describes that work. Each software detected the presence or absence 
of genes and point mutations associated with the sensitivity phenotype to 14 antimicrobials established for all 
isolates, which were taken as the “gold-standard”. This study restricted its scope to comparing the performance 
of pipelines in terms of their sensitivity and specificity to detect AMR, under the default settings defined by the 
pipelines’ authors. No attempt to evaluate the software installation process was considered in this study since most 
of the users agreed that IT support is provided institutionally. Isolate DNA extraction and sequencing protocols 
used by participating institutes were also not evaluated in this study.

Results
Antimicrobial sensitivity of E. coli. A total of 436 E. coli collected by nine different collaborating insti-
tutes working in the veterinary and human health sectors in Europe, were included in the study. Table 1 provides 
overview of the isolates, including year of isolation and percentage from each reservoir and country, with full 
details provided in Methods and Supplementary Table S1. The antimicrobial susceptibilities of all isolates were 
established to a panel of 14 antimicrobials; these were used as the gold standard for the study and are given for 
each isolate in Supplementary Table S1, with the number of resistant, in comparison to sensitive isolates, pro-
vided in Table 2.

Our panel of E. coli did not show an even distribution of resistance for all 14 antimicrobials, although for 
most antimicrobials the numbers of resistant isolates in comparison to sensitive ones was more than 10% of the 
total, so enabled accurate sensitivity estimates to be made (Table 2). However, smaller numbers of isolates were 
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determined as resistant to colistin (n = 27 or 6.2%) and tigecycline (n = 1 or 0.23%), consistent with the scarcity 
of E. coli resistant to these high priority critically important antimicrobials (HP-CIAs) in Europe. The unbal-
anced ratio between resistant and susceptible isolates for these antimicrobials will result in loss of precision for 
the sensitivity estimates. Nevertheless, sensitivity estimates for colistin was still calculated but for tigecycline, 
the sensitivity was not calculated due to the very low numbers of resistant isolates.

Pipeline comparisons. Five pipelines were selected for testing:  GeneFinder28; APHA SeqFinder/Abricate14; 
WBVR BLAST (in-house pipeline); ResFinder/PointFinder29,30;  ARIBA31. Some differences existed between the 
pipelines in their data input method or the algorithm used for detecting gene presence, which were part of the 
criteria for selecting these pipelines (see Methods and Supplementary Table S2).

Table 3 and Fig. 1 shows estimates of sensitivity and specificity for each antimicrobial compared to the phe-
notypic data per isolate for each pipeline, which was calculated based on the phenotype and AMR gene output 
from each pipeline (Supplementary Table S3). The cells in Table 3 have been coloured depending on the different 
levels of performance by each pipeline. This should be interpreted with care as there is significant overlap between 
the confidence intervals from different pipelines, as demonstrated by Fig. 1, with plots showing the sensitivity, 
specificity and the 95% confidence intervals for different antimicrobials on the receiver operating characteristic 
(ROC) coordinate system. All pipelines had an overall sensitivity value between 0.9 and 0.95 when comparing 
the genotype with phenotype for each antimicrobial class (Table 3A) except for ARIBA, due to this pipeline 
in the default setting only reporting the presence or absence of acquired resistance genes and not including 
resistance associated with chromosomal point mutations that reduces susceptibility to antimicrobials such as 
 fluroquinolones25.The average specificity value, when comparing the genotype with phenotype for each anti-
microbial class for all pipelines, (Table 3B) was around 0.89, except for the APHA Seqfinder/ABRicate pipeline 
that showed a slightly higher value at 0.93 due to the combination of a discovery stage (APHA SeqFinder) and 
a validation stage (ABRicate). From the sensitivity and specificity estimates, all the pipelines, in general terms, 
showed similar levels of performance.

Resistance to several antimicrobials were easier to detect, such as to ampicillin and tetracycline, with average 
sensitivity/specificity values equal to 0.95/0.96 and 0.97/0.93, respectively (Table 3 and Fig. 1). Colistin resistance 
was the most difficult to detect with average sensitivity/specificity values of 0.70/0.99 (Table 3 and Fig. 1). This 
difficulty can be attributed to two possible factors: the genotype associated to the colistin AMR phenotype might 
not be fully represented in the database, i.e., there may be an unknown gene or chromosomal mutation that has 
not yet been associated to this phenotype; and/or the thresholds used in the pipelines for AMR gene detection 
might be suboptimal for this antimicrobial. Commonly used thresholds for AMR detection in some pipelines 
include the percentage of an AMR gene present within the isolate and the percentage of similarity between the 
reference AMR gene and the test isolate. By decreasing or increasing the thresholds, it will be possible to trade 
off the sensitivity and specificity values, and hence to adjust the detection capabilities. Relaxing the pipeline 
thresholds will increase the sensitivity and decrease the false negative rate (type II error) causing a decrease of 
the specificity and the consequent increase of the false positive rate (type I error). Thus, being able to input the 
pipeline thresholds may be an important feature to adjust the balance between sensitivity and specificity values. 
Further, this adjustment should be individually defined for each of the antimicrobial classes represented in the 
database, since a set of thresholds that may be optimal for the detection of one antimicrobial resistance might 

Table 1.  Distribution of the 436 E. coli isolates by year, source, and country. All human isolates were of clinical 
origin, whilst the animal isolates were from healthy animals; meat isolates were assumed to be from healthy 
animals as they had entered the food chain.

Years Counts Percentage Source Counts Percentage Country Counts Percentage

2006 1 0.23 Beef 2 0.46 France 98 22.48

2007 5 1.15 Broiler 86 19.72 France (Polynesia) 1 0.23

2008 4 0.92 Cattle 51 11.7 Germany 50 11.47

2009 3 0.69 Chicken meat 14 3.21 Netherlands 50 11.47

2010 2 0.46 Dog 9 2.06 Norway 50 11.47

2011 4 0.92 Goose 1 0.23 Spain 50 11.47

2012 9 2.06 Gull 5 1.15 UK 137 31.42

2013 10 2.29 Horse 1 0.23

2014 26 5.96 Human 150 34.4

2015 118 27.06 Pig 88 20.18

2016 48 11.01 Pork 7 1.61

2017 71 16.28 Rabbit 1 0.23

2018 77 17.66 Red fox 10 2.29

2019 58 13.3 Turkey 1 0.23

Turkey meat 1 0.23

Wild bird 9 2.06
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produce poor results for another. The GeneFinder pipeline was the only pipeline in this study that allowed the 
user to set individual similarity threshold for each database entry.

Optimum threshold values might also depend on the specific purpose for detecting resistance. In some 
cases, a very high sensitivity may be preferred as a trade-off to lowering the specificity. For example, more 
relaxed thresholds for colistin, which belongs to the HP-CIA  list32, may be used to minimise the occurrence of 
undetected resistance.

Table 2.  Number of resistant and susceptible isolates per antimicrobial used in this study. The numbers, 
including percentage, of resistant and susceptible isolates provided by the nine collaborating institutes for 
each of the 14 antimicrobials are given. Antimicrobials for which the MIC data was not available for all, or 
part of the isolates provided by an Institute have been marked (*). Cells in bold indicate unbalanced ratio with 
resistant isolates being less than 10% of total.

Institute # Strains Ampicillin (res/sen) Azithromycin (res/sen/missing MIC) Cefotaxime (res/sen)

APHA 37 33 (89.19%)/4 (10.81%) 7 (18.92%)/30 (81.08%) 17 (45.95%)/20 (54.05%)

BfR 50 41 (82.0%)/9 (18.0%) 5 (10.0%)/45 (90.0%) 28 (56.0%)/22 (44.0%)

ANSES 49 49 (100.0%)/0 (0.0%) 10 (20.41%)/39 (79.59%) 49 (100.0%)/0 (0.0%)

UCM 50 39 (78.0%)/11 (22.0%) 3 (6.0%)/47 (94.0%) 0 (0.0%)/50 (100.0%)

UoS 50 49 (98.0%)/1 (2.0%) 32 (64.0%)/18 (36.0%) 47 (94.0%)/3 (6.0%)

Pasteur 50 42 (84.0%)/8 (16.0%) 15 (30.0%)/35 (70.0%) 28 (56.0%)/22 (44.0%)

WBVR 50 32 (64.0%)/18 (36.0%) 0 (0.0%)/50 (100.0%) 24 (48.0%)/26 (52.0%)

PHE 50 50 (100.0%)/0 (0.0%) 0 (0%)/0 (0%)/50* 43 (86.0%)/7 (14.0%)

NVI 50 44 (88.0%)/6 (12.0%) 0 (0%)/0 (0%)/50* 29 (58.0%)/21 (42.0%)

Total 436 379 (86.93%)/57 (13.07%) 72 (16.51%)/264 (60.55%)/100* 265 (60.78%)/171 (39.22%)

Institute Ceftazidime (res/sen)
Chloramphenicol (res/sen/missing 
MIC) Ciprofloxacin (res/sen) Colistin (res/sen)

APHA 16 (43.24%)/21 (56.76%) 18 (48.65%)/19 (51.35%) 22 (59.46%)/15 (40.54%) 0 (0.0%)/37 (100.0%)

BfR 29 (58.0%)/21 (42.0%) 19 (38.0%)/31 (62.0%) 29 (58.0%)/21 (42.0%) 18 (36.0%)/32 (64.0%)

ANSES 43 (87.76%)/6 (12.24%) 27 (55.1%)/22 (44.9%) 36 (73.47%)/13 (26.53%) 7 (14.29%)/42 (85.71%)

UCM 0 (0.0%)/50 (100.0%) 16 (32.0%)/34 (68.0%) 15 (30.0%)/35 (70.0%) 2 (4.0%)/48 (96.0%)

UoS 45 (90.0%)/5 (10.0%) 3 (6.0%)/47 (94.0%) 44 (88.0%)/6 (12.0%) 0 (0.0%)/50 (100.0%)

Pasteur 13 (26.0%)/37 (74.0%) 7 (14.0%)/43 (86.0%) 19 (38.0%)/31 (62.0%) 0 (0.0%)/50 (100.0%)

WBVR 24 (48.0%)/26 (52.0%) 12 (24.0%)/38 (76.0%) 16 (32.0%)/34 (68.0%) 0 (0.0%)/50 (100.0%)

PHE 41 (82.0%)/9 (18.0%) 0 (0%)/0 (0%)/50* 50 (100.0%)/0 (0.0%) 0 (0.0%)/50 (100.0%)

NVI 29 (58.0%)/21 (42.0%) 11 (22.0%)/39 (78.0%) 30 (60.0%)/20 (40.0%) 0 (0.0%)/50 (100.0%)

Total 240 (55.05%)/196 (44.95%) 113 (25.92%)/273 (62.61%)/50 261 (59.86%)/175 (40.14%) 27 (6.19%)/409 (93.81%)

Institute Gentamicin (res/sen) Meropenem (res/sen/missing MIC) Nalidixic Acid (res/sen/missing MIC)
Sulfamethoxazole (res/sen/missing 
MIC)

APHA 8 (21.62%)/29 (78.38%) 0 (0.0%)/37 (100.0%) 20 (54.05%)/17 (45.95%) 32 (86.49%)/5 (13.51%)

BfR 11 (22.0%)/39 (78.0%) 0 (0.0%)/50 (100.0%) 25 (50.0%)/25 (50.0%) 35 (70.0%)/15 (30.0%)

ANSES 21 (42.86%)/28 (57.14%) 0 (0.0%)/49 (100.0%) 38 (77.55%)/11 (22.45%) 44 (89.8%)/5 (10.2%)

UCM 6 (12.0%)/44 (88.0%) 0 (0.0%)/50 (100.0%) 28 (56.0%)/22 (44.0%) 36 (72.0%)/14 (28.0%)

UoS 12 (24.0%)/38 (76.0%) 0 (0.0%)/50 (100.0%) 40 (80.0%)/10 (20.0%) 45 (90.0%)/5 (10.0%)

Pasteur 12 (24.0%)/38 (76.00%) 23 (46.0%)/27 (54.0%) 20 (40.0%)/30 (60.0%) 39 (78.0%)/11 (22.0%)

WBVR 0 (0.0%)/50 (100.0%) 0 (0.0%)/50 (100.0%) 8 (16.0%)/42 (84.0%) 26 (52.0%)/24 (48.0%)

PHE 21 (42.0%)/29 (58.0%) 26 (52.0%)/24 (48.0%) 0 (0%)/0 (0%)/50* 0 (0%)/0 (0%)/50*

NVI 7 (14.0%)/43 (86.0%) 0 (0.0%)/45 (100.0%)/5* 18 (36.0%)/32 (64.0%) 29 (58.0%)/21 (42.0%)

Total 98 (22.48%)/338 (77.52%) 49 (11.24%)/382 (87.61%)/5* 197 (45.18%)/189 (43.35%)/50* 286 (65.6%)/100 (22.94%)/50*

Institute Tetracycline (res/sen/missing MIC) Tigecyline (res/sen/missing MIC) Trimethoprim (res/sen/missing MIC)

APHA 32 (86.49%)/5 (13.51%) 0 (0.0%)/37 (100.0%) 29 (78.38%)/8 (21.62%)

BfR 38 (76.0%)/12 (24.0%) 0 (0.0%)/50 (100.0%) 33 (66.0%)/17 (34.0%)

ANSES 42 (85.71%)/7 (14.29%) 0 (0.0%)/49 (100.0%) 36 (73.47%)/13 (26.53%)

UCM 45 (90.0%)/5 (10.0%) 0 (0.0%)/50 (100.0%) 34 (68.0%)/16 (32.0%)

UoS 28 (56.0%)/22 (44.0%) 0 (0.0%)/50 (100.0%) 38 (76.0%)/12 (24.0%)

Pasteur 22 (44.0%)/28 (56.0%) 0 (0.0%)/50 (100.0%) 23 (46.0%)/27 (54.0%)

WBVR 25 (50.0%)/25 (50.0%) 0 (0.0%)/50 (100.0%) 14 (28.0%)/36 (72.0%)

PHE 0 (0%)/0 (0%)/50* 1 (2.0%)/49 (98.0%) 0 (0%)/0 (0%)/50*

NVI 31 (62.0%)/19 (38.0%) 0 (0.0%)/45 (100.0%)/5* 20 (40.0%)/30 (60.0%)

Total 263 (60.32%)/123 (28.21%)/50* 1 (0.23%)/430 (98.62%)/5* 227 (52.06%)/159 (36.47%)/50*
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A:

Sensi�vity

APHA 
SeqFinder/Abricate
(APHA)

GeneFinder
(PHE)

BLAST
(WBVR)

ResFinder/PointFin
der
(NVI)

ARIBA
(UCM)

Averag
e

Ampicillin 0.939 (0.91,0.961)

0.974 

(0.952,0.987)

0.937 

(0.907,0.959) 0.958 (0.932,0.976)

0.976 

(0.955,0.989) 0.957

Azithromycin 0.944 (0.864,0.985)

0.944 

(0.864,0.985)

0.889 

(0.793,0.951) 0.944 (0.864,0.985)

0.944 

(0.864,0.985) 0.933

Cefotaxime 0.898 (0.855,0.932)

0.891 

(0.847,0.925)

0.887 

(0.842,0.922) 0.906 (0.864,0.938)

0.891 

(0.847,0.925) 0.894

Ce�azidime 0.946 (0.909,0.971)

0.938 

(0.899,0.965)

0.933 

(0.894,0.961) 0.95 (0.914,0.974)

0.933 

(0.894,0.961) 0.94

Chloramphenic

ol 0.947 (0.888,0.98)

0.956 

(0.9,0.985)

0.956 

(0.9,0.985) 0.956 (0.9,0.985)

0.956 

(0.9,0.985) 0.954

Ciprofloxacin 0.908 (0.866,0.94)

0.935 

(0.898,0.962)

0.889 

(0.844,0.924) 0.939 (0.902,0.965)

0.307 

(0.251,0.366) 0.795

Colis�n 0.704 (0.319,0.713)

0.704 

(0.498,0.862)

0.704 

(0.498,0.862) 0.704 (0.498,0.862)

0.704 

(0.498,0.862) 0.704

Gentamicin 0.939 (0.871,0.977)

0.959 

(0.899,0.989)

0.949 

(0.885,0.983) 0.959 (0.899,0.989)

0.847 

(0.76,0.912) 0.931

Meropenem 1.0 (0.927,1.0) 1.0 (0.927,1.0) 1.0 (0.927,1.0) 1.0 (0.927,1.0) 1.0 (0.927,1.0) 1

Nalidixic Acid 0.904 (0.853,0.941)

0.939 

(0.896,0.968)

0.939 

(0.896,0.968) 0.934 (0.89,0.964)

0.03 

(0.011,0.065) 0.749

Sulfamethoxaz

ole 0.766 (0.712,0.814)

0.895 

(0.854,0.928)

0.864 

(0.818,0.901) 0.888 (0.846,0.922)

0.895 

(0.854,0.928) 0.862

Tetracycline 0.973 (0.946,0.989)

0.989 

(0.967,0.998)

0.958 

(0.926,0.979) 0.977 (0.951,0.992)

0.985 

(0.962,0.996) 0.976

Tigecyline 1.0 (0.025,1.0) 1.0 (0.025,1.0) 1.0 (0.025,1.0) 1.0 (0.025,1.0) 1.0 (0.025,1.0) 1

Trimethoprim 0.868 (0.817,0.909)

0.965 

(0.932,0.985)

0.952 

(0.915,0.976) 0.956 (0.92,0.979)

0.965 

(0.932,0.985) 0.941

Average* 0.903 0.93 0.912 0.928 0.803

(Continued)
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B: 

Specificity 

APHA 
SeqFinder/Abricate 
(APHA) 

GeneFinder 
(PHE) 

BLAST 
(WBVR) 

ResFinder/Poin�in
der 
(NVI) 

ARIBA 
(UCM) 

Averag

e 

Ampicillin 0.965 (0.879,0.996) 

0.947 

(0.854,0.989) 1.0 (0.937,1.0) 0.947 (0.854,0.989) 

0.965 

(0.879,0.996) 0.965 

Azithromycin 0.894 (0.85,0.928) 

0.758 

(0.701,0.808) 

0.822 

(0.77,0.866) 0.769 (0.713,0.818) 

0.723 

(0.665,0.777) 0.793 

Cefotaxime 0.93 (0.881,0.963) 

0.924 

(0.874,0.959) 

0.947 

(0.902,0.976) 0.936 (0.888,0.967) 

0.942 

(0.895,0.972) 0.936 

Ce�azidime 0.883 (0.829,0.924) 

0.883 

(0.829,0.924) 

0.908 

(0.859,0.945) 0.893 (0.841,0.932) 

0.903 

(0.853,0.941) 0.894 

Chloramphenic

ol 0.89 (0.847,0.925) 

0.839 

(0.79,0.88) 

0.868 

(0.822,0.906) 0.777 (0.722,0.825) 

0.762 

(0.707,0.811) 0.827 

Ciprofloxacin 0.897 (0.842,0.938) 

0.743 

(0.671,0.806) 

0.663 

(0.588,0.732) 0.737 (0.665,0.801) 

0.783 

(0.714,0.842) 0.765 

Colis�n 0.995 (0.982,0.999) 

0.998 

(0.986,1.0) 

0.993 

(0.979,0.998) 0.99 (0.975,0.997) 

0.993 

(0.979,0.998) 0.994 

Gentamicin 0.843 (0.8,0.88) 0.843 (0.8,0.88) 

0.834 

(0.79,0.872) 0.834 (0.79,0.872) 

0.817 

(0.771,0.856) 0.834 

Meropenem 0.927 (0.896,0.951) 

0.927 

(0.896,0.951) 

0.929 

(0.899,0.953) 0.929 (0.899,0.953) 

0.927 

(0.896,0.951) 0.928 

Nalidixic Acid 0.979 (0.947,0.994) 

0.937 

(0.892,0.967) 

0.751 

(0.683,0.811) 0.926 (0.879,0.959) 

0.979 

(0.947,0.994) 0.914 

Sulfamethoxaz

ole 0.93 (0.861,0.971) 

0.93 

(0.861,0.971) 

0.94 

(0.874,0.978) 0.93 (0.861,0.971) 

0.91 

(0.836,0.958) 0.928 

Tetracycline 0.959 (0.908,0.987)

0.927 

(0.866,0.966)

0.935 

(0.876,0.972) 0.919 (0.856,0.96)

0.911 

(0.846,0.955) 0.93

Tigecyline 0.933 (0.905,0.954)

0.933 

(0.905,0.954)

0.942 

(0.915,0.962) 0.933 (0.905,0.954)

0.933 

(0.905,0.954) 0.934

Trimethoprim 0.994 (0.965,1.0)

0.975 

(0.937,0.993)

0.975 

(0.937,0.993) 0.975 (0.937,0.993)

0.975 

(0.937,0.993) 0.979

Average 0.93 0.897 0.893 0.892 0.894

Table 3.  Estimated sensitivity and specificity for each pipeline for each antimicrobial. The sensitivity (A), 
specificity (B) values and their 95% confidence intervals (values between brackets) for each pipeline and 
each antibiotic, with the overall average per pipeline also provided. Cells with values greater than or equal to 
0.95 have a green background, between 0.90 and 0.49 orange have background, and less than 0.9 have a red 
background. The name of the institute that ran the pipeline is given within brackets. *The average values did not 
include sensitivity for tigecycline.
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Figure 1.  Graphical representation of the sensitivity and specificity values (and 95% confidence intervals) for 
each antimicrobial detected by the 5 pipelines on the receiver operating characteristic (ROC) coordinate system. 
As there is one isolate with resistance to tigecycline, its sensitivity value was equal to 1 for all the pipelines.
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Figure 1.  (continued)
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Figure 1.  (continued)



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14372  | https://doi.org/10.1038/s41598-022-16760-9

www.nature.com/scientificreports/

Interpretation of pipeline results. While performance of the pipeline is the major factor when deciding 
which one is most suitable to user needs, the ease of interpreting the results files is also an important point to 
consider. To this end, a questionnaire was completed by the person from each institute responsible for extracting 
the pipeline output information for their corresponding isolates. The questionnaire contained seven subjective 
questions to measure the degree of user friendliness related to the interpretation of the pipeline output, and the 
score for each question and pipeline, given in response by the operator in each institute, are provided in Sup-
plementary Table S4. The average and standard deviation values for responses from all nine institutes, as well as 
those from the six institutes with no link to any of the software are shown in Table 4. There were no major dif-
ferences found between the pipelines, with the APHA SeqFinder/ABRicate having the highest average mark and 
ARIBA the lowest. The preferred pipelines (as per question 7) was GeneFinder by a small margin over APHA 
SeqFinder/ABRicate when all responses were considered, although the differential was greater when response 
from only the six “independent” institutes were considered, with ResFinder performing equally well in the latter 
group with APHA SeqFinder. Therefore, differences in levels of user-friendliness i.e. the ease of finding and link-
ing geno- and pheno-types to understand results, or availability of QC metrics, should also be considered as part 
of any pipeline harmonisation process, as it may influence who and how often tools are used.

Discussion
Standardisation of any methodology is essential to enable comparison, as well as reproducibility across different 
sectors and countries, but can often be undervalued or overlooked. Monitoring systems that are harmonised 
already exists in areas such as AMR, which has been invaluable to determine AMR trends overtime across 
Europe although it only uses phenotypic testing  results33. The wealth of data WGS provides and the increased 
cost effectiveness of NGS technology has presented genomic epidemiology as a feasible alternative. However, 
the availability and continual development of new bioinformatics tools has resulted in a call for harmonisation 
of in-silico genomic methods to track AMR  globally17. Recommendations made in a workshop to implement 
WGS for surveillance recognised the challenges facing its implementation, including some of the bioinformat-
ics  processes20, which was the focus of this study. Although some of the participating institutes for this study 
extensively use their preferred in-silico methodologies for AMR detection, in addition to classical wet-lab tech-
niques, the global harmonisation of phenotype-genotype AMR susceptibilities is still in its early stages, due to 
a lack of pre-set standards. Here we compared several AMR bioinformatics pipelines using the same isolate 
data set, with default (generalised) pipeline settings and under the same interpretation conditions. Using these 
conditions, we concluded that no pipeline clearly stands out from the rest, in terms of performance and ease of 
output interpretation although some user preferences were noted from our questionnaire. Further, we observed 
that the performance of the pipelines depended in some instances on the antimicrobial for which the resistance 
determinant was being detected and therefore the ability to set individual thresholds for each database entry is 
an important feature but not widely available.

We believe that the results of our study can be applied to inform future initiatives for harmonisation of results 
from WGS pipelines, whether for AMR or any other area of diagnostics and surveillance. Just as multi-locus 
sequence typing of E. coli using underlying  genetics7 is increasingly being used in place of  serotyping34 to identify 
pathogens due to its ability to provide more detailed/accurate subtyping of populations, we believe a harmonised 

Table 4.  Questionnaire, average scores and standard deviation (between brackets) for responses from the 9 
collaborators for each of the pipelines evaluated (top line), and responses from the six institutes independent 
from any software used in this study (bottom line). Scores range from 1, being the lowest (worst) score to 5 
being the highest (most positive) score.

(Range 1 to 5. 1 being the lowest score and 5 the highest score) APHA SeqFinder_Abricate Genefinder BLAST ResFinder/PointFinder ARIBA

1. First impressions when you open the results table
4.22 (0.63) 4.0 (1.25) 4.22 (0.92) 3.33 (0.94) 2.11 (0.87)

4.33 (0.81) 4.17 (1.33) 3.83 (0.98) 3.33 (1.21) 2 (0.63)

2. How easy was it to find your results in the output file?
4.44 (0.5) 4.44 (0.83) 4.33 (0.82) 4.0 (0.94) 2.56 (0.83)

4.5 (0.55) 4.5 4.0 3.83 2.5

3. How easy did you find it to link the gene/mutation to your phenotype?
4.06 (0.6) 3.89 (0.87) 4.0 (1.25) 3.78 (0.79) 2.78 (1.31)

3.92 (0.66) 3.83 (0.98) 3.67 (1.51) 3.83 (0.98) 2.5 (1.64)

4. How easily can an individual non-related to the subject understand the 
outputs?

3.44 (0.83) 3.0 (0.94) 3.67 (1.05) 3.33 (0.82) 1.78 (0.63)

3.67 (0.82) 3.17 (1.17) 3.33 (1.21) 3.5 (0.84) 1.83 (0.75)

5. Availability of QC metrics such as mean coverage, etc.
4.78 (0.63) 4.22 (1.23) 1.22 (0.63) 3.11 (1.1) 4.0 (1.25)

4.67 (0.82) 4.33 (1.21) 1.0 (0) 3 (1.41) 3.83 (1.47)

6. Time used to extract the information
4.11 (0.87) 4.22 (1.03) 3.78 (1.03) 3.44 (1.07) 2.44 (1.17)

4.17 (0.98) 4.5 (0.84) 3.33 (1.03) 3.33 (1.21) 2.33 (1.51)

7. What is your preferred pipeline?
3.78 (0.63) 4.11 (1.2) 3.44 (0.96) 3.67 (1.05) 2.33 (0.94)

3.83 (0.75) 4.5 (0.55) 3.17 (0.98) 3.83 (1.17) 2.33 (0.82)

Average score
4.12 3.98 3.52 3.52 2.57

4.15 4.14 3.19 3.52 2.48
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WGS method will do the same for bacterial characterisation, including for AMR. Therefore, our recommenda-
tions for harmonisation are as follows. Firstly, it may not be relevant which pipeline is used as long as it verifies 
a certain level of performance that can be agreed by the relevant scientific experts, depending on the application 
and the establishment of common inclusion/exclusion criteria of targeted matches. We propose that a control 
set of isolates are used to test and evaluate any pipeline with an appropriate representative sample and pre-set 
validation thresholds. For example, the collection of isolates used in this study may be appropriate for testing 
in-silico AMR pipelines, although any well validated set may be included, provided there is a balanced ratio 
between resistance and susceptibility of isolates to antimicrobials included in the test panel, e.g., to the EFSA 
panel of antimicrobials. However, the isolate panel will need to be regularly updated to incorporate isolates with 
new/novel AMR genes and the pipelines re-evaluated. However, for AMR pipelines, different bacterial species 
such as MRSA or Brachyspira, which may have different AMR mechanisms, a control set of isolates representative 
of AMR in those species will need to be included. The pipeline database will require to be updated to include 
species specific AMR genes/mutations and thresholds for these resistance determinants evaluated. For ease of 
evaluation and interpretation of pipeline results we recommend different species be tested separately using the 
same principles as performed in this study.

Also, a certain level of pre-agreed performance in terms of minimum sensitivity and specificity thresholds, 
when comparisons are made between phenotypes and genotypes, should be used as a validation test for any AMR 
detection software. From the results of this study a sensitivity and specificity value of ~ 0.9, would be reasonable 
to use, although, for detecting resistance to HP-CIAs e.g. colistin or carbapenem, a more relaxed threshold may 
be used to maximise resistance detection, including of new gene variants. Secondly, we recommend unifying 
the databases used by different pipeline software for positive identification; unless genes present in databases, 
including their nomenclature, are harmonised, there will be differences in the output even from the same isolate 
test set. In the AMR context, AMR gene identifiers or sequences, including any chromosomal point mutations 
leading to reduced susceptibility, and the translation rules from genotype to phenotype, should be consistent 
and transparent. This will also help the naïve user in interpretation of genotypic data, in addition to promoting 
harmonisation. And thirdly, to allow greater access and usability of this technology for routine surveillance, the 
final output information should be standardised into user-friendly documents. This will enable individuals with 
minimal background in genetics to benefit from these softwares.

As there are countless bioinformatics tools available, and many of them pursue similar aims but use different 
approaches with numerous fine tune adjustments, continual comparison of their performance is a difficult task. 
Our recommendation to achieve harmonisation does not require focusing on the best performing software, but 
on setting a common evaluation process based on universal minimal performance thresholds e.g. sensitivity and 
specificity measures applied to a representative testing sample set. In other words, we have made recommenda-
tions which will help towards creation of an appropriate structure for global standardisation of the bioinformatics 
component to enable genomic surveillance and diagnostics to become routine and standardised worldwide.

Methods
The isolates. A total of 436 E. coli isolates were provided by nine European institutes: the French Agency 
for Food, Environmental and Occupational Health and Safety, Lyon France (49 isolates), the Universidad Com-
plutense de Madrid, Spain (50 isolates), the Institute Pasteur, France (50 isolates), the German Federal Insti-
tute for Risk Assessment, Germany (50 isolates), the Norwegian Veterinary Institute, Norway (50 isolates), the 
Wageningen Bioveterinary Research, The Netherlands (50 isolates), the University of Surrey, United Kingdom 
(50 isolates), the Animal and Plant Health Agency, United Kingdom (37 isolates) and Public Health England, 
United Kingdom (50 isolates).

The raw WGS reads of isolates, generated from Illumina sequencing described  elsewhere16, are available in 
the NCBI nucleotide archive under project number PRJNA805266.

The antimicrobials. The sensitivity of isolates to the 14 antimicrobials used for AMR monitoring by the 
European Food and Safety Authority, was assessed using a standard MIC  protocol35. The antimicrobials were: 
Ampicillin, Azithromycin, Cefotaxime, Ceftazidime, Chloramphenicol, Ciprofloxacin, Colistin, Gentamicin, 
Meropenem, Nalidixic Acid, Sulfamethoxazole, Tetracycline, Tigecycline and Trimethoprim. The susceptibility 
of wild type E. coli to the panel were categorised as sensitive (S) or resistant ( R) by: Sensitive, when the isolate 
was inhibited at an antimicrobial concentration equal or lower than the established ECOFF value for the MIC, 
as described by the European Committee on Antimicrobial Susceptibility Testing (EUCAST)36 ; and Resistant, 
when the isolate was not inhibited at a specific antimicrobial concentration higher than the established ECOFF 
 values36. The full S and R profiles for each isolate to the panel of antimicrobials, interpreted using ECOFFs, are 
provided in Table S1 and the total values in Table 2.

For some institutions MIC values were not available for part or all isolates for an antimicrobial, this has 
been marked with an asterisk in Table 2. In most cases these were for human samples for antimicrobials which 
are not routinely screened by PHE (e.g. azithromycin, chloramphenicol, sulfamethoxazole, tetracycline and 
trimethoprim).

Detection software. Description of the five AMR detection software used in this study are provided below:
GeneFinder. Public Health England (PHE),  UK28. URL: https:// github. com/ phe- bioin forma tics/ gene_ finder. 

Version: 2.7. Operator: PHE. Language: python 2.7.5. Input format: FASTQ. Algorithm: mapping (bowtie 
2.1.0). Reference database: provides three in house references sets in FASTA format for E. coli, Salmonella 
and Campylobacter. Users can incorporate their own reference set. Reference database used in this study: in 
house (based on institute knowledge, ResFinder database (updated 10.02.2020) and CARD (The Comprehensive 

https://github.com/phe-bioinformatics/gene_finder
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Antibiotic Resistance Database, https:// card. mcmas ter. ca). The database is provided with the tool. Detection: 
presence or absence of sequences and mutations. It also reports insertions, deletions, mixed positions and large 
indels. Possibility to set the similarity thresholds (between sample DNA and a reference DNA) individually for 
each gene. Quality metrics: coverage, similarity, depth and coverage distribution.

APHA SeqFinder/ABRicate. Animal and Plant Health Agency (APHA),  UK14. URL: https:// github. com/ 
APHA- AMR- VIR/ APHAS eqFin der Version: 3.0. Operator: APHA. Language: python 3. Input format: FASTQ. 
Algorithm: mapping (smalt 0.7.6). APHA SeqFinder Reference database: provides three in house reference 
sets in FASTA format for AMR genes, mutations, plasmids, virulence factors and heavy metal resistances. APHA 
SeqFinder Reference database used in this study: in house (based on institute knowledge, ResFinder data-
base [updated 10.02.2020] and CARD). Detection: presence or absence of sequences and mutations. Quality 
metrics: coverage, similarity, depth and normalised depth by MLST genes.  ABRicate19 is used in conjunction 
with SeqFinder as an additional filter. URL: https:// github. com/ tseem ann/ abric ateVe rsion: 0.7. Language: perl. 
Input format: FASTA assembled contigs. (SPAdes 3.13.1). Algorithm: BLAST 2.7.0 or higher. ABRicate Refer-
ence database: same reference database as used for APHA SeqFinder (see above); it also provides additional 
databases which were not used in this study. Detection: presence or absence of genes. Quality metrics: coverage 
and similarity.

BLAST, Wageningen Bioveterinary Research (WBVR), The Netherlands. Pipeline not published at the time of 
this study. Operator: WBVR. Input format: FASTA assembled contigs. Algorithm: raw reads are error corrected 
with Tadpole from the BBduk suite v38.71. Quality trimming to Q20 with BBduk. Genomes are assembled using 
SPAdes 3.13.1. Assemblies are compared to the reference database using BLAST version 2.9.0. (with filters: 98% 
sequence identity and 97% gene coverage). Reference database: ResFinder database (updated 10.02.2020). Refer-
ence database used in this study: ResFinder database (updated 10.02.2020). Detection: presence or absence of 
sequences and mutations. Quality metrics: sequence identity and gene coverage provided by BLAST.

ResFinder v.3.2 + PointFinder v.3.1.029,30 Technical University of Denmark.
URL: https:// bitbu cket. org/ genom icepi demio logy/ resfi nder/ src/ master/. Operator: The Norwegian Vet-

erinary Institute (NVI). Language: python 3. Input format: FASTQ or FASTA assembled contigs. Algorithm: 
BLAST is used to analyse assemblies (FASTA files). Mapper KMA is used to analyse read data (FASTQ files). 
Reference database: ResFinder database (updated 10.02.2020) and PointFinder_database. Reference database 
used in this study: ResFinder database (updated 10.02.2020) . Detection: presence or absence of sequences and 
mutations. Quality metrics:

ARIBA v2.1231, Sanger Institute, UK. URL: https: //github.com/sanger-pathogens/ariba. Operator: Uni-
versidad Complutense de Madrid (UCM). Language: python 3. Input format: FASTQ. Algorithm: mapping 
(Bowtie 2.1.0). Reference database: does not provide its own reference database but has an integrated method 
to download and standardise one from different sources such as CARD, ResFinder, ARG-ANNOT, MEGARes, 
NCBI, PlasmidFinder, VFDB, SRST2 and VirulenceFinder. Users can incorporate their own reference set. Refer-
ence database used in this study: ResFinder database (updated 10.02.2020)). Detection: presence or absence of 
AMR sequences only (This is the default setting and was used in this study. However it is possible to incorporate 
an external reference database for detecting mutations, but currently there is not an integrated and standardised 
database for mutations conferring AMR).It also reports genetic fragmentations, interruptions, and duplications. 
Quality metrics: gene coverage, sequence identity.

Data analysis. All 436 isolates were run through each pipeline by five independent operators (one per pipe-
line). Result tables from the five pipeline runs were sent to each of the nine institutes who extracted the results 
corresponding to their isolates. For the following pipelines the antimicrobial class associated with each resist-
ance gene was provided in the output to enable matching with the phenotype by operators: ResFinder; APHA 
SeqFinder; GeneFinder; WBVR Blast; for ARIBA prior knowledge from operators was required. The AMR geno-
type information (genes or chromosomal mutations) for each isolate was collated with the gold standard pheno-
type on a standardised form for each antimicrobial (Supplementary Table S3).

A bespoke R script was used to calculate the sensitivity and specificity and their 95% confidence intervals 
for each pipeline, for each antimicrobial, by using the information provided in Supplementary Table S3. For a 
specific pipeline-antimicrobial-isolate combination, if an AMR element was detected, the isolate was considered 
resistant to that antimicrobial from that pipeline (test positive). If no AMR element was detected the isolate was 
considered sensitive (test negative). Test results were then compared to the gold standard resistant/sensitive 
phenotypic profiles.

Pipelines output evaluation questionnaire. A questionnaire to evaluate user friendliness and qual-
ity control metrics of the pipelines output documents was sent to the 9 people, one at each institute, that were 
responsible for extracting the information for each of the 5 pipelines for their corresponding isolates. Three of 
the responses were from APHA, PHE and WBVR, who were also running their own pipelines, APHA Seqfinder, 
GeneFinder and BLAST; but both tasks were not carried out by the same person. The other six responses were 
from institutes with no link to any of the software used in the study, and an additional evaluation was performed 
on this subset.

Data availability
All WGS data is available through NCBI BioProject ID: PRJNA805266.
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