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Abstract: The timing of 30-day pediatric readmissions is skewed with approximately 40% of the
incidents occurring within the first week of hospital discharges. The skewed readmission time
distribution coupled with delay in health information exchange among healthcare providers might
offer a limited time to devise a comprehensive intervention plan. However, pediatric readmission
studies are thus far limited to the development of the prediction model after hospital discharges.
In this study, we proposed a novel pediatric readmission prediction model at the time of hospital
admission which can improve the high-risk patient selection process. We also compared proposed
models with the standard at-discharge readmission prediction model. Using the Hospital Cost
and Utilization Project database, this prognostic study included pediatric hospital discharges in
Florida from January 2016 through September 2017. Four machine learning algorithms—logistic
regression with backward stepwise selection, decision tree, Support Vector machines (SVM) with
the polynomial kernel, and Gradient Boosting—were developed for at-admission and at-discharge
models using a recursive feature elimination technique with a repeated cross-validation process. The
performance of the at-admission and at-discharge model was measured by the area under the curve.
The performance of the at-admission model was comparable with the at-discharge model for all
four algorithms. SVM with Polynomial Kernel algorithms outperformed all other algorithms for
at-admission and at-discharge models. Important features associated with increased readmission risk
varied widely across the type of prediction model and were mostly related to patients’ demographics,
social determinates, clinical factors, and hospital characteristics. Proposed at-admission readmission
risk decision support model could help hospitals and providers with additional time for intervention
planning, particularly for those targeting social determinants of children’s overall health.

Keywords: readmission; machine learning; pediatrics

1. Introduction

Unplanned hospital readmissions disrupt the daily routine lives of patient and families,
and expose patient to the risk of hospital-acquired infections and other potentially harmful
conditions [1–3]. The preventable 30-day readmission rate has become a critical metric
in assessing patient hospital care quality for hospitals and other healthcare providers [4].
Unplanned hospital readmissions are costly and often associated with adverse health
outcomes and therefore have become a major policy concern [3,5,6]. In 2016, national
estimates by the Agency for Healthcare Research and Quality (AHRQ), readmissions within
30 days resulted in hospital cost of $2.5 billion for children and $52.4 billion for adults [7]. To
combat this, the Centers for Medicare and Medicaid Services (CMS) adopted the Hospital
Readmissions Reduction Program (HRRP) in 2012 that penalizes hospitals with higher
than expected readmission rates for targeted conditions and thus incentivizes hospitals to
develop internal strategies to reduce readmissions [8]. Similarly, many states have begun
imposing penalty payments to hospitals and Managed Care Organizations (MCO) with
excess Medicaid readmission rates, particularly for pediatric readmissions [9,10]. These
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efforts resulted in a significant reduction in 30 days unplanned readmissions, particularly
for targeted populations. Compared to adult and Medicare readmission rates, pediatric
readmission rates remained unchanged, and one study even reported a national increment
(8.2%) between 2010 and 2016 [11,12]. Consequently, readmission reduction efforts gained
significant recent attention among healthcare providers and professionals in devising
ways of reducing readmission risk among children [13,14]. An improved readmission
prediction model could help hospitals and healthcare providers to identify high-risk patient
groups and, implement interventions in timely manner that reduce the risk of unplanned
readmission within days of discharges.

In the last decade, with the wide adoption of electronic medical record systems across
hospitals and other provider systems, researchers have focused on predictive analytics to
identify patient at greater risk of being readmitted and finding ways to prevent unplanned
hospital visits [15–17]. Accurate and advanced readmission risk prediction would provide
opportunities for hospitals and insurance companies to design and implement general
or condition-specific interventions toward those who might need it most [18]. Owing
to the CMS hospital readmission reduction programs, prediction of adult and Medicare
patients have been the subject of substantial research and tackled by various hospital point-
of-care approaches [19,20]. However, readmission prediction for children have received
limited attention [21,22]. Prior pediatric readmission studies are thus far limited to the
development of a prediction model after patient hospital discharges [23,24]. Most of these
after-discharge readmission prediction studies reported predictive models for a 30-day
readmission and, recently one study showed promise for 7-day pediatric readmission
prediction [25–27]. However, these after-discharge predictive models might provide a
limited amount of time for hospitals and providers to identify high-risk children and
devise any appropriate general or patient intervention plans, mainly due to characteristics
and timing of pediatric readmission. Timing of the prediction model application in pediatric
hospital care is important for multifactorial reasons. First, the timing of the 30-day pediatric
readmissions is positively skewed with approximately 40% of the incidents within the first
week of hospital discharges [28]. Second, pediatric readmission prevention often requires
multi-faceted programs including clinical and non-clinical interventions (e.g., targeting
social determinants of health). These interventions often involve coordinated participation
from various care providers, hospitals, and healthcare insurers (e.g., MCOs) [13]. The
skewed readmission timing distribution coupled with the delay in health information
exchange between healthcare providers might jeopardize multifactorial interventions plan
due to limited time availability [29,30]. Consequently, strategies for reducing pediatric
readmissions need to account for the higher frequency of readmissions within the first week
of discharge, thus warranting an earlier but similar predictive readmission model to better
target the high-risk patients. Therefore, it is crucial to develop an advanced readmission
risk prediction model, which can be coupled more effectively with appropriate intervention
programs to reduce readmission risk, and ultimately improve quality of care [31].

Our study hence aimed to develop prediction models that can better identify those chil-
dren that are at high risk of unplanned hospital readmission visits. In this study, we propose
a novel pediatric readmission prediction model at the time of hospital admission, which
we hypothesized would have provided physicians and care providers with additional time
for intervention planning, particularly for those targeting social determinants of children’s
overall health. In addition, we looked into the predictability performance of our proposed
model compared with the existing at discharge model, investigated the performance by
diagnosis groups and the timing of implementing pediatric readmission models.

2. Materials and Methods
2.1. Study Setting

Using the Hospital Cost and Utilization Project (HCUP) State inpatient database, this
retrospective study included all pediatric admissions from 1 January 2016 to 30 Septem-
ber 2017, across all Florida’s hospitals. Developed by the AHRQ, the HCUP SID is an
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all-payer dataset that includes the uninsured database of hospital inpatient stays across all
non-federal hospitals [32]. The dataset contains patient-level information on demographic
characteristics, insurance status, and International Classification of Diseases, 10th Revision,
Clinical Modification (ICD-10-CM) diagnosis and procedure codes, patient location, and
hospital charges of hospital visits from 265 acute care hospitals across 67 Florida counties.
Data on hospitals, including geo-locations, were obtained from the American Hospital
Association Guide. Data on community-level health determinants were derived from
the American Community Survey (ACS) by linking patient ZIP codes through Uniform
Data System (UDS) Mapper crosswalk [33]. We excluded adult patients (>18), residential
addresses outside Florida, discharges against medical advice, and cases of in-hospital mor-
tality from the dataset. Institutional review board approval was not required as determined
by the local Institutional Review (IRB) Board.

2.2. Outcome Variable

The primary outcome was all-cause readmission to any Florida hospital within 30 days
following discharge of an acute care hospitalization. We used the previously validated
all-cause Pediatric All-Condition Readmission algorithm by the Boston Children Hospital
to identify pediatric readmissions [34]. Consistent with the prior studies, only the first
readmission within 30 days was considered and subsequent admissions after 30 days
from discharge were identified as another index hospitalization [34,35]. Besides, our
study considered only readmission events that occur in children younger than 18 years
and excluded readmissions for planned procedures and chemotherapy similar to prior
studies [36,37].

2.3. Predictors

In this study, we evaluated the pediatric readmissions prediction model using patient
information and available data for three major time points: (1) prediction model that
uses data available at the time of hospital admission or transferring to another acute care
hospital, (2) standard readmission prediction model that uses all available information
during discharge time, and (3) hospital admission prediction model that uses only available
patient information and social determinants of health before any hospitalization event
occurs. Predictors for the three models—at-admission prediction model (AD-PDR), at-
discharge prediction model (DS-PDR), and prior to the hospital admission prediction model
(PT-PDR)—were included based on the availability of the information at that certain time
point (Figure 1). PT-PDR models included patient demographics, socioeconomic status,
provider density, prior hospital visit history, and community-level social determinants
of health. At admission model (AD-PDR) included all variables included in the PT-PDR
model, diagnosis presented at the time of hospital admission, and admitting hospitals
detailed information. Finally, the conventional at-discharge prediction model (DS-PDR)
includes all predictor variables from PT-PDR and AD-PDR models as well as diagnosis,
hospital procedures, and discharge information. Table 1 shows the predictor variables
included in three-readmission prediction models.

PT-PDR models included available variables before hospital admission including
demographics, socioeconomic status, provider density, prior hospital visit, and community-
level social determinants of health (Supplemental Table S1). Demographic variables in-
cluded in our study were age (0–1, 1–5, 5–8, 8–12, and ≥12), race (African American,
White, Hispanic, and others), and gender. Patients’ insurance status (public fee for service,
Medicaid managed care, private, and uninsured) and community-level social determinants
of health were used as proxy measures of individual and neighborhood socioeconomic
conditions [38,39]. Provider density was considered as a binary variable (high/low), low
provider density is considered for if patients live in the designated medically underserved
area (MUA) and counties. Designated MUA status was determined using the U.S. Health
Resources and Services Administration (HRSA) classification [40]. History of patient’s
hospital visits including unplanned treat-and-release emergency department (ED) visits
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and readmissions within one year of index admissions were also included in our analysis.
Social determinants of health (SDH) variables considered in our study were the percentage
of people with an income below 100% federal poverty level (FPL), the percentage of homes
with no vehicles, the percentage of people with no high school diploma, and the percentage
of the unemployed person. These community-level SDH variables affected hospital visit
behaviors reported in prior studies and included in our study at the ZIP code tabulation
area (ZCTA) level, a generalized area representation of the ZIP codes used by the U.S.
Census [41].
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Table 1. Predictor variables for the three pediatric readmission prediction models.

Variable Type
Prediction Model Prior to

Admission
(PT-PDR)

Prediction Model at
Admission
(AD-PDR)

Prediction Model at
Hospital Discharge

(DS-PDR)

Demographics X X X

Socioeconomic status X X X

Provider density X X X

History of hospital visits X X X

Community-level social
determinants of health X X X

Individual-level social
determinants of health X X

Diagnosis at admission X X

Hospital characteristics X X

Hospital travel distance X X

Diagnosis during
hospitalization X

Hospital procedures X

Discharge planning X

Hospital length of stay X
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The AD-PDR models included admitting hospitals characteristics, patient travel in-
formation, individual-level social determinants of health, diagnosis presented at the time
of hospital admission, and the variables included in the PT-PDR model. Hospital-level
covariates are children’s hospital status, location (division, metropolitan, and micro/rural),
ownership status (for-profit and non-profit/government), and hospital bed size (large,
medium, and small). Travel distances between patients’ residences and discharge hospi-
tals were calculated by geocoding using geographical information software (ArcGIS 10;
Ersi Inc., Redlands, CA, USA). The individual-level SDH variable was a binary variable
indicating potential health hazards related to children’s family conditions (e.g., housing
and parent instability). The ICD-10-CM admitting diagnosis codes used to characterize
hospital visits by patient disease complexity for at admission, AD-PDR models. Each of the
admitting diagnosis ICD-10-CM codes is included as a binary (yes/no) variable included
in the building AD-PDR models.

The DS-PDR models included patient discharge information, ICD-10 CM diagnosis,
and procedures along with variables used in the PT-PDR and AD-PDR models. The ICD-10
CM diagnosis and procedures codes during hospitalization were coded into individual
binary codes (yes/no) and included in the model. The other patient-level factors included
only in the DS-PDR model were inpatient LOS (0–3, 3–8, and ≥8 days), and discharge
planning (routine, post-acute facility, and home health care). The total number of variables
included in building the prediction model for PT-PDR, AD-PDR, and DS-PDR was 18, 3721,
and 6324, respectively.

2.4. Modeling and Analysis

The overall model training and validation process we followed is shown in Figure 2.
The overall missing data rate was <0.5%, which we imputed using multiple regression
chained equations. We initiated our feature selection process with the variance threshold
method, which eliminates features with certain threshold values. We examined the overall
distribution of our features and selected a cut-off point of 0.05 for selecting the features.
After the variance threshold method, we implemented a chi-square feature selection model
with a 0.05 level of significance. The Chi-square feature selection process is computationally
efficient and has been widely adopted in prior feature selection research studies [42]. We
then used a recursive feature elimination (RFE) technique with a repeated fivefold cross-
validation process to evaluate the performance of the prediction model. The RFE approach
trained all the available variables and assign a relative weight for the developed prediction
model. Therefore, we can eliminate unimportant features by assigning a cutoff weight
value. In our case, we set the cut-off value 5% after each iteration, which eliminates 5%
of the total number of low weighted features iteratively, until we have the maximum
performance metric.

For the repeated cross-validation process, each cohort (e.g., at-discharge AD-PDR)
entire dataset was divided into 5 equal cross-validation folds. For each cross-validation
repetition, each fold is alternatively used as the test dataset while training our predictors
on the other remaining folds. The hyperparameter of each technique was optimized
through a grid search with 10 repeated 5-fold cross-validation iterations. While training,
we also explored the issues with class imbalanced problems by using the Synthetic Minority
Over-sampling Technique (SMOTE) on the training dataset [43,44]. We repeated the cross-
validation process 30 times on each cohort to obtain the average performance of each
learning model.
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We developed and investigated several established machine learning algorithms for
each model cohort to identify children at high risk for 30-day unplanned readmission.
The target variables for the three patient cohorts based on timing was binary variable
(yes/no) if the children have been readmitted within 30 days of hospital discharge. To
assesses the performance of the learning model, we applied logistic regression (LR) with
backward stepwise selection, Decision tree (C4.5), Support Vector machines (SVM) with
the polynomial kernel, and Gradient Boosting (GB) algorithms for each disease cohort. The
area under the receiver operating characteristics (ROC) curve (AUC) was used to evaluate
the performance of each prediction model. The average AUC values from traditional
DS-PDR models were considered as baselines for the performance comparison of the
machine-learning algorithms. All statistical analyses were performed using R studio, and a
two-sided p-value less than 0.05 was considered statistically significant.

3. Results

The analysis included 87,865 index hospital visits by 64,597 children with a mean
age of 7.8 years with 50.04% females from 1 January 2016 to 30 September 2017. Among
these index visits, we identified 7288 (8.29%) pediatric hospital 30-day readmission visits.
The baseline patient demographics and hospital characteristics for the hospital visits were
provided in Table 2. The distribution of the timing of 30-days readmission is illustrated
in Supplemental Figure S1. We found from our initial analysis that 35.5% of hospital
readmissions occurred within the first seven days of hospital discharge, where the highest
percentage of readmission occurred on day 3. Out of the total of 87,865 hospital visits,
14,849 (16.9%) visits had a different primary diagnosis at discharge time than admitting
diagnosis. This dissimilarity between discharge primary diagnosis and admitting diagnosis
occurred for the children hospital visits with admitting diagnosis (Supplemental Figure S2)
associated with mental health disorder (26.1%); respiratory system disease (7.3%); Injury
and poisoning (6.3%); and Symptoms, signs, and ill-defined conditions (53.2%).
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Table 2. Patient and hospital characteristics at 30-day pediatric readmissions.

Variable Total (N = 87,865)
n (%)

No Readmission
(N = 80,577)

n (%)

Readmission
(N = 7288)

n (%)
p Value

Age (y)

0–1 12,321 (14.0) 11,502 (14.3) 819 (11.2)

<0.001

1–5 14,624 (16.6) 13,361 (16.6) 1263 (17.3)

5–8 9020 (10.3) 8344 (10.4) 676 (9.3)

8–12 11,856 (13.5) 10,820 (13.4) 1036 (14.2)

12–17 40,044 (45.6) 36,550 (45.4) 3494 (47.9)

Gender

Male 43,882 (49.9) 40,141 (49.8) 3741 (51.3)
0.21

Female 43,983 (50.1) 40,436 (50.2) 3547 (48.7)

Race

White 34,367 (39.1) 31,503 (39.1) 2864 (39.3)

<0.01
African American 26,676 (30.4) 24,251 (30.1) 2425 (33.3)

Hispanic/Latin 23,079 (26.3) 21,341 (26.5) 1738 (23.8)

Others 3743 (4.3) 3482 (4.3) 261 (3.6)

Insurance

Public FFS 10,385 (11.8) 9132 (11.3) 1253 (17.2)

<0.01
Medicaid MCO 51,928 (59.1) 47,830 (59.4) 4098 (56.2)

Private 20,007 (22.8) 18,513 (23.0) 1494 (20.5)

Uninsured 5545 (6.3) 5102 (6.3) 443 (6.1)

Travel distance (home to index hospital)

<10 miles 14,435 (35.1) 12,561 (35.3) 1874 (33.5)

<0.00110–20 miles 11,874 (28.9) 10,437 (29.4) 1437 (25.7)

≥20 miles 14,798 (34.0) 12,524 (35.3) 2274 (40.8)

Discharge disposition

Routine 35,063 (85.3) 32,890 (92.5) 2173 (38.9)

<0.001Post–acute Facility 4344(10.6) 1003 (2.8) 3341 (59.8)

Home Health care 1700 (4.1) 1629 (4.7) 71 (1.3)

Length of stay

0–3 days 35,374 (40.3) 32,907 (40.8) 2467 (33.9)

<0.0013–8 days 24,368 (27.7) 22,386 (27.8) 1982 (27.2)

≥8 days 28,123 (32.0) 25,284 (31.4) 2839 (39.0)

Hospital type

Children 11,513 (13.1) 10,203 (12.7) 1310 (18.0)
<0.001

Adult 76,352 (86.9) 70,374 (87.3) 5978 (82.0)

Hospital location

Metro 87,447 (99.5) 80,167 (99.5) 7280 (99.9)
<0.001

Micro/Rural 418 (0.05) 410 (0.05) 8 (0.01)
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Table 2. Cont.

Variable Total (N = 87,865)
n (%)

No Readmission
(N = 80,577)

n (%)

Readmission
(N = 7288)

n (%)
p Value

Hospital ownership

Non-profit/Government 15,713 (17.9) 14,897 (18.5) 816 (11.2)
<0.001

For profit 72,152 (82.1) 65,680 (81.5) 6472 (88.5)

Hospital Size

Large 56,628 (64.4) 51,684 (64.1) 4944 (67.8)

<0.001Medium 26,722 (30.4) 24,679 (30.6) 2043 (28.0)

Small 4515 (5.1) 4214 (5.2) 301 (4.1)

3.1. Prediction Performance Comparison

Table 3 summarizes the comparative performance of four learning algorithms for
three different prediction models. The performance of the at-admission (AD-PDR) model
was comparable with the at-discharge (DS-PDR) model for all four algorithms. Prior
unplanned admission prediction (PT-PDR) models showed the lowest average AUC for
all four prediction models. SVM with Polynomial Kernel algorithms outperformed all
other algorithms for AD-PDR and DS-PDR models, while in PT-PDR the Gradient Boosting
model outperforms other algorithms. Among all four algorithms, RF models showed the
lowest average AUC for all three prediction models.

Table 3. AUC performance comparison of the three readmission prediction models.

Machine Learning Algorithms
Prediction before Admission

(PT–PDR)
(AUC, 95% CI)

Prediction at Admission
(AD–PDR)

(AUC, 95% CI)

Prediction at Discharge
(DS–PDR)

(AUC, 95% CI)

Support Vector Machines with
Polynomial Kernel

0.57
(0.54–0.60)

0.68
(0.66–0.70)

0.73
(0.70–0.76)

Logistic regression 0.59
(0.56–0.62)

0.65
(0.62–0.68)

0.69
(0.66–0.72)

Gradient Boosting 0.60
(0.57–0.63)

0.66
(0.64–0.68)

0.67
(0.63–0.71)

Random Forest 0.56
(0.51–0.61)

0.61
(0.57–0.65)

0.64
(0.60–0.68)

3.2. Important Features of Pediatric Readmissions

We also extracted important features from the Random Forest algorithms for all three
prediction models. The top 10 important features are shown in Table 4. Important features
associated with increased readmission risk varied widely across the type of prediction
model and were mostly related to patients’ demographics, SDHs, clinical factors, and
hospital characteristics. The history of the prior hospital visits was most important for
the PT-PDR model and the second most important feature for both AD-PDR and DS-PDR
models. The higher the accumulated times a child has been hospitalized, the more likely the
patient will be readmitted after hospital discharge. The low healthcare provider density was
found an important factor for the three readmission prediction models. Discharges to post-
acute facilities and longer travel distances were also found within the top ten important
features for both the at-admission and at-discharge models. Children’s insurance status
with Public Managed Care was found within the top five most weighted features for PT-
PDR and AD-PDR models. African American children, children aged 5 to 8, and adolescent
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children were significantly associated with increased readmission risk for only PT-PDR
models.

Table 4. Important features extracted by support vector machines with polynomial algorithm.

Rank
Features in

PT-PDR Model
(Weight)

Features in
AD-PDR Model

(Weight)

Features in
DS-PDR Model

(Weight)

1 Prior hospital visit
(0.31)

Disruptive mood disorder
(0.24)

Disruptive mood disorder
(0.16)

2 Age (12–17)
(0.09)

Prior hospital visit
(0.11)

Prior hospital visit
(0.10)

3 Provider density
(0.08)

Dehydration
(0.09)

Pneumonia
(0.08)

4 Public Managed Care
(0.06)

Abdominal pain
(0.06)

Major Depressive Disorder- recurrent
(0.08)

5 African American
(0.05)

Public Managed Care
(0.05)

Drainage of Spinal Canal
(0.06)

6
% of people with an income below

100 FPL
(0.4)

Provider density
(0.05)

Length of stay
(0.05)

7
% of people with no high school

diploma
(0.04)

Post-acute facility
(0.05)

Resection of Appendix
(0.03)

8 Age (5–8)
(0.04)

Hospital travel distance
(0.02)

Post-acute facility
(0.03)

9 % of the unemployed person
(0.03)

% of people with an income below
100 federal poverty level

(0.02)

Provider density
(0.03)

10 % of homes with no vehicles
(0.02)

Children Hospital
(0.02)

Hospital travel distance
(0.02)

The presence of comorbidity and complex procedures were also important predic-
tors of readmission for AD-PDR and DS-PDR. Disruptive mood disorder was the most
important feature for both AD-PDR and DS-PDR models. The other important clinical
features for the AD-PDR model were Dehydration and Abdominal pain. For the DS-PDR
model, Pneumonia and Major Depressive Disorder-recurrent were other top ten clinical
diagnoses related to high-risk readmission. The Drainage of the Spinal Canal and Resection
of the Appendix procedure was also found important for predicting readmission at the
DS-PDR model. Children’s hospital status was only found important for the AD-PDR
model and longer hospital stay was found within the top ten features for DS-PDR models.
Children living with challenging family conditions and in poor neighborhoods were found
as important features for both PT-PDR and AD-PDR models. Similarly, children living in
communities with fewer high school diplomas and a higher percentage of unemployed
persons were found important for the PT-PDR models.

4. Discussions

In summary, we developed and compared several variants of machine learning-based
predictive models for three different care timepoints that can improve the prediction of
pediatric readmission, with the possibility of at-admission pediatric readmission risk pre-
diction. To our knowledge, this is the first study to develop an at-admission pediatric
readmission model and compared prediction performance with the traditional at-discharge
readmission prediction model. Our proposed at-admission all-causes readmission predic-
tion model showed similar prediction performance compared with the at-discharge model.
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In terms of predictive power, the models we developed showed comparable results with
other published works [27,28,30,45,46]. However, these models considered all-condition
or all-surgeries 30-day readmission during hospital discharge time point, therefore lacks
the ability to an equivalent comparison of these models to our proposed DS-PDR models.
Therefore, this study highlights the potential of the AD-PDR model in identifying high-risk
children during hospital admission over traditional at-discharge approaches.

The pre-admission model in our study showed lower discrimination compared with
at admission and at-discharge readmission models mainly due to lack of patient-level
clinical information. Therefore, a single pre-admission model may not be sufficient in a
clinical setting for identifying high readmission risk children. The similar performance of
the AD-PDR models and DS-PDR models reported in this study suggests that pediatric
readmission risk prediction during both at-discharge and at-hospital admission can be used
by hospital providers to design and implement appropriate intervention programs. This
additional time provided by the at-admission readmission risk prediction (AD-PDR) model
could allow comprehensive care transition and discharge planning particularly for high-
risk returning patients [31,47]. Although the AD-PDR model allows pediatric readmission
prediction, the model potentially misclassifies certain patient populations, mainly due to
a lack of adequate diagnosis data. This misclassification of the AD-PDR model is likely
related to the patients admitted for unclear admitting diagnosis (e.g., unspecified fever and
abdominal pain), as their primary diagnosis usually (53.2% reported in our study) changed
after additional clinical tests. Besides, predicting readmission for children with unspecified
mental health disorders is challenging due to the unpredictable nature of the episodes [48].

In our study, we found a variation of extracted important features across three read-
mission prediction models. History of prior hospital admissions, medical complexity, and
non-acute post-discharge were found important features in predicting readmission, which
is consistent with the previous investigations [22,24,28,49]. Although these factors are not
easily modifiable for most conditions, comprehensive intervention strategies including
better discharge planning (e.g., telephone call) and care coordination can mitigate the risk
of pediatric readmission [13,31,50,51]. The findings of prior hospital visits in all three
readmission models suggest that there might exist an unresolved system issue associated
with the quality and clarity of discharge education and access to pediatric care for a certain
patient population [36]. Besides, living in medically underserved communities as impor-
tant factors suggests residents in these areas may have limited access to pediatric care due
to geographical location [52,53]. This unequal access to care might result from a combined
effect with persistent rural–urban disparities in pediatric care access and a high degree of
pediatric care regionalization [53–55]. These findings highlight to policymakers the need
to develop a tailored interventions/programs particularly, for these MAU areas ensuring
necessary pediatric care access. Besides, several important community-level SDHs features
(e.g., high school graduation and employment rate) found in our study in readmission
prediction suggest an existing disparity in pediatric care, mainly due to socioeconomic
inequality [56,57]. Moreover, longer travel distance as an important factor suggests the per-
sistence of rural-urban disparities in children’s healthcare due to the high regionalization of
pediatric care. Therefore, interventions including components that are implemented before
(e.g., parent education and health literacy) and post-discharge (e.g., need-based assistance
programs and discharge follow-up appointments) can help to mitigate readmission risk
across the vulnerable population [58].

This study has several common limitations, most of which are related to a retrospective
analysis of administrative claim databases. First, the HCUP database is an administrative
claim dataset that uses ICD codes to classify patients’ medical diagnoses, procedures,
and outcomes. The possibility of coding inaccuracy or incorrect information cannot be
dismissed. Second, although our study makes a significant contribution of presenting
an at-admission readmission prediction model across Florida hospitals, the findings of
this study may not be generalizable to other U.S. states or international countries’ patient
populations. Third, our research did not include information regarding laboratory tests,
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patient detailed vitals, parent health literacy, and post-acute care quality, thus, including
these factors may have improved prediction performance. Fourth, the dataset does not
include data from federal hospitals (e.g., Veterans Affairs Hospital) or out-of-state hospital
deaths or readmissions after the initial index admission. However, pediatric admissions
in federal hospitals are few compared to non-Federal hospitals. In addition, out-of-state
pediatric readmissions are expected to have minimal impact on our results, due to the
unique geographical location of Florida State. Finally, we include community-level SDHs in
the ZTCAs level, and more precise census tract level data or patient-provided information
may have improved accuracy in capturing community-level variables.

5. Conclusions

Although pediatric readmissions are costly and rates have increased over time, accu-
rate prediction of high readmission risk children and timely intervention implementation
remains challenging for the care providers. To explore the possibility of improving pedi-
atric readmission risk prediction, a novel at-admission readmission prediction model was
proposed and compared with the traditional at-discharge models. Similar performance
achieved by the proposed at-admission models suggests potential in early identification
of high-readmission risk children without trading off the prediction performance over
traditional at-discharge approaches. This additional intervention planning time could
allow hospitals and payers (e.g., managed care providers) to devise comprehensive care
transition (e.g., follow-up call), discharge planning, and non-clinical interventions (e.g., tar-
geting social determinants) particularly across the vulnerable population. In addition, the
findings of non-clinical important factors such as living in a disadvantaged community and
longer travel distance other than the clinical risk factors imply the existence of rural–urban
and socioeconomic disparities in pediatric care access. Therefore, these findings reinforce
the need to develop a tailored interventions/programs by policy-makers particularly, for
these underserved areas.
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