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Abstract: Acute respiratory distress syndrome (ARDS) remains a serious illness with significant
morbidity and mortality, characterized by hypoxemic respiratory failure most commonly due to
pneumonia, sepsis, and aspiration. Early and accurate diagnosis of ARDS depends upon clinical
suspicion and chest imaging. Coronavirus disease 2019 (COVID-19) is an important novel cause of
ARDS with a distinct time course, imaging and laboratory features from the time of SARS-CoV-2
infection to hypoxemic respiratory failure, which may allow diagnosis and management prior
to or at earlier stages of ARDS. Treatment of ARDS remains largely supportive, and consists
of incremental respiratory support (high flow nasal oxygen, non-invasive respiratory support,
and invasive mechanical ventilation), and avoidance of iatrogenic complications, all of which improve
clinical outcomes. COVID-19-associated ARDS is largely similar to other causes of ARDS with
respect to pathology and respiratory physiology, and as such, COVID-19 patients with hypoxemic
respiratory failure should typically be managed as other patients with ARDS. Non-invasive respiratory
support may be beneficial in avoiding intubation in COVID-19 respiratory failure including mild
ARDS, especially under conditions of resource constraints or to avoid overwhelming critical care
resources. Compared to other causes of ARDS, medical therapies may improve outcomes in
COVID-19-associated ARDS, such as dexamethasone and remdesivir. Future improved clinical
outcomes in ARDS of all causes depends upon individual patient physiological and biological
endotyping in order to improve accuracy and timeliness of diagnosis as well as optimal targeting of
future therapies in the right patient at the right time in their disease.

Keywords: acute respiratory distress syndrome (ARDS); COVID-19; SARS-CoV-2; high flow nasal
oxygen; non-invasive ventilation; mechanical ventilation; dexamethasone

1. Introduction

Acute respiratory distress syndrome (ARDS) is a serious clinical illness, defined by severe
hypoxemic respiratory failure, which continues to be associated with significant morbidity, mortality,
and healthcare resource utilization. ARDS comprises 7–10% of admissions and 15–25% of mechanically
ventilated patients in the intensive care unit (ICU), is fatal in 30–50% of patients, and costs on average
over USD 90,000 per patient’s ICU stay [1–5].
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ARDS has been intensively investigated for more than 50 years, resulting in our current
understanding of a clinical-physiologic syndrome of lung inflammation and injury, biologically
driven by a plethora of inflammatory cells and soluble molecules (i.e., cytokines). Despite greater
understanding and multiple international clinical practice guidelines, ARDS remains under-recognized,
the clinical importance is under-appreciated, and management is sub-optimal [2]. As such,
many patients continue to suffer more severe, prolonged ARDS and worse clinical outcomes including
higher mortality. Moreover, novel causes of ARDS, like coronavirus disease 2019 (COVID-19) are
contributing to significant human disease and will undoubtedly continue to do so in the future.
The global COVID-19 pandemic offers an important opportunity for all physicians to update their
understanding of ARDS.

Thus, we summarize current ideas on ARDS, including diagnosis, clinical/physiologic assessment
and monitoring, as well as management. We will also highlight unique aspects of COVID-19 as an
important, novel cause of ARDS.

1.1. Causes of ARDS

The most common clinical conditions associated with development of ARDS include severe
pneumonia (30–50%) and sepsis (25–30%; Figure 1), as confirmed in many large single- and
multi-centred cohorts, including the Large Observational Study to Understand the Global Impact of
Severe Acute Respiratory Failure (LUNGSAFE) registry, the largest cross-sectional study of ARDS
patients admitted to intensive care units (ICUs) [2,6].Diagnostics 2020, 10, x FOR PEER REVIEW 3 of 18 
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Abbreviations: PaO2, partial pressure of oxygen in arterial blood; FiO2, inspired oxygen fraction; RR, 
respiratory rate; CRP, C-reactive protein; LDH, lactate dehydrogenase; PEEP, positive end-expiratory 
pressure; CPAP, continuous positive airway pressure. 
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of the alveolar-capillary endothelial barrier results in diffuse alveolar damage (DAD), which includes 
an initial exudative phase characterized by high-permeability, proteinaceous pulmonary interstitial 
and alveolar edema associated with the injury and death of EC as well as AEC desquamation, and a 
delayed fibroproliferative phase comprising fibrosis in intraluminal and interstitial compartments, 
and type II AEC proliferation (Table 1) [13,14]. Pathologic DAD is found in about half of patients with 
ARDS, and is associated with more severe hypoxemia and higher mortality [13]. 

Severe hypoxemia in ARDS is exacerbated by concomitant pathophysiologic disturbances, 
including surfactant dysfunction (reducing lung compliance causing atelectasis), pulmonary 
microvascular thrombosis (due to EC injury), higher physiological dead space, and increased shunt 
fraction due to impairment of hypoxic pulmonary vasoconstriction [15–18]. In addition, patients’ 
respiratory distress and strong inspiratory efforts can increase negative pleural pressure swings, 
increasing lung inflation stress, pulmonary blood flow and vascular pressures, potentially worsening 
pulmonary edema, collectively termed patient self-induced lung injury (P-SILI) [19].  

The pathology of COVID-19-associated ARDS (COVID-ARDS) is also largely characterized by 
DAD, with some key differences such as lymphocyte rather than neutrophil predominance (Table 1). 
Some studies have highlighted more severe pulmonary microvascular EC injury associated with 
extensive microvascular thrombosis [20,21], for example, pulmonary vascular clot burden was up to 
nine times greater in COVID-ARDS versus influenza-associated ARDS [20]. However, such 
pulmonary microvascular findings have not been consistently observed in other pathologic 
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Figure 1. Algorithm for hospitalized patients at risk for acute respiratory distress syndrome (ARDS) and
coronavirus disease 2019 (COVID-19). In contrast, to COVID-19, there are no specific lab abnormalities
which adequately assess severity or predict prognosis in other causes of ARDS. Abbreviations: PaO2,
partial pressure of oxygen in arterial blood; FiO2, inspired oxygen fraction; RR, respiratory rate;
CRP, C-reactive protein; LDH, lactate dehydrogenase; PEEP, positive end-expiratory pressure;
CPAP, continuous positive airway pressure.
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Pneumonia-associated ARDS is frequently due to bacterial infection (e.g., Streptococcus pneumoniae,
Staphylococcus aureus), but also develops with viral (e.g., influenza A) and fungal (e.g., Pneumocystis
jirovecii) infections [6]. Coronavirus (CoV) causes of pneumonia and resulting ARDS have been
recognized since the 2003 pandemic of severe acute respiratory syndrome (SARS). SARS-CoV-2
is a novel human coronavirus responsible for the pandemic known as COVID-19, first described
in Wuhan, China in December 2019 [7]. Since then, more than 40 million COVID-19 cases globally have
resulted in over 1 million deaths [8]. Although most infected individuals are asymptomatic or exhibit
only mild symptoms, a significant minority of COVID-19 patients develop severe illness requiring
hospitalization (10–14%), typically manifested as pneumonia [9,10].

Sepsis has long been recognized as a common and clinically important cause of ARDS. For example,
sepsis was the primary cause of ARDS in 16% of cases in the LUNGSAFE registry and approximately
18% of patients with septic shock developed ARDS [2]. Moreover, sepsis-induced ARDS can have a
worse prognosis than other causes of ARDS, typically because of the presence of co-morbid illnesses
and higher risk of multiple organ dysfunction syndrome (MODS) [11,12].

1.2. Clinical Pathophysiology of ARDS

ARDS is characterized by the rapid development of severe lung inflammation causing damage to
alveolar epithelial cells (AEC) and pulmonary microvascular endothelial cells (EC). Dysfunction of
the alveolar-capillary endothelial barrier results in diffuse alveolar damage (DAD), which includes
an initial exudative phase characterized by high-permeability, proteinaceous pulmonary interstitial
and alveolar edema associated with the injury and death of EC as well as AEC desquamation, and a
delayed fibroproliferative phase comprising fibrosis in intraluminal and interstitial compartments,
and type II AEC proliferation (Table 1) [13,14]. Pathologic DAD is found in about half of patients
with ARDS, and is associated with more severe hypoxemia and higher mortality [13].

Severe hypoxemia in ARDS is exacerbated by concomitant pathophysiologic disturbances, including
surfactant dysfunction (reducing lung compliance causing atelectasis), pulmonary microvascular
thrombosis (due to EC injury), higher physiological dead space, and increased shunt fraction due
to impairment of hypoxic pulmonary vasoconstriction [15–18]. In addition, patients’ respiratory
distress and strong inspiratory efforts can increase negative pleural pressure swings, increasing lung
inflation stress, pulmonary blood flow and vascular pressures, potentially worsening pulmonary edema,
collectively termed patient self-induced lung injury (P-SILI) [19].

Table 1. Pulmonary pathology features of COVID-19-associated ARDS (COVID-ARDS) versus other
causes of acute respiratory distress syndrome (ARDS).

Pathology ARDS COVID-ARDS

Diffuse Alveolar
Damage (DAD)

Early/Exudative:
- interstitial/alveolar edema
- “hyaline” membranes
- neutrophil infiltration
- AEC desquamation
- pulmonary microvascular
thrombosis
Late/Fibroproliferative:
- alveolar/interstitial fibrosis
- type II AEC hyperplasia

Similar to ARDS except:
- paucity of neutrophils
- interstitial/alveolar lymphocytic
infiltration
- possibly increased pulmonary
microvascular thrombi relative to
other causes

Other features
- organizing pneumonia (fibrosis)
- alveolar haemorrhage
- viral pneumonia

- occasional viral cytopathic
changes (multinucleated syncytial
cells, atypical enlarged AEC)
- viral inclusions in AEC

Abbreviations: AEC, alveolar epithelial cells.
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The pathology of COVID-19-associated ARDS (COVID-ARDS) is also largely characterized
by DAD, with some key differences such as lymphocyte rather than neutrophil predominance (Table 1).
Some studies have highlighted more severe pulmonary microvascular EC injury associated with
extensive microvascular thrombosis [20,21], for example, pulmonary vascular clot burden was up to
nine times greater in COVID-ARDS versus influenza-associated ARDS [20]. However, such pulmonary
microvascular findings have not been consistently observed in other pathologic descriptions [22–24].
The pathophysiology of respiratory failure in most patients with COVID-ARDS is also similar to other
causes of ARDS, including atelectasis, low respiratory compliance, and intrapulmonary shunt [25,26].
It has been suggested that some COVID-ARDS patients manifest a different phenotype characterized
by consolidation without atelectasis, preserved respiratory compliance, and more striking perfusion
dysregulation, which may have treatment implications [27–29]. This remains an area of controversy
and active clinical and physiologic research.

2. Diagnosis of ARDS

2.1. Clinical Assessment

By definition, ARDS develops within one week of onset or worsening of a predisposing condition
(Figure 1), most commonly (>90%) within 48 h [1,2]. Demographic risks for developing ARDS
are recognized (e.g., greater age, male sex, non-Caucasian ethnicity) [30,31]. ARDS diagnosis in
hospitalized patients requires a clinical suspicion, based upon predisposing conditions, worsening
oxygenation and dyspnea, bilateral interstitial and/or alveolar opacities consistent with pulmonary
edema on chest radiograph (CXR), and exclusion of common causes of pulmonary edema (e.g., heart
failure, fluid overload) clinically or with echocardiography [1].

A significant care-gap exists in the diagnosis of ARDS, especially mild ARDS which was
unrecognized in 50% of patients in the large, global LUNGSAFE registry [2]. Indeed, mild ARDS is not
a benign illness, as less than 20% of patients recovered within a week and overall in-hospital mortality
was 29.7%. In addition, more than 40% of mild ARDS progressed to moderate–severe ARDS which
was associated with higher mortality of 35–42.9% [32].

Most COVID-19 patients develop symptoms of fever, cough, and dyspnea within 5 days of infection
(Figure 1). Hospitalized patients can deteriorate quite rapidly within hours to a few days, manifesting
worsening hypoxemia and respiratory distress as features of severe pneumonia, and 20–30% develop
COVID-ARDS [9,10,33,34]. Compared to patients with other causes of ARDS, pulmonary opacities
are less obvious on CXR (54–76%) in COVID-ARDS patients [35,36]. Chest CT scan is clearly more
sensitive to the presence of abnormalities in patients with confirmed COVID-19, with a sensitivity
of 93.1% (95% CI: 90.2–95.0) in a meta-analysis (65 studies; 5759 patients) [37], but abnormalities are
poorly specific for a diagnosis of COVID-19 compared to other respiratory infections.

2.2. Assessment of Severity

ARDS severity is assessed by the degree of hypoxemia, quantified by the ratio of arterial
partial pressure of oxygen (PaO2) to the fraction of inspired oxygen (FiO2) as per the Berlin criteria,
which is strongly predictive of worsening survival (Figure 1) [1]. In addition, the presence of
hypercapnia (PaCO2 ≥ 50 mmHg) was independently associated with more organ dysfunction and
higher mortality [38]. Other laboratory abnormalities have not been shown to assess severity or predict
prognosis in ARDS, but key investigations can identify prognostically-important complications of
non-pulmonary organ dysfunction, e.g., cardiac, renal, and potentially MODS [39].

In patients with COVID-19, severity of pneumonia and respiratory failure is also assessed by
the degree of hypoxemia, including arterial oxygen saturation by pulse oximetry (SpO2), and the
PaO2/FiO2 ratio [26,40]. COVID-19 is associated with distinct laboratory abnormalities which predict
greater risk of respiratory failure and worse clinical outcomes including higher mortality, independent
of the severity of ARDS. These include markers of inflammation (elevated C-reactive protein (CRP)),
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cytotoxicity (increased lactate dehydrogenase (LDH)), and both macrovascular and microvascular
thrombosis in systemic and pulmonary circulations (higher D-dimer levels), as well as lymphopenia
(Figure 1) [41,42]. It has been suggested that these markers should be assessed at baseline in hospitalized
COVID-19 patients [40,43], however the clinical utility of serial monitoring has not yet been established.

Given the presence of multiple physiologic and laboratory abnormalities in COVID-19, there
may be more robust prognostic value in assessing a combination of parameters. For example, in a
multicentre, observational retrospective study of patients being assessed in the ED, a model developed
through machine-learning, the Quick COVID-19 Severity Index comprising three respiratory parameters
(FiO2, SpO2, respiratory rate (RR)) was predictive of the risk of respiratory failure within the first
24 h of admission [44]. Following hospital admission, another machine-learning composite score,
which included age, lymphocyte count and levels of inflammatory markers (e.g., LDH, CRP), was found
to best predict the risk of severe hypoxemic respiratory failure, need for ICU admission and/or invasive
respiratory support, and mortality in hospitalized COVID-19 patients [45]. Finally, in COVID-19
patients with ARDS, a multicentre, observational study identified the highest risk of mortality was
associated with both reduced respiratory compliance and higher D-dimer levels [46].

3. Management of Patients with ARDS

3.1. General Approach

Management of ARDS remains largely supportive, including treatment of the predisposing
condition, as there are no specific medical therapies that address the lung inflammation and
alveolo-capillary injury. Standard care for ICU-admitted patients includes early nutritional support,
appropriate analgesia, sedation, thromboprophylaxis, semi-recumbent position, gastric ulcer
prophylaxis, and glycaemic control (FASTHUG) [47]. In ARDS patients, the frequent presence
of non-pulmonary organ dysfunction or development of MODS contributes to severity of illness,
intensity of required care, and mortality [12,48]. Similarly, thirty-to-fifty percent of critically-ill
COVID-19 patients will develop non-pulmonary organ dysfunction leading to MODS, which is the
most common cause of mortality [34,36,49].

Many respiratory support modalities are high-risk aerosol-generating medical procedures
requiring specific attention, during the care of COVID-19 patients, to minimization of unnecessary
staff exposure, appropriate contact precautions, and airway management expertise. Physicians are
encouraged to follow local guidelines for safe application and monitoring of all respiratory support
and associated procedures, e.g., high-flow nasal-cannula O2 (HFNO), non-invasive positive pressure
ventilation (NIPPV), intubation, mechanical ventilation (MV), bronchoscopy [40].

3.2. Respiratory Support of Mild ARDS

Initial respiratory support of patients with hypoxemia consists of supplemental O2 [50].
Specific SpO2 targets in various patient populations remain uncertain, given competing goals of
addressing persistent hypoxemia as well as avoiding hyperoxia, both of which may be associated with
increased mortality [51,52]. In ARDS, permissive hypoxemia is not recommended [53–56]. For example,
conservative O2 (SpO2 88–92%) was associated with a non-significant higher risk of 28-day mortality,
but higher 90-day mortality and more intestinal ischemia than more liberal O2 (SpO2 ≥ 96%) [53].
In persistent hypoxemic respiratory failure despite maximal supplemental O2 by facemask, various
non-invasive respiratory support modalities may be considered, and clearly are being commonly
employed recently in COVID-19 patients [57–59].

3.2.1. High-Flow Nasal-Cannula O2 (HFNO)

This is a novel technique which can improve oxygenation in hypoxemic respiratory failure
(Figure 2), through several mechanisms including higher inspired O2 concentrations ≤90%,
decreased dead space, and increased lung volume through generation of a low-level of continuous
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positive airway pressure (CPAP) [60,61]. In the largest randomized controlled trial (RCT) of HFNO
vs. standard O2 therapy in patients with hypoxemic respiratory failure (the absence of use of CPAP
meant that ARDS could not be formally diagnosed based on Berlin criteria), HFNO reduced 90-day
mortality by 50% but there was no difference in the need for invasive respiratory support through
intubation/MV [60]. A retrospective review and two meta-analyses have concluded that HFNO was
associated with 15–24% reduced risk of subsequent intubation in hypoxemic respiratory failure, but did
not reduce duration of hospital or ICU admission or improve survival [62–64].
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Figure 2. Algorithm for respiratory management of patients with hypoxemic respiratory failure.
Patients with hypoxemia despite supplemental O2, including those who meet criteria for mild ARDS,
can potentially be managed with non-invasive respiratory support, including HFNO and NIPPV,
possibly in combination with self-proning. Sequential escalation of non-invasive respiratory support
modalities should be considered unless clinical-physiologic targets are met, depending on local critical
care expertise and resources. Patients with moderate–severe ARDS require invasive mechanical
ventilation with monitoring and adjustment of ventilatory parameters to minimize ventilator-induced
lung injury (VILI), and may benefit from additional measures to improve oxygenation such as
prone positioning, recruitment manoeuvres, and potentially veno-venous extra-corporeal membrane
oxygenation (VV-ECMO). Notes: a. Non-invasive respiratory support with HFNO/CPAP/NIPPV
requires careful monitoring for lack of improvement or persistent respiratory distress, and consideration
of intubation/mechanical ventilation. b. All non-invasive and invasive respiratory support modalities
are high-risk aerosol-generating medical procedures which should be carried out by experts in airway
management, with appropriate precautions (e.g., minimal staff in room, N95, negative pressure room).
c. Tidal volume is referenced to predicted body weight. d. Recruitment manoeuvres requires
sustained inflation, e.g., inspiratory hold at 35–40 cm H2O for set time (e.g., 40 s). Stepwise recruitment
(with incremental levels of PEEP) is not recommended. e. ROX index = SpO2/FiO2/Respiratory Rate.
f. Plateau pressure = airway pressure after 0.5 s pause at end-inspiration. g. Driving pressure = plateau
pressure—PEEP. h. Transpulmonary pressure = airway pressure—pleural pressure (under zero flow
conditions). i. Static respiratory compliance = tidal volume/(plateau pressure—PEEP). Abbreviations:
NP, nasal prongs; FM, facemask; HFNO, high-flow nasal oxygen; CPAP, continuous positive
airway pressure; NIPPV, non-invasive positive pressure ventilation; RR, respiratory rate; VT, tidal
volume; PEEP, positive end-expiratory pressure; ECMO, extra-corporeal membrane oxygenation.
* These interventions, while increasingly being used globally, especially during the COVID-19 pandemic,
are not yet supported by robust evidence in patients with ARDS.
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HFNO has more commonly been used in the management of hypoxemic respiratory failure in
COVID-19 patients, depending on geography and access to other respiratory support measures [57,65,66].
For example, 5–64% of moderate–severe hypoxemic COVID-19 patients in Italy, China, and the US
were initially supported with HFNO [42,67–69]. In a retrospective review of the largest single-centre
series of 104 COVID-19 patients with moderate–severe hypoxemia, 64% of those treated with HFNO
avoided intubation and had mortality of 2.9%, compared to 14.4% in those requiring subsequent
intubation/MV [63].

3.2.2. Continuous Positive Airway Pressure (CPAP)/Non-Invasive Positive Pressure Ventilation (NIPPV)

In patients with persistent hypoxemia despite maximal supplemental O2 by either facemask or
HFNO, a trial of either CPAP (via nasal/facemask or hood/helmet) or NIPPV via facemask can be
considered. CPAP/NIPPV may be beneficial in improving oxygenation and respiratory distress,
decreasing FiO2 requirements, and possibly reducing the need for invasive support through
intubation/MV [70,71]. For example, the above-cited network meta-analysis of non-invasive respiratory
support in hypoxemic respiratory failure reported that both helmet NIPPV (RR 0.26, 95%CI 0.14–0.46)
and facemask NIPPV (RR 0.76, 95%CI 0.62–0.90) reduced the risk of subsequent intubation and were
both associated with reduced risk of death compared to supplemental O2 [62,72].

CPAP/NIPPV is commonly being used globally for patients with hypoxemic respiratory failure
including ARDS, e.g., 15.5% of ARDS patients in the global LUNGSAFE registry [70]. However,
there is a clear risk of failure of such non-invasive respiratory support, as 22.2% of mild and 42–47%
of moderate–severe ARDS patients failed CPAP/NIPPV trial within 2 days, experiencing lack of
improvement or worsening of respiratory distress and/or hypoxemia [70]. During NIPPV trials,
careful respiratory monitoring is essential because clinical outcomes are worse in patients who fail
NIPPV, possibly because of delayed definitive management of respiratory failure with intubation and
MV [73,74]. For example, patients with hypoxemic respiratory failure who failed NIPPV had longer
ICU and hospital stay, as well as more than four-fold higher mortality [74]. Thus, NIPPV may be
beneficial in patients with mild ARDS (Figure 2), but this specific respiratory support measure has not
been specifically recommended in recent guidelines [48,75].

Non-invasive respiratory support with CPAP/NIPPV is also being increasingly instituted in
COVID-19 patients, especially under local conditions of constrained ICU resources [59]. For example,
3–56% of hypoxemic COVID-19 were treated with CPAP/NIPPV, with higher rates of usage in critically
ill and moderate–severe patients [7,10,33,49,66–69,76,77]. Several uncontrolled reports suggested a
reduced need for intubation, but only a single controlled study has addressed this, using a retrospective,
historical time period-controlled cohort design, reporting significantly higher intubation-free survival
at 7 days with CPAP [78]. While such non-invasive respiratory support measures may be appropriate
in some COVID-19 patients with hypoxemic respiratory failure, specifically those who either do not yet
meet criteria for ARDS or have mild ARDS (Figure 2), current guidelines do not provide any specific
recommendations in the absence of more robust data [40,43,59,79].

3.2.3. Prone Positioning

Based on strong evidence for improved clinical outcomes in ARDS patients who are intubated
and ventilated (see Section 3.3. Respiratory Support of Moderate–Severe ARDS below [80]),
prone positioning is being increasingly used to improve oxygenation in spontaneously-breathing
non-intubated patients with hypoxemic respiratory failure, including COVID-19. For example, in a
small prospective cohort study of 20 patients with ARDS, prone positioning combined with either HFNO
or NIPPV was associated with reduced need for intubation/MV only in patients with moderate ARDS,
not in those with severe ARDS [81].

Several uncontrolled series have reported that self-proning may improve oxygenation in
spontaneously breathing COVID-19 patients receiving supplemental O2 or other non-invasive
respiratory support (e.g., HFNO, CPAP/NIPPV) [65,82–85]. In the first reported series of 50 COVID-19
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patients managed in the emergency department, oxygenation improved from an average of 84%
on supplemental O2 to 94% after self-proning for 5 min [82]. In addition, 64% of patients with
unspecified repeated self-proning sessions recovered to hospital discharge without intubation/MV.
Self-proning was not tolerated, including worsening oxygenation and/or respiratory distress, in 13–25%
of patients [84,86,87]. Moreover, although oxygenation improves in most patients when prone, the
improvement is maintained in only about 50% of patients when resuming the supine position, with
some evidence that proning may be more effective earlier in the hospital course and specifically in
patients with higher inflammatory markers (e.g., CRP, LDH) [84]. Early oxygenation improvement has
been associated with reduced need for subsequent intubation/MV in some studies [87,88] but not in
others [84]. In summary, self-proning is currently widely employed in the management of COVID-19
patients globally in the absence of strong evidence of improved outcomes and there are no clear
recommendations regarding specifics of patient selection, duration and frequency of proning sessions.
Self-proning is not feasible or tolerable for all patients, is associated with clear risks, including
inadequate respiratory support in patients with respiratory distress and/or high work of breathing
which are associated with higher risk of P-SILI and progressive lung injury [19,89,90]. As such,
prone positioning in spontaneously breathing patients mandates rigorous clinical and respiratory
monitoring for lack of improvement and/or persistent respiratory distress in order to facilitate timely
intubation/MV.

3.3. Respiratory Support of Moderate–Severe ARDS

In moderate–severe ARDS patients, respiratory management is similar for ARDS from all causes
including COVID-19 (Figure 2) [26,40,48,75,79,91]. Invasive respiratory support through endotracheal
intubation and MV is strongly recommended for worsening or persistent respiratory distress, persistent
hypoxemia (SpO2 < 92%), or progressive hypercapnia. In patients requiring MV, specific ventilatory
modalities and parameters are guidelines-recommended based on improved outcomes in multiple
RCTs (Figure 2) [48,75,91]. The goal is to use a lung protective strategy to prevent excessive lung
tidal-inflation stress (volutrauma) and cyclic atelectasis-recruitment (atelectrauma), reducing the risk
of ventilation-induced lung injury (VILI) [92]. The most important measure is MV using low-tidal
volumes, specifically a target of 4–8 mL/kg predicted body weight [91,93].

The application of positive end-expiratory pressure (PEEP) is essential in order to reduce atelectasis
and maximize respiratory compliance, and PEEP is optimally selected to avoid excessive plateau and
driving pressures (Figure 2) [91,93,94]. Novel physiologic monitoring using oesophageal manometry
may allow optimization of PEEP in individual patients, although the benefit of such an approach in
terms of clinical outcomes remains uncertain [95,96]. Additionally, early prone positioning should be
implemented as a lung protective measure, as it has been shown to reduce 28-day mortality by 16%
when implemented 12–24 h after initiation of MV [80].

Several weak recommendations suggest approaches for management of persistent hypoxemia,
patient-ventilator dyssynchrony, or low lung compliance with high plateau or driving pressures
(Figure 2). These include short courses of neuromuscular blockade-induced paralysis, and specific
recruitment manoeuvres [91,97,98]. Refractory hypoxemia not responding to conventional therapy
warrants consideration of veno-venous extra-corporeal membrane oxygenation (VV-ECMO). Besides
directly improving hypoxemia and related multiple organ dysfunction, ECMO may offer more
homogeneous, ultraprotective ventilation. In brief, ECMO should be considered when patients
have (a) persistent PaO2/FiO2 <50 mmHg for >3 h or <80 mmHg for >6 h despite FiO2 >80% and
PEEP > 10, or (b) pH < 7.25 with PaCO2 > 60 mmHg for >6 h. If ECMO is not available locally,
patients with severe respiratory failure should be considered for transfer to a high-volume facility with
ECMO expertise, if clinically feasible. VV-ECMO achieves similar outcomes in all causes of ARDS,
including COVID-ARDS [99,100].
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3.4. Medical Approaches to ARDS Therapy

Given the central contribution of alveolo-capillary injury and high-permeability pulmonary
edema to refractory hypoxemia in ARDS, conservative fluid management after initial resuscitation
may reduce edema, improve gas-exchange, and improve clinical outcomes such as decreased duration
of MV and ICU length of stay (Table 2) [91,101]. Regardless of the primary cause of ARDS, the presence
of concomitant bacterial infection should be investigated, and broad-spectrum antibiotic therapy
considered. Limited evidence indicates early systemic steroids may reduce duration of MV and
mortality, but there are conflicting recommendations regarding dose, timing, and consideration
in individual patients (Table 2) [91,102]. A multitude of RCTs of various anti-inflammatory and
pathophysiology-based therapies have failed to improve clinical outcomes, such that there is no
specific medical therapy currently indicated or recommended for lung inflammation and injury in
ARDS patients.

Table 2. Medical treatment approaches for ARDS and specifically for COVID-19-associated ARDS.

Intervention ARDS COVID-ARDS

Fluid management

Conservative fluid strategy
Weak recommendation post initial

resuscitation (SCCM [48],
FICM-ICS [75])

Weak recommendation (SSC [40])

Anti-inflammatory therapy

Steroid

Weak recommendation
- Methylprednisolone 1–2 mg/kg/d
with 14 d taper (FICM-ICS [75],
SCCM-ESICM [102]

Recommended
- Dexamethasone 6 mg/d for 10 d
(WHO [33], IDSA [79],
CMAJ [103])

Other (Physiologic/Biologic)

Not recommended
- β2-agonists
- Exogenous surfactant
- Anti-IL1β
- Statins

Not recommended
- Hydroxychloroquine/chloroquine
- Lopanivir/ritonavir

Experimental

Current trials
- Anti-tissue factor antibody
fragment
- MAPK inhibitor
- Stem cell therapies
- Complement inhibitor
- JAK inhibitor

Current trials-
Convalescent human plasma
- Intravenous Immunoglobulin
- IL-6 inhibitor (e.g., tocilizumab)
- IL-1 inhibitor (e.g., anakinra)
- Anti-GM-CSF (e.g.,
mavrilimumab)
- Anticoagulants (e.g., Low
molecular weight heparin)
- Fibrinolytics (e.g., tPA)
- 25-OH vitamin D

Anti-microbials

Antibiotics

Strong recommendation
- If ARDS due to pneumonia or
sepsis (SCCM [48])
- If evidence of
ventilator-associated pneumonia
(SCCM [48])

Weak recommendation
- In patients requiring MV
(SSC [40], IDSA [79])
- If concomitant bacterial
pneumonia (SSC [40], IDSA [79]))

Antivirals

Specific viral targeted therapy
indicated
- If viral infection identified (e.g.,
influenza, RSV)

Specific viral targeted therapy
indicated
- If evidence of concomitant viral
pneumonia (e.g., influenza, RSV)
SARS-CoV-2 targeted therapy
- Remdesivir (IDSA [79])
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There is active research into various anti-viral and anti-inflammatory therapies specifically
for SARS-CoV-2 infection resulting in COVID-19 pneumonia and/or ARDS (Table 2) [79,103].
Strong evidence supports that corticosteroids (i.e., dexamethasone) reduce the need for ICU
admission and intubation/MV in hospitalized, hypoxemic COVID-19 patients. Moreover, in
COVID-ARDS patients, corticosteroids shorten the duration of MV and reduce mortality [104]. As such,
corticosteroids are strongly recommended for hypoxemic COVID-19 patients [104,105]. Remdesivir is
the first antiviral drug found to have some clinical benefit, namely in reducing time to recovery [106].
Many putative therapies are in ongoing clinical trials with some promise of preventing or treating
COVID-19, including human convalescent plasma, systemic anticoagulation, and 25-hydroxy vitamin
D [107–109]. A number of other medical therapies have been considered but have shown no benefit,
including lopanivir/ritonavir and hydroxychloroquine [110,111]. There is concern around the routine
clinical use of unproven experimental therapies, including high risk of drug–drug interactions given
that the majority of hospitalized COVID-19 patients are older with multiple co-morbidities requiring
treatment with many other medications [112].

4. Outcomes in Patients with ARDS

Mortality in ARDS has clearly improved from initial reports of 70–80% but still remains about
40% [2]. Although obstructive and restrictive pulmonary function defects are commonly found in
survivors, survivors are infrequently limited by respiratory issues but most commonly suffer from
long-term physical disabilities as well as cognitive and psychological issues [113,114]. Significant
pulmonary fibrosis in a minority of patients may contribute to poorer outcomes [115].

The vast majority of COVID-19 patients are admitted to ICU because of respiratory failure
(80–90%), with most requiring MV (60–80%) and experiencing significant but widely varying mortality
(26–90%) [9,33,49]. There is early concern about potential pulmonary fibrosis in patients with COVID-19
pneumonia, as well as poorly understood long-term constitutional, pulmonary, and systemic symptoms
sometimes labelled “chronic COVID”. Moreover, long-term cognitive and physical disabilities in
critically ill COVID-19 patients, similar to other ARDS patients, are expected given the duration of MV
and ICU care [116]. More robust mortality and long-term outcomes await further research.

5. Future Management of Patients with ARDS

The aforementioned multitude of negative pharmacologic RCTs in ARDS has resulted in a
lack of available effective medical therapies. This is due, to a large extent, to the simplification
of previous and current ARDS clinical-physiologic definitions which do not adequately reflect the
heterogeneity of ARDS populations, characterized by inter-individual variation in cause, severity,
respiratory physiology, and outcomes, as well as broad ranges of patient demographics (e.g., age,
race, gender) and comorbidities. Even more important, biological differences between patients driven
by genetics, genomics, and environmental influences collectively determine individual patient-specific
complex physiologic, immune, inflammatory and cell-injury responses, termed patient “endotype”.
The concept of precision medicine endeavours to identify and use such biological variation in
individuals in order to improve diagnosis, as well as target treatment to smaller, focused groups of
patients who are more likely to experience benefit and/or less likely to suffer adverse effects from
targeted therapies.

There is evidence in patients with ARDS that such endotypes strongly determine the variable
responses of individuals to treatment, including MV parameters, fluid strategy, and pharmacologic
therapies [117–119]. For example, despite a lack of overall benefit of simvastatin in ARDS,
a post-hoc analysis identified a mortality benefit of simvastatin in patients with a hyperinflammatory
endotype characterized by higher levels of pro-inflammatory mediators (e.g., IL-6, IL-8, s-TNFr1),
metabolic acidosis, and higher vasopressor requirements [117]. As such, specific endotypes based
most likely on a combination of validated clinical (e.g., demographics, ARDS severity) and biologic
variables (e.g., genetic polymorphisms, levels of cytokines such as IL-6), may best identify prognosis
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of individual patients (prognostic enrichment) as well as optimal responses to and tolerability of
novel therapies (predictive enrichment) [120]. A precision-medicine approach is already being utilized
in order to reduce clinical trial heterogeneity by recruitment of more homogeneous populations or
stratification of subjects based on patients’ endotypes.

In COVID-ARDS, clinical and biological phenotypes likely determine outcomes as well as response
to therapies, for example, low and high lung-compliance phenotypes [27,28]. Combinations of clinical
features and laboratory abnormalities (Figure 1) reflective of COVID-19 severity could identify specific
phenotypes with prognostic or therapeutic relevance [41]. For example, more severe respiratory failure
and a high D-dimer may indicate greater pulmonary vascular injury and thrombosis; as such, systemic
anticoagulation could improve outcomes in patients with such a “hypercoagulable” phenotype [121].
Clearly, active current research will better define COVID-19 endotypes and establish endotype-specific
diagnostic and/or management approaches.

6. Conclusions

ARDS remains a common and serious illness which is expected to have ongoing significant
morbidity, mortality and healthcare resource impacts, given recent and likely future new causes, such
as SARS-CoV-2. Strong basic science and clinical research continue to define the biology of ARDS,
identify most effective and safe management practices, including currently largely supportive measures
such as intubation and MV as well as novel respiratory approaches (e.g., HFNO, NIPPV), and multiple
international guidelines summarize evidence-based recommendations. A significant care gap remains
around targeted medical therapies, but precision medicine approaches to RCTs and clinical management
hold promise for improved clinical management and patient-relevant outcomes in patients with ARDS,
including in COVID-19.
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