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Tumor progression and prognosis in breast cancer pa-
tients are difficult to assess using current clinical and
laboratory parameters, where a pathological grading is
indicative of tumor aggressiveness. This grading is based
on assessments of nuclear grade, tubule formation, and
mitotic rate. We report here the first protein signatures
associated with histological grades of breast cancer, de-
termined using a novel affinity proteomics approach. We
profiled 52 breast cancer tissue samples by combining
nine antibodies and label-free LC-MS/MS, which gener-
ated detailed quantified proteomic maps representing
1,388 proteins. The results showed that we could define
in-depth molecular portraits of histologically graded
breast cancer tumors. Consequently, a 49-plex candidate
tissue protein signature was defined that discriminated
between histological grades 1, 2, and 3 of breast cancer
tumors with high accuracy. Highly biologically relevant
proteins were identified, and the differentially expressed
proteins indicated further support for the current hypoth-
esis regarding remodeling of the tumor microenvironment
during tumor progression. The protein signature was cor-
roborated using meta-analysis of transcriptional profiling
data from an independent patient cohort. In addition, the
potential for using the markers to estimate the likelihood
of long-term metastasis-free survival was also indicated.
Taken together, these molecular portraits could pave the
way for improved classification and prognostication of
breast cancer. Molecular & Cellular Proteomics 12:
10.1074/mcp.M113.030379, 3612–3623, 2013.

Breast cancer is the most frequently diagnosed cancer and
the leading cause of cancer death among women, accounting
for 23% of the total cancer cases and 14% of cancer-related

deaths (1). Traditional clinicopathological parameters such as
histological grading, tumor size, age, lymph node involve-
ment, and hormonal receptor status are used to determine
prognosis and treatment decisions (2–6). Histological grad-
ing, one of the most commonly used prognostic factors, is a
combined score based on microscopic evaluation of the mor-
phological and cytological features of tumor cells that reflects
the aggressiveness of a tumor. This combined score is then
used to stratify breast cancer tumors into three grades: grade
1, slow growing and well differentiated; grade 2, moderately
differentiated; and grade 3, highly proliferative and poorly
differentiated (2). However, the clinical value of histological
grades for patient prognosis has been questioned, mainly
reflecting the current challenges associated with traditional
grading of tumors (7, 8). Furthermore, 30% to 60% of tumors
are classified as histological grade 2, which represents a
heterogeneous patient cohort and has proven to be less in-
formative for clinical decision making (9). Clearly, traditional
clinical parameters are still not sufficient for adequate prog-
nosis and risk-group discrimination or for therapy selection.
As a result, many patients will be overtreated or treated with a
therapy that will not offer any benefits. Molecular grading of
tumors could be clinically valuable, if the grading could be
performed using an objective, high-performing classifier. Thus,
a deeper molecular understanding of breast cancer biology and
tumor progression, in combination with improved ways to indi-
vidualize prognosis and treatment decisions, is required in order
to further advance treatment outcomes (10, 11).

To date, a set of genomic efforts have generated molecular
signatures for the subgrouping of breast cancer types (12–14),
as well as for breast cancer prognostics and risk stratification
(15–17). In addition, proteomic findings have been anticipated
to accelerate the translation of key discoveries into clinical
practice (18). In this context, classical mass-spectrometry-
based proteomics have generated valuable inventories of
breast cancer proteomes, although using mainly cell lines and
only a few breast cancer tissue samples (19–24). More re-
cently, affinity proteomics has delivered the first multiplexed
serum portraits for the diagnosis of breast cancer and for
predicting the risk of tumor recurrence (25, 26). However,
generating detailed protein expression profiles in a sensitive
and reproducible manner, using large cohorts of complex
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proteomes such as tissue extracts, remains a challenge when
using either classical proteomic technologies or affinity pro-
teomics. To resolve these issues, we recently developed the
global proteome survey (GPS)1 technology platform (27),
combining the best features of affinity proteomics (large-
scale, multiplexed proteome analysis based on the use of
antibodies or other specific reagents (28)) and MS. GPS is
best suited for discovery endeavors aiming to reproducibly
decipher crude proteomes in a sensitive and quantitative
manner (29, 30).

In this first study of breast tumors, we delineated in-depth
molecular portraits associated with histologically graded
breast cancer tissues using GPS. For this purpose, 52 se-
lected breast cancer tissue proteomes were profiled, repre-
senting one of the largest label-free LC-MS/MS-based breast
cancer tissue studies. The protein expression profiles subse-
quently were validated using an orthogonal method. In the
longer term, these tissue protein portraits might pave the way
for improved classification and prognostication of breast can-
cer patients, and potentially even aid in defining candidate
targets for therapy.

EXPERIMENTAL PROCEDURES

Clinical Samples—This study was approved by the regional ethics
review board at Lund University, Sweden. Fifty-two breast cancer
patients (stages I and II) were recruited from the Department of
Oncology (Skane University Hospital, Lund, Sweden). Freshly frozen
breast tumor tissues were stored at �80 °C until analysis. Full clinical
records were accessible for 50 of the reevaluated tissue samples,
including tumor size, steroid receptor status, and lymph node involve-
ment (Table I and supplemental Table S1). The two additional tumors
were not primary tumors and consequently were included only for
peptide identification purposes. The samples were subdivided via
careful pathologic evaluation at the Department of Pathology (Skane
University Hospital) based on Nottingham histological grades 1 (n �
9), 2 (n � 17), and 3 (n � 24). Furthermore, 66% of the tumors were
estrogen receptor (ER) positive and progesterone receptor (PR) pos-
itive. Both the ER-positive and PR-positive tumors were found in all
histological grades, with over 40% of ER-positive tumors being grade
3 tumors. The ER-negative tumors were found only in histological
grades 2 and 3. Forty-six of the specimens had a defined HER2
status, and all HER2-positive tumors (10%) were grade 3 tumors
(Table I and supplemental Table S1). In addition, 41 of the tumors had
a defined Ki67 status, and 17 of the samples were defined as Ki67-
positive (supplemental Table S1).

Preparation of Trypsin-digested Human Breast Cancer Tissue Sam-
ples—Protein was extracted from the breast cancer tissue pieces and
stored at �80 °C until use. Briefly, tissue pieces (about 50 mg/
sample) were homogenized in Teflon containers, pre-cooled in liquid

nitrogen by fixating the bomb in a shaker for two 30-s periods with
quick cooling in liquid nitrogen between the two shaking rounds. The
homogenized tissue powder was collected in lysis buffer (2 mg tis-
sue/30 �l buffer) containing 8 M urea, 30 mM Tris, 5 mM magnesium
acetate, and 4% (w/v) CHAPS (pH 8.5). The tubes were briefly vor-
texed and incubated on ice for 40 min, with brief vortexing of the
sample every 5 min. After incubation, the samples were centrifuged at
13,000 rpm, and the supernatant was transferred to new tubes and
subjected to a second centrifugation. The buffer was exchanged for
0.15 M HEPES, 0.5 M urea (pH 8.0) using Zeba desalting spin columns
(Pierce, Rockford, IL) before the protein concentration was deter-
mined using a Total Protein Kit, Micro Lowry (Sigma, St. Louis, MO).
Finally, the samples were aliquoted and stored at �80 °C until further
use. The protein extracts were thawed, reduced, alkylated, and tryp-
sin digested. First, SDS and tris(2-carboxyethyl)phosphine-HCl
(Thermo Scientific, Rockford, IL) were added to final concentrations of
0.02% (w/v) and 5 mM, respectively, and the samples were reduced
for 60 min at 56 °C. The samples were cooled down to room temper-
ature before iodoacetamide was added to 10 mM, and then the
samples were alkylated for 30 min at room temperature. Next, se-
quencing-grade modified trypsin (Promega, Madison, WI) was added
at 20 �g per milligram of protein for 16 h at 37 °C. In order to ensure
complete digestion, a second aliquot of trypsin (10 �g per milligram of
protein) was added and the tubes were incubated for an additional 3 h
at 37 °C. Finally, the digested samples were aliquoted and stored at
�80 °C until further use. In addition, a separate pooled sample,
generated by combining 5-�l aliquots from all digested samples, was
prepared and stored at �80 °C until further use. In order to increase
the potential tentative proteome coverage, the two samples for which
limited clinical data were at hand (supplemental Table S1) were still
analyzed individually and included in the pooled sample.

Production and Coupling of CIMS-scFv Antibodies to Magnetic
Beads—Nine CIMS scFv antibodies (clones 1-B03, 15-A06, 17-C08,
17-E02, 31–001-D01, 32–3A-G03, 33–3C-A09, 33–3D-F06, and 34–
3A-D10) directed against seven short C-terminal amino acid peptide
motifs (supplemental Table S2) were used as affinity probes. The
selection of the antibodies was based on the criterion of a limited set

1 The abbreviations used are: AUC, area under the curve; CDK1,
cyclin-dependent kinase 1; CIMS, context independent motif specific;
ECM, extracellular matrix; ER, estrogen receptor; FDR, false discov-
ery rate; GOBO, gene expression-based outcome for breast cancer
online; GPS, global proteome survey; IPA, Ingenuity Systems Path-
way Analysis; MCM, minichromosome maintenance complex com-
ponent; PR, progesterone receptor; ROC, receiver operating charac-
teristic; SVM, support vector machine; TGF�1, transforming growth
factor �.

TABLE I
Patient demographics and clinical parameters

Parameter
Histological

grade 1a
Histological

grade 2a
Histological

grade 3a

Number of patientsb 9 17 24
Age (years) 55.8 (11.9) 45.9 (4.0) 45.8 (5.2)
Tumor size (mm) 24.3 (5.9) 21.9 (10.9) 29.5 (9.2)
ER�/ER�c 9/0 14/3 10/14
PgR�/PgR� 9/0 13/4 11/13
Lymph node�/lymph

node�
5/4 14/3 10/14

HER2�/HER2�d 0/9 0/16e 5/16
a Values in parentheses represent standard deviation.
b For two patients, clinical parameters were not received.
c ER and PgR were analyzed in cytosol samples with ligand binding

assays (LBAs) or enzyme immunoassays (EIAs) as previously de-
scribed (11). Samples with a receptor content greater than or equal to
10 (LBA) or 25 (EIA) fmol/mg protein were classified as ER or PgR
positive, and samples with values below these levels were ER or PgR
negative.

d All patients with fluorescence in situ hybridization (FISH) amplified
tumors and all patients with an immunohistochemical 3� where FISH
could not be evaluated were considered HER2�.

e In cases where the sum is less than the number in the group,
patient data are missing.

Grading Breast Cancer Using Molecular Signatures

Molecular & Cellular Proteomics 12.12 3613

http://www.mcponline.org/cgi/content/full/M113.030379/DC1
http://www.mcponline.org/cgi/content/full/M113.030379/DC1
http://www.mcponline.org/cgi/content/full/M113.030379/DC1
http://www.mcponline.org/cgi/content/full/M113.030379/DC1
http://www.mcponline.org/cgi/content/full/M113.030379/DC1


of high-performing CIMS antibodies. To accomplish this, we selected
nine CIMS antibodies proven in earlier studies to obtain reasonably
large, wide (deep), sensitive, and quantitatively reproducible pro-
teome coverage (29, 30). Of note, these binders and their motif
specificities were not specifically chosen to address a specific indi-
cation such as breast cancer or for targeting a specific subset of
proteins. The specificity and dissociation constants (low micromolar
range) for eight of the CIMS antibodies have recently been deter-
mined (29, 31). The antibodies were produced in 100-ml E. coli cul-
tures and purified using affinity chromatography on Ni2�-nitrilotri-
acetic acid agarose (Qiagen, Hilden, Germany). Bound molecules
were eluted with 250 mM imidazole, dialyzed against PBS (pH 7.4) for
72 h, and then stored at � 4 °C until use. The protein concentration
was determined by measuring the absorbance at 280 nm. The integ-
rity and purity of the scFv antibodies were evaluated via 10% SDS-
PAGE (Invitrogen, Carlsbad, CA). The purified scFvs were individually
coupled to magnetic beads (M-270 carboxylic acid activated, Invit-
rogen Dynal, Oslo, Norway) as previously described (29). Briefly,
batches of 180 to 250 �g purified scFv were covalently coupled
(EDC-NHS chemistry N-Ethyl-N�-(3-dimethylaminopropy) carbodii-
mide (Sigma- Aldrich, St. Louis, MO) and Sulfo-NHS (Thermo Scien-
tific, Rockford, IL.)). to �9 mg (300 �l) of magnetic beads and stored
in 0.005% (v/v) Tween-20 in PBS at 4 °C until further use. A batch of
blank beads was also generated (i.e. beads generated with the cou-
pling protocol but without the addition of scFv).

Label-free Quantitative GPS Experiments—Four different pools
(CIMS-binder mixes 1 to 4) of conjugated beads were made by mixing
equal amounts of two or three different binders as follows: mix 1,
CIMS-33–3D-F06 and CIMS-33–3C-A09; mix 2, CIMS-17-C08 and
CIMS-17-E02; mix 3, CIMS-15-A06 and CIMS-34–3A-D10; and mix
4, CIMS-1-B03, CIMS-32–3A-G03, and CIMS-31–001-D01 (supple-
mental Table S2). For each capture, 50 �l of the pooled bead solution
was used, and the scFv beads were never reused. The beads were
prewashed with 350 �l PBS prior to being exposed to a tryptic sample
digest in a final volume of 35 �l (diluted with PBS and the addition of
phenylmethylsulfonyl fluoride to a final concentration of 1 mM) and
then incubated with the beads for 20 min with gentle mixing. Next, the
tubes were placed on a magnet, the supernatant was removed, and
the beads were washed with 100 and 90 �l PBS, respectively (the
beads were transferred to new tubes between washing steps, and the
total washing time was 5 min). Finally, the beads were incubated with
9.5 �l of a 5% (v/v) acetic acid solution for 2 min in order to elute
captured peptides. The eluate was then used directly for mass spec-
trometry analysis without any additional clean up.

An electrospray ionization LTQ-Orbitrap XL mass spectrometer
(Thermo Electron, Bremen, Germany) interfaced with an Eksigent
nanoLC 2DTM Plus HPLC system (Eksigent Technologies, Dublin,
CA) was used for all samples. The autosampler injected 6 �l of the
GPS-generated eluates. A blank LC-MS/MS run was used between
analyzed samples. Peptides were loaded with a constant flow rate of
15 �l/min onto a pre-column (PepMap 100, C18, 5 �m, 5 mm � 0.3
mm, LC Packings, Amsterdam, The Netherlands). The peptides were
subsequently separated on a 10-�m fused silica emitter, 75 �m � 16
cm (PicoTipTM Emitter, New Objective, Inc., Woburn, MA), packed
in-house with Reprosil-Pur C18-AQ resin (3 �m; Dr. Maisch, GmbH,
Ammerbuch-Entringen, Germany). Peptides were eluted with a 35-
min linear gradient of 3% to 35% (v/v) acetonitrile in water containing
0.1% (v/v) formic acid, with a flow rate of 300 nl/min. The LTQ-
Orbitrap was operated in data-dependent mode to automatically
switch between Orbitrap-MS (from m/z 400 to 2000) and LTQ-MS/MS
acquisition. Four MS/MS spectra were acquired in the linear ion trap
per each Fourier transform MS scan, which was acquired at 60,000
full width at half-maximum nominal resolution using the lock mass
option (m/z 445.1200257) for internal calibration. The dynamic exclu-

sion list was restricted to 500 entries using a repeat count of two with
a repeat duration of 20 s and with a maximum retention period of
120 s. Precursor ion charge state screening was enabled to select for
ions with at least two charges and rejecting ions with undetermined
charge states. The normalized collision energy was set at 35%, and
one microscan was acquired for each spectrum. The complete study
was run using 26 days of MS-instrumentation time, divided into four
blocks of 6.5 days each (one CIMS-binder mix/block). All samples
were individually analyzed one time per CIMS-binder mix. In addition,
triplicate captures of selected samples were performed within each
block as back-to-back LC-MS/MS runs. The reference sample was
repeatedly analyzed over time within and between the four blocks
(supplemental Fig. S1). A total of 238 LC-MS/MS runs were per-
formed. Blank beads (i.e. beads without any conjugated antibody)
were exposed to the pooled digest to allow us to evaluate potential
bead background binding peptides. Based on the low number of
identified background binding peptides from two blank bead “cap-
tures,” all generated data were left unfiltered unless otherwise noted.

Protein Identification and Quantification—The generated data were
first analyzed using Proteios (32) for generating identifications using
both Mascot and X!Tandem. Briefly, all files were processed and
converted into mzML and mgf format using the Proteios software
environment (v 2.17) platform, and the following search parameters
were used for Mascot and X!Tandem: enzyme, trypsin; one missed
cleavage; fixed modification, carbamidomethyl (C); variable modifica-
tion, methionine oxidation (O). In addition, a variable N-acetyl was
allowed for searches performed in X!Tandem. A peptide mass toler-
ance of 3 ppm and a fragment mass tolerance of 0.5 Da were used,
and searches were performed against a forward and a reverse com-
bined database (Homo sapiens, Swiss-Prot, August 2011, resulting in
a total of 71,324 database entries). The automated database searches
in both Mascot and X!Tandem and consequent combination (with a
false discovery rate (FDR) of 0.01) were used (estimated on the basis
of the number of identified reverse hits) for generating peptide iden-
tifications. The search results from both Mascot and X!Tandem were
combined at the peptide-spectrum match level when calculating pep-
tide-level FDRs. All peptide identifications passing the FDR combined
threshold were kept. For details regarding the Proteios software
equipment see Hakkinen et al. (32). Protein identifications derived
from Proteios were generated by finding protein groups for peptides
that passed the peptide combined FDR cutoff and then were further
filtered based on a protein FDR of 0.01. This could be done via a
search in the target-decoy database, and the decoys were kept in the
combined hits report to then set the protein FDR. The proteins were
assembled per sample, and the “Occam’s razor” approach was used
when calculating protein groups. A spectral library was generated that
can be directly uploaded in Skyline (33) for viewing of all fragment ion
spectra (see supplemental data).

Because the Proteios software environment at the time of analysis
offered no quantitative label-free plug-in analyzing modules (devel-
opment is in progress), Progenesis-LC-MS software (v 4.0, Nonlinear
Dynamics, Newcastle upon Tyne, UK) was used for generating all
quantitative values. Briefly, the raw data files were converted to
mzXML using the ProteoWizard software package prior to application
of the Progenesis-LC-MS software. The built-in feature-finding tool,
Mascot search tool, and combined fractions tool (CIMS-binder mixes
1, 2, 3, and 4) with default settings and minimal input were used. To
obtain optimal feature alignment, the first injection run of the pooled
sample for each CIMS-binder mix (supplemental Fig. S1) was used as
a reference alignment file, except for CIMS mix 3 runs, in which the
halfway pool run was used as the reference alignment file. Features
aligned and detected with retention times between 10 and 50 min for
CIMS-binder mixes 1 and 2 and between 10 and 49 min for CIMS-
binder mixes 3 and 4 were included for quantification. Due to limita-
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tions of the Progenesis-LC-MS software, the identification was limited
to only Mascot searches, meaning that no X!Tandem-generated pep-
tide identifications from Proteios were included for downstream quan-
titative analysis. The same database (Homo sapiens, Swiss-Prot,
August 2011, a forward and a reverse combined database) and
search parameters as mentioned above were used, and a cutoff FDR
value of 0.01 was applied. Furthermore, the default protein options for
protein grouping and protein quantitation within the Progenesis-
LC-MS software were used (i.e. quantitate from nonconflicting fea-
tures and group similar proteins). All values that were reported from
Progenesis-LC-MS as between 0 and 1 were set to 1. The generated
normalized abundance values were then used (log2 values) for sta-
tistical and bioinformatics analysis. For details of all protein identifi-
cations and protein quantifications, see the supplemental data.

Statistical and Bioinformatical Analysis—Qlucore Omics Explorer v
2.2 (Qlucore AB, Lund, Sweden) was used for identifying significantly
up- or down-regulated proteins (p � 0.01) using a one-way analysis of
variance (ANOVA). The q-values were generated based on the
Benjamini–Hochberg method (34). Principal component analysis plots
and heat maps were generated in Qlucore or Matrix2png (35). The
support vector machine (SVM) is a learning method (36) that was used
to classify the samples using a leave-one-out cross-validation proce-
dure, and the analyses were performed on both unfiltered and p-val-
ue-filtered data. A receiver operating characteristic (ROC) curve (37),
constructed using the SVM decision values and the area under the
curve (AUC), was used as a measurement of the performance of the
classifier.

Hence, differentially expressed proteins identified from three-group
comparisons were fed into the SVM for two group comparisons. We
selected this as our initial strategy because the sample cohort for
grade 1 in particular was small so that the cohort could be divided into
a training set and a test set (which would be the preferred approach).
However, in order to assess the effect and evaluate the potential risk
of overestimation of ROC–AUC values when using the entire sample
cohort for deriving significant analytes prior to an SVM ROC analysis,
we randomly divided our samples into 10 different training (two-thirds
of grades 1, 2, and 3) and test sets (one-third of grades 1, 2, and 3).
This was done to demonstrate the range of AUC values obtained
when using only two-thirds of all samples to derive a candidate panel,
using an ANOVA (three-group, p � 0.01 in Qlucore) comparison as
before. Subsequently, using the training set and the candidate marker
panel, an SVM was performed. The SVM was then frozen and applied
to the independent test set (one-third of the samples), generating an
ROC AUC value (26). This procedure was then repeated nine addi-
tional times using the next randomly generated training and test sets
and candidate marker panels. Furthermore, Ingenuity Systems Path-
way Analysis (IPA) (v 11904312) was used for the significantly differ-
entially expressed proteins in order to extract information such as
protein localization, potential network interactions, transcription fac-
tor associations, and association with tumorigenesis. The experimen-
tally derived protein signatures were finally validated at the mRNA
level using the GOBO search tool against large cohorts of published
gene expression data of defined breast cancer tissues (38), including
clinical parameters such as histological grades 1, 2, and 3 or ER
status. The validation cohort was composed of 1,881 mRNA samples
(based on 11 public datasets), of which 1,411 had assigned histolog-
ical grades, including grade 1 (n � 239), grade 2 (n � 677), and grade
3 (n � 495). 1,620 tumors had assigned ER status, including ER-
positive (n � 1,225) and ER-negative tumors (n � 395). The GOBO
tool calculates for each tumor (in the database) an activity value of the
eight gene modules (emulating breast-cancer-specific biological pro-
cesses) assessed. The average expression level can then be deter-
mined for a gene set submitted to GOBO. Consequently, for each
gene set and each of the modules, the Spearman correlation can be

determined over all tumors. A p(ANOVA) value is calculated and
reported for all the modules, and this simply tests the null hypothesis
that a gene set has the same association to all modules. For specific
details regarding the underlying calculations and activity values of the
different modules emulating breast-cancer-specific biological pro-
cesses, see Refs. 38 and 39.

RESULTS

Protein expression profiles of 52 breast cancer tissue ex-
tracts were deciphered, including identification and quantifi-
cation. Tissue biomarker signatures and individual proteins,
reflecting either histological grade or tumor progression,
could be delineated. An overall workflow outlining the exper-
imental design is shown in supplemental Fig. S1.

Protein Coverage, Dynamic Range, and Assay Perform-
ance—Using the GPS technology based on nine antibodies, a
total of 2,140 protein groups were identified (Figs. 1A–1C).
The identification reproducibility was high, resulting in a
54.7% peptide overlap (supplemental Fig. S2A). In compari-
son, the reference sample, which was repeatedly analyzed
throughout the entire project, showed a 43.9% peptide iden-
tification overlap (supplemental Fig. S2B). Of the identified
proteins, a total of 1,388 were quantified (supplemental Fig.
S3) and subsequently used in the search for tumor-associated
markers. The total median coefficient of variation for quanti-
fication for one sample (ID 7267) was 10.8% (supplemental
Fig. S4A), whereas the corresponding total median coefficient
of variation for the reference sample was 22.8% (supplemen-
tal Fig. S4B). Notably, about 38% (833 peptides) of the quan-
tified peptides had not previously been reported in the
PeptideAtlas (Fig. 1D) (40), indicating substantial novel cov-
erage. This was further highlighted by the fact that a signifi-
cant portion of the detected peptides were shorter than those
previously reported, with a median length of 9 versus 11
amino acids commonly found in PeptideAtlas (Fig. 1E).

The distribution of measured log2-MS intensity normalized
abundances for all quantified proteins was assessed and
indicated a dynamic range of �106 (supplemental Fig. S3A).
The in-depth coverage generated by the GPS technology was
further illustrated by the fact that peptides both frequently and
rarely reported in PeptideAtlas were detected (Fig. 1F). The
detected proteins were then grouped by major biological
process and were found to cover several groups (supplemen-
tal Fig. S3B). Of note, proteins associated with processes
such as translation (e.g. 60S ribosomal protein) were found to
display a higher overall abundance than other proteins in-
volved in, for example, mitosis (e.g. CDK1), demonstrating the
capability to provide deep and reproducible coverage of both
high- and low-abundance proteins in breast tissue.

Protein Expression Profiles Reflecting Histological Grades 1
to 3—We first examined whether a tissue protein signature
reflecting histological grade could be deciphered. Using a
multivariate analysis (three-group comparison), we identified
49 significantly (p � 0.01, q-value � 0.25) differentially ex-
pressed proteins among the grade 1, grade 2, and grade 3
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cohorts (supplemental Table S3). Based on this protein sig-
nature, principal component analysis plots showed that his-
tological grade 1 and grade 3 tumors could be well separated,
whereas histological grade 2 tumors appeared to be more
heterogeneous (Fig. 2), indicating a further subclassification of
grade 2 into two subgroups. A clear trend involving both up-
and down-regulated proteins could be observed with increas-
ing histological grade. For example, cyclin-dependent kinase
1 (CDK1), minichromosome maintenance complex compo-
nent 3 (MCM3), DNA replication licensing factor MCM7,
ATP-citrate synthase, polyadenylate-binding protein 4, and
6-phosphofructokinase type C displayed an increasing trend
and were most up-regulated in grade 3 tumors (Fig. 2 and
supplemental Fig. S5). In contrast, analytes such as asporin,
spondin, keratocan, chymase, and olfactomedin-like protein 3
displayed higher expression levels in histological grade 1 than
in grade 3 tumors (Fig. 2 and supplemental Fig. S6).

We then examined whether the 49 p-value-filtered (p �

0.01) proteins could be used to classify the tissues based on
histological grade. To this end, we ran a leave-one-out cross-
validation with the SVM and collected the decision values for
all samples. We adopted this approach because the number
of samples, especially of grade 1, was too low for the samples

to be split into a test set and a training set. The prediction
values were then used to construct an ROC curve, and the
AUC values were calculated (Fig. 2). The results showed that
the histological grade tumor subgroups could be well sepa-
rated (AUC � 0.75 to 0.93), although grade 2 again displayed
a more heterogeneous pattern.

To examine the robustness of the classification, we then
re-analyzed the data after having split the sample set into a
random training set (two-thirds of the samples) and test set
(one-third of the samples). This process was repeated 10
times, and consequently 10 frozen SVMs were used to test
the deciphered biomarker signatures on the test sets. The
results showed that the median AUC value was 0.86 for
the classification of grade 1 versus grade 3 tumors (Fig. 2).
The median AUC value for the classification of grade 1 versus
grade 2 was 0.67, and for the classification of grade 2 versus
grade 3 tumors the median AUC value was 0.65 (Fig. 2).
Hence, consistent results were obtained also when using
more stringent data analysis approaches.

After ER status had been eliminated as a potential con-
founding variable, 27 analytes were still present, of which 25
overlapped with the original 49, and the AUC was 0.90 instead
of 0.93 for grade 1 versus grade 3 (supplemental Table S3). As

FIG. 1. Peptide and protein statistics. A, total number of unique peptide sequences identified per sample (using Mascot � X!Tandem; FDR
of 0.01). Bars ordered according to supplemental Table S1. Data for samples analyzed in triplicate also displayed (bars 26–28, 52–54, and
55–57). B, total number of assembled protein groups identified per sample (FDR of 0.01, set at protein level, using Mascot � X!Tandem). Bars
ordered according to supplemental Table S1. Data for samples analyzed in triplicate also displayed (bars 26–28, 52–54, and 55–57). C, number
of unique peptides per protein group (FDR of 0.01, set at protein level, using Mascot � X!Tandem) resulting in a total protein coverage of 2,140
protein groups in the entire study. (Data based on all samples and runs, including replicates, pool runs, and samples with missing clinical
parameters.) D, evaluation of quantified peptides (Progenesis LC-MS software, limited to Mascot scored peptides using an FDR of 0.01) against
the PeptideAtlas (version 2011–08 Ens62, human). In addition, for peptides not present in the PeptideAtlas, a second comparison was
performed in order to evaluate whether the corresponding protein had been reported. In cases of multiple protein accessions, all were
assessed. E, comparison of peptide length. F, observed peptide frequency in PeptideAtlas.
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could be expected, similar results were observed whether ER
status or PR status was eliminated as a confounding variable,
because the distributions of these two clinical parameters
followed each other closely among the tumor samples (sup-
plemental Table S3). When the HER2 status was eliminated as
a potential confounding variable, it resulted in an overlap of 35
proteins (p � 0.01) with the 49-protein panel (supplemental
Table S3).

Next, we investigated the effect of using a two-group com-
parison instead of a multivariate approach to define differen-
tially expressed markers between individual grades (supple-
mental Fig. S7). As might be expected, data showed that the
classification of the individual histological subgroups was im-
proved, as judged by the AUC values (AUC � 0.91 to 0.92).
Focusing on histological grade 1 versus grade 3, 50 signifi-
cantly (p � 0.01) differentially expressed proteins were iden-
tified (supplemental Table S4), and 31 proteins overlapped
with the previous 49-marker signature (see Fig. 2 and supple-
mental Fig. S7C) and resulted in an overlap of 19 proteins with
the 50-marker panel when ER status was eliminated as a
potential confounding factor (supplemental Table S4). When
histological grade 2 was mapped onto the frozen 50-protein
comparison of grade 1 versus grade 3, it again displayed large
heterogeneity and partly overlapped with both cohorts (see
Fig. 2 and supplemental Fig. S7D). When an unsupervised
clustering analysis was used on only grade 2 samples, a
subdivision into two subgroups was evident (Appendix, Fig.

S8A). We therefore split grade 2 into two groups, 2a (n � 11)
and 2b (n � 6), and showed that 2a was closer associated
with grade 1, whereas 2b resembled grade 3 (supplemental
Fig. S8B), which indicated that molecular diagnostics might
further refine the classification owing to its higher resolution.

Biological Relevance of Proteins Associated with Histolog-
ical Grades 1–3—The biological relevance of the 49-tissue
protein signature differentiating histological grades 1 to 3 was
then examined. To this end, the cellular localization of each
individual protein was mapped using the IPA software (Fig. 3),
and network-associated functions and potential relationships
were investigated (supplemental Fig. S9). A trend of down-
regulated (extracellular matrix (ECM)) and up-regulated pro-
teins (plasma membrane, cytoplasm, and nucleus) going from
grade 1 to grade 3 was identified. Of note, the top-ranked
network had the highest expression in grade 3 and was
found to be associated with DNA replication, recombination,
and repair; cell cycle; and free radical scavenging. The second
highest ranked network contained protein associated with tis-
sue structural proteins and was most abundant in grade 1
tumors. For example, a majority of ECM proteins were found in
this network, and several were directly or indirectly associated
with transforming growth factor � (TGF�1) (supplemental Fig.
S9B). In the top-ranked network, several proteins were di-
rectly or indirectly associated with NF-kB and VEGF (supple-
mental Fig. S9A). In addition, the relationship between the
49-analyte signature and the transcription factor network was

FIG. 2. Significantly differentially expressed proteins based on histological grade. Differentially expressed analytes are shown in
heatmaps (red, up-regulated; green, down-regulated). Principal component analysis plot and associated heatmap of histological grade 1, grade
2, and grade 3 samples (data filtered on variance 0.2, p value � 0.01, q-value � 0.25). Results from a leave-one-out validation approach (using
SVM) demonstrated with ROC-AUC values based on using all 49 proteins are presented. In addition, the median ROC-AUC values (for 10
random training and test sets) reported when using two-thirds of our samples to first derive significant proteins (using an ANOVA (three-group,
p � 0.01 in Qlucore)) were then fed to an SVM, and the test set was tested (one-third of the samples) using the frozen SVM.
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also assessed using IPA (supplemental Fig. S9C), and Rb and
E2F2 were found to be among the top associated transcrip-
tion regulators (supplemental Fig. S9C).

Validation of Candidate Signature Using Independent Data—
In order to validate the 49-tissue protein signature discrimi-
nating histological grades 1 to 3, protein data were compared
with independent publicly available orthogonal mRNA profil-
ing data of breast cancer. The validation cohort was com-
posed of 1,881 mRNA samples (based on 11 public datasets),
of which 1,411 had an assigned histological grade of grade 1
(n � 239), grade 2 (n � 677), or grade 3 (n � 495). Forty-two
of the 49 analytes could be mapped to the gene expression
data using Gene Entrez ID and were subsequently used in the
validation test (supplemental Table S5). The 42 analytes were
then split into two groups based on the observed down- (15
analytes) or up-regulated (27 analytes) protein expression
profile for grade 3 versus grade 1 and compared with the
corresponding mRNA expression profiles (Fig. 4). The protein
expression profiles of both down-regulated (e.g. spondin 1
and keratocan) (Fig. 4A, supplemental Figs. S6, S10I, and
S10J) and up-regulated proteins (e.g. CDK1 and MCM3)
(Fig. 4B, supplemental Figs. S5, S10A, and S10B) were found

to corroborate well with the mRNA expression levels in the
majority of cases. In one case (serum amyloid P component)
the protein expression profile decreased in grade 3 (supple-
mental Fig. S6); this did not correlate with the mRNA profile,
which was unchanged (supplemental Fig. S10G). Interest-
ingly, the up-regulated protein markers in grade 3 were found
to display mRNA profiles with a high correlation to checkpoint
and M-phase gene modules (Fig. 4A), whereas the group of
down-regulated protein markers displayed mRNA profiles
with high correlation to the stromal gene module (Fig. 4B).

Assessing Distant Metastasis-free Survival—Finally, we ex-
amined whether the 49-tissue protein signature reflecting his-
tological grade also could be used to assess distant metas-
tasis-free survival, using the same publicly available gene
expression dataset. Forty-two of 49 analytes could be
mapped to 1,379 mRNA samples with 10-year end-point sur-
vival data. The markers were split into two groups, reflecting
down-regulated (n � 15) and up-regulated (n � 27) markers in
grade 3 versus grade 1, and Kaplan–Meier analyses were then
performed to calculate distant metastasis-free survival with a
10-year end point by stratifying the gene expression data into
three quantiles (low, intermediate, and high) based on the

FIG. 3. Biological relevance of differentially expressed analytes in the three histologically graded tumor types determined using IPA.
The 49 proteins identified as significantly differentially expressed proteins in the three tumor cohorts mapped to their cellular localization.
Log2-ratio (median grade 3/median grade 1); red denotes up-regulation, and green denotes down-regulation. Proteins with known associations
to tumorigenesis are indicated.
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expression levels of these up- and down-regulated genes
(supplemental Fig. S11). The data implied that in particular the
cohort of down-regulated genes (mainly ECM-associated)
might be useful in predicting distant metastasis-free survival.
In fact, this might even be accomplished by targeting single
down-regulated (e.g. keratocan and olfactomedin-like protein
3) or up-regulated (e.g. CDK1) proteins—that is, low levels of
olfactomedin-like protein 3 and high levels of CDK1 increase
the risk for distant metastasis.

DISCUSSION

Breast cancer grading has important clinical relevance, be-
cause it influences the therapy selected for each patient.
However, the histological grading today depends on a micro-
scopic analysis of cellular morphology and is, like most visual
analyses, subject to more operator-dependent variation than
molecular diagnostics. Consequently, we set out to design an
improved grading analysis based on protein expression por-
traits reflecting each grade, and to identify trends in expres-
sion patterns associated with disease aggressiveness. Fur-
thermore, information on pathways regulated in association
with tumor grade also has the potential to provide insight into

the mechanisms underlying tumor progression, as well as an
improved understanding of the features of histological grade
that influence prognosis.

By combining label-free LC-MS/MS with an affinity pro-
teomic step, using only nine so-called CIMS antibodies, we
were able to identify the first tissue protein signature associ-
ated with tumor grade and disease progression in breast
cancer. This was accomplished by profiling 52 breast cancer
tissues and generating detailed, quantified proteomic maps of
1,388 proteins using the recently developed GPS technology
(27, 29, 30). The proteome coverage for the GPS platform is
limited by the range of specificities of the nine CIMS antibod-
ies, as well as by conventional MS-MS-related limitations (e.g.
MS time, LC gradient design, and limit of detection). In order
to optimize the MS time, we applied a limited set of CIMS
antibodies and used short LC gradients. Hence, a highly
streamlined workflow and reasonable sample throughput
were achieved. In comparison, performing the same study
using a conventional MS-based approached would have been
challenging considering the number of fractions (obtained via
prefractionation) per sample and instrument time that would
have been needed in order to handle the complexity of breast

FIG. 4. Validation of protein expres-
sion profiles using an orthogonal
method. To this end, mRNA expression
profiles based on data from 1,411 histo-
logically graded tumor samples were
used. 42 of 49 differentially expressed
proteins among histological grades 1, 2,
and 3 were successfully mapped (using
Gene Entrez ID) into the GOBO data-
base. A, mRNA expression profiles for
proteins found to display decreased pro-
tein expression in histological grade 3
tumors (median ratio compared with his-
tological grade 1); 15 (out of 16 total)
analytes could be mapped with the
GOBO tool. In addition, the correlation of
the 15 genes to different gene set mod-
ule expression patterns is indicated.
Gray dots indicate actual correlation val-
ues. B, mRNA expression profiles for
proteins found to display increased ex-
pression in histological grade 3 tumors
(compared with histological grade 1); 27
(of 33) could be mapped with the GOBO
tool. In addition, the correlation of the 27
genes to different gene set module ex-
pression patterns is indicated. Gray dots
indicate actual correlation values.
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tissue proteomes (24). This was exemplified by Geiger et al.,
(24) who separated peptides via strong anion exchange into
six fractions that were then concentrated and purified using
C18 StageTips and subjected to LC-MS/MS analysis with a
long LC gradient. Furthermore, relative to GPS, an antibody-
based microarray approach offers a substantially higher
throughput and can easily handle hundreds of samples within
a short period of time (41). However, the microarray platform
does not offer a discovery mode as the GPS methodology
does, because the array approach needs one antibody per
protein of interest with a pre-defined specificity.

The GPS allowed the identification of a 49-plex tissue pro-
tein signature differentiating histological grade 1, 2, and 3
breast cancer tumors with high specificity and sensitivity.
Furthermore, using only two-thirds of the samples as a train-
ing set for deriving candidate markers and testing using fro-
zen SVMs still resulted in high median ROC-AUC values,
particularly for histological grade 1 versus grade 3 (0.86). The
49-plex molecular protein fingerprint supported the current
view that grade 1 and grade 3 tumors were more distinct,
whereas grade 2 tumors were more heterogeneous (9). In fact,
the data indicated that grade 2 could be further subdivided
into grades 2a and 2b.

The biological relevance of the identified signature was
manifest in comparison with the characteristic cancer hall-
marks (42), and a clear trend was observed in protein expres-
sion from grade 1 to grade 3 breast tumors. Grade 1 ex-
pressed stromal and ECM-associated protein, indicating a
more structurally conserved tumor, whereas grade three tu-
mors appeared to have lost those properties and, in addition,
expressed higher levels of proteins involved in cell prolifera-
tion and mitosis. This observation coincides well with the
concept that histological grade is based on mitotic index,
nuclear pleomorphism, and differentiation (2). Proliferation
has also been recognized as one of the key prognostic factors
in breast cancer and has been found to be one of the major
components of several prognostic gene expression signa-
tures (43, 44). In this study, CDK1, MCM3, and MCM7 were
among the markers found to increase in expression from
histological grade 1 tumors to grade 3 tumors (Fig. 2 and
supplemental Fig. S5). CDK1 is a key player in cell cycle
regulation (45), and it was recently demonstrated that the
depletion of CDK1 compromises the ability of cells to repair
DNA by means of homologous recombination. Consequently,
as reduced CDK1 expression impairs BRCA1 function and
DNA repair, the inhibition of CDK1 represents a potential
strategy for expanding the utility of poly-ADP ribose poly-
merase inhibitors to BRCA-competent cancers (46). MCM2
and MCM7 have been shown to play a role in both initiation
and elongation phases of eukaryotic DNA replication (47, 48).
The overexpression of MCM3 has been identified in primary
cancer tissues, including carcinomas of breast, colon, kidney,
cervix, and stomach, as well as in a number of cancer cell
lines, implying a role for MCM3 in tumorigenesis (48). Note-

worthy, another minichromosome maintenance complex
(MCM6) is one of the 70 genes (15) included in the current
MammaPrint® test. In addition to the above mentioned nucle-
us-associated proteins, stress-induced-phosphoprotein 1
and polyadenylate-binding protein 4, both localized in the
cytoplasm, also displayed increased protein expression going
from histological grade 1 to grade 3. Stress-induced-phos-
phoprotein 1 has been shown to be secreted by ovarian
cancer cells into their environment and is functional in pro-
moting cell proliferation (49). The polyadenylate-binding pro-
teins, aside from binding to poly(A) sequences, have critical
roles in RNA processing and can be shuttled from the nucleus
to the cytoplasm with mRNAs, increase eIF4F assembly to
caps, aid in the recruitment of ribosomal subunits to 5� UTRs,
and increase the reuse of translational machinery after poly-
peptide synthesis (50). Thus, the polyadenylate-binding pro-
teins are also directly or indirectly involved in cell proliferation
and were most highly expressed in grade 3 tumors.

One of the primary metabolic changes associated with
proliferating tumor cells is the induction of aerobic glycolysis.
Phosphofructokinase has been demonstrated to play a crucial
role in glycolytic activities and cell proliferation in breast can-
cer, and it is another potential target in designing selective
breast cancer chemotherapy (51). Phosphofructokinase dis-
played a trend of increased expression from grade 1 to grade
3. Two additional proteins with potential importance for tumor
cells adopting metabolic changes that displayed significantly
increased expression trends were ACLY and ADP/ATP trans-
locase 2 (SLC25A5), both localized in the cytoplasm.

Notably, all the ECM-associated proteins, such as asporin,
keratocan, spondin 1, chymase 1, olfactomedin-like protein 3,
and stanniocalcin-2, were found to display a trend of decreas-
ing protein expression, with the lowest levels in the grade 3
tumors (Fig. 2 and Fig. 3), again indicating disseminating
tumor–stromal interactions, as ECM goes through drastic
changes and collapses during tumor dissemination. The ECM
of breast cancers is considered abnormal and is believed to
promote tumor progression (52), and it regulates gene expres-
sion and phenotype through adhesion-mediated signaling
(53). Bergamaschi and colleagues defined several ECM sig-
natures based on gene expression profiling and suggested
that primary breast tumors could be classified based upon the
ECM composition (54). Thus, the importance of the ECM and
stromal characteristics, and their capability to provide rele-
vant information about breast carcinomas, is now further in-
dicated by the present proteomic data. Asporin has been
proven to be associated with the cartilage matrix (55), and we
noted a clear decrease in expression when we compared
grades 1 and 3. Notably, one of the top-ranked networks from
the IPA analysis included most of the differentially expressed
ECM-localized proteins, and TGF�-1 was reported to be di-
rectly or indirectly associated with several of these extracel-
lular proteins (supplemental Fig. S9B). TGF�-1 regulates tu-
mor growth either through mechanisms that function within
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the cell itself or through host–tumor cell interactions. It has
been shown that factors in the tumor microenvironment, such
as the ECM, influence the ability of TGF�-1 to promote or
suppress carcinoma progression and metastasis (56). Conse-
quently, the systematic inhibition of TGF�-1 signaling path-
ways is being considered as an attractive therapeutic inter-
vention strategy when targeting cancer (56).

Importantly, the protein expression reflecting histological
grade was validated, using an independent, large dataset and
an orthogonal method (mRNA expression), with the GOBO
tool (38). Groups of up- and down-regulated proteins were
evaluated based on their correlation to known gene set mod-
ules, as it is often the functional processes captured by a gene
signature, and not the individual genes, that are important
(44). The significant correlation to the gene set modules for
stroma, cellular checkpoint, and early response are in partic-
ular noteworthy (Fig. 4). Furthermore, when we assessed the
distant metastasis-free survival length as the end point, using
the proteomic-derived signature, data clearly indicated a
worse clinical outcome, in particular when we used the down-
regulated ECM proteins. Although mRNA data for the GPS-
profiled patient tumors were not present or possible to obtain
because of the amount of patient tumor material, it should be
noted that the mRNA profiling data within GOBO is based on
11 international, large-scale studies, indicating the robustness
of the mRNA data trends. Thus, the independent mRNA val-
idations added support for the candidate protein signatures
and their potential capability for breast tumor grading. Briefly,
proteins are normally more stable than RNA, which is re-
flected in the standard clinical handling of tumors, ranging
from immediate freezing in liquid nitrogen to incubation on ice
for 20 to 30 min, potentially showing significant changes in
mRNA levels but fewer (small) changes in protein levels (57).
In contrast, in discovery studies, the techniques for mRNA
analysis are more mature than multiplexed protein analysis,
which in the end might facilitate clinical implementation. How-
ever, we believe that the stability of the protein biomarkers is
an advantage in a clinical setting where routine protein anal-
ysis can be readily implemented using standard ELISA or
selected reaction monitoring, increasing the general applica-
bility in nonspecialized hospitals.

In summary, we have defined proteins associated with his-
tological breast cancer grades, including a subclassification
of histological grade 2, using a combination of affinity and
MS-based proteomics. Several proteins associated with tu-
mor aggressiveness also were identified, and cell proliferation
appeared to be one of the main driving mechanisms associ-
ated with histological grades 2b and 3 of breast cancer tu-
mors. Furthermore, the identification of several ECM-related
proteins displaying reduced expression levels in grades 2b
and 3, potentially facilitating remodeling and collapse of the
ECM, was equally significant. The reported candidate tissue
protein signatures, reflecting histological grade, and the clin-
ical relevance of this will be explored in larger, independent

patient cohorts in order to generate pre-validation and valida-
tion data, respectively. In this process, the length of the sig-
nature will be optimized to yield the best discrimination with
the shortest signatures, using a backward elimination ap-
proach (41). It could then be envisioned that a selected reac-
tion monitoring or ELISA-based readout might be the desired
way to translate current findings into the clinic. In the longer
term, these tissue molecular portraits could pave the way for
improved histological grading and prognostication.
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