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contaminated sites along China’s
urbanization during the last 30 years

Kai Li,1,2 Ranhao Sun,1,2,4,* and Guanghui Guo2,3

SUMMARY

Contaminated sites pose serious threats to the soil environment and human health. However, the location
and temporal changes of urban contaminated sites across China remain unknown due to data scarcity.
Here, we developed a machine-learning model to identify the contaminated sites using public data.
Results show that the trained model with 2,005 surveyed site samples and six variables can achieve a
model performance evaluation value of 0.86. 43,676 contaminated sites were identified from 83,498
polluting enterprise plots in China. However, these contaminated sites have significant spatiotemporal
heterogeneity, mainly located in economically developed provinces, urban agglomerations, and core
urban areas. Moreover, the contaminated sites increased by 325% along with urban expansion from
1990 to 2018. The abandoned contaminated sites increased rapidly, but the contaminated sites in produc-
tion decreased continuously. This methodological framework and our findings contribute to the precise
management of contaminated sites and provide insights into urban sustainable development.

INTRODUCTION

Over the past three decades, China has been one of the world’s fastest urbanizing and industrializing countries.1,2 China overtook the US as

the world’s largest urban area in 2015, and the world’s largest manufacturing output in 2011.3 As the urban area has expanded and restruc-

tured, more and more polluting enterprises with contaminated sites have been closed, suspended operations, merged, or relocated.4,5 On

the one hand, contaminated sites threaten the soil ecology and reduce the quality of groundwater. According to the National Soil Pollution

Survey Bulletin published in 2014, 36% and 35% of soil survey points in China’s heavily polluted enterprise sites and industrial waste sites,

respectively, exceeded the threshold.6 On the other hand, they pose a serious risk to human health,7 reduce the value of land, and hamper

urban regeneration.8 For example, in 2015, a chemically contaminated site around the Changzhou Foreign Language School caused

hundreds of students to suffer physical abnormalities. Therefore, the environmental management of contaminated sites caused by urbaniza-

tion has become a pressing issue facing China.9

Although the positive effects of urbanization on economic development and technological innovation have been demonstrated,10 much

work has also documented the negative ecological and environmental impacts of urban expansion and its spatial variation.11,12 Firstly,

urbanization dramatically changes the type of land use and land cover from agricultural to buildup,13,14 directly leading to the loss of

cultivated land and threatening biodiversity through habitat destruction and fragmentation.12,15 Then newly added large impermeable

surface creates an urban heat island and changes climate by affecting local temperature, humidity, and air convection.16–19 In addition,

urbanization increases the concentration of air pollutants to form haze,20 reduces water quality,21 and creates contaminated sites by polluting

soil and groundwater.22 The investigation, remediation techniques, and environmental management of contaminated site lag behind water

and air in China due to their concealment, irreversibility, and accumulation.23 Therefore, much less is known about the location of contam-

inated sites and their characterization of spatiotemporal patterns during urbanization in China.

At the site scale, researchers have made important advances in the contaminated site investigation methods,24 risk assessment systems,

and remediation technologies.25–27 As the identification of contaminated sites requires complex and expensive investigation and assessment,

contaminated site management is often one of the most technically challenging and costly sites.28 There is generally an initial assessment of

potentially contaminated sites using a prioritization approach, and the results determine whether further investigation is required to confirm

the presence of site contamination.29 Drawing on the experience of the US SuperfundHRS (Hazard Ranking System) relative risk assessment,30

environmental managers in China have established a risk screening system to rank the environmental risks of about 110,000 enterprise plots

through field surveys to obtain detailed information.31 With limited resources, this approach is useful for improving management efficiency
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and controlling the risk of contaminated sites. However, the high cost of using thesemethodsmakes it difficult to identify all the contaminated

sites on millions of enterprise plots and to study their spatial characteristics in China.

To fill this gap, the machine-learning model was used here for the identification of contaminated sites in China, which has a powerful

computational capability to quickly extract unknown information from sample data.32 Currently, machine-learning algorithms are widely

used in the field of environmental pollution detection with high accuracy. For example, a machine-learning model was used to identify

and classify potential polluters in the Yangtze River Delta region of China with an accuracy of 87%.33 To estimate the spatial distribution

of heavy metals in soil more accurately, a backpropagation (BP) neural network was used, which reduced the error by 42% compared to

Kriging interpolation.34 In groundwater, the random forest (RF) model predicted groundwater fluoride contamination across India with an

accuracy of 0.78% at a resolution of 1 km.35 In addition, the increase in the number of site surveys in recent years has provided a large number

of training samples for the machine-learning algorithm to identify contaminated sites.

Under such conditions, this study utilized machine-learning models to identify contaminated sites from polluting enterprise plots and

investigated the spatiotemporal patterns of contaminated sites in the process of urbanization in China, based on the data of 83,498 polluting

enterprises and 2,005 surveyed sites. We find that the binary logistic regression (BLR) machine-learning model can accurately identify 43,676

contaminated sites. However, these contaminated sites were widely and unevenly distributed across China. Massive urban expansion has led

to a rapid increase in contaminated sites from 1990 to 2018. This new knowledge of contaminated sites in China is remarkable for managers to

formulate accurate and efficient environmental policies, promote urban development, and improve our understanding.

RESULTS

Model results and accuracy of contaminated sites

Input variable screening

The t test and chi-squared test were used to screen six variables from 14 potential variables, including duration, starting time, industry class,

violations, precipitation, and temperature (Table 1). These variables are significantly correlated with the dependent variables (p < 0.05), and

the variance inflation factors are less than 10 (Table S1), indicating that there is no multicollinearity between them.36

To validate the accuracy of variable selection, BF and BLR models were constructed separately using the 14 variables to obtain variable

importance, coefficients, and accuracy. As shown in Table S2, the top six variables ranked by importance score in the RFmodel are consistent

with the results of the t test and chi-square analysis. Except for soil texture, the top six variables ranked by the absolute value of coefficients in

the BLR model are also consistent with the results of the t test and chi-square analysis. Therefore, the selection results of input factors are

accurate and reliable.

Optimal machine-learning model

The receiver operating characteristic (ROC) curve and accuracy value (ACC) were used to evaluate the performance of machine-learning

model in this study. The area under the ROC curve, known as the AUC value, was utilized to assess the overall performance of the model.

2,005 samples containing 6 variables were input into the BLR, RF, BP, and support vectormachine (SVM)models to train the best-performance

model evaluatedwith AUC value through 5-fold cross-validation. As shown in Table 2, the AUC values of the BLR, BP, and SVMmodels are the

highest, reaching 0.86. The highest ACC values are observed for the BLR and SVM models, both achieving 0.78. The BP model exhibits the

highest sensitivity value of 0.78, while the BLRmodel demonstrates the highest specificity value of 0.82. Therefore, the BLRmodel was the best

performer in three of the four performance metrics, making it the majority performer. Compared to the RF, BP, and SVM models, the BLR

model is less complex, more computationally efficient, and provides the coefficients of the variables, making it the chosen model for iden-

tifying contaminated sites. Furthermore, compared to the accuracy of the model before variable selection, the selected variables improved

the accuracy of the RF model by 0.03, while the BLR model remained unchanged. This further confirms the accuracy and scientific validity of

variable selection.

Table 1. T test and chi-squared test of potential variables with dependent variables

Potential variables T test Potential variables Chi-squared test

Duration 20.29a Starting time 401.96a

Violations 12.20a Scale 6.41

Pollutant mobility 0.69 Impervious surfaces 1.03

Pollutant volatility 1.95 Industry class 220.48a

Soil texture 0.09 Persistent organic pollutants 0.51

Precipitation 7.40a Soil erosion 5.85

Temperature 3.36a

Wind speed 1.50

amean p < 0.05.
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The trained BLRmodel achieved an average AUC value of 0.86 across the five validation sets (Figure 1A) and an accuracy rate of 78% using

a threshold value of 0.60, which was determined by the highest value of the Youden index (Figure 1B). The difference between the minimum

AUCof 0.81 and themaximumAUCof 0.91 was small and remained at a high level over five verifications, indicating stablemodel performance

(Figure 1A). The best trade-off between sensitivity and specificity was achieved with a threshold value of 0.60. The sensitivity value of 0.75 and

the specificity value of 0.82 indicate that the trained model can correctly identify 75% of the contaminated sites and 82% of the uncontam-

inated sites (Figure 1B).

Figure 1C shows the ranking of the influence coefficient of the input variables in the multivariate logistic regressionmodel. Duration, start-

ing time, industry class, violations, and precipitation are positively correlated with the probability of site contamination, while temperature is

negatively correlated. Duration is the most important variable in the multivariate logistic regression model. In addition, industry class and

violations play a moderate role. Starting time, precipitation, and temperature play a low role.

Model simulation

The trainedmodel was applied to simulate 83,498 enterprise plots in the urban area. The content of soil and groundwater pollutants in 43,676

enterprise plots exceeded the national standard value, covering a total of 52.31% of the country. Since the trained model can identify 75% of

the contaminated sites, the 43,676 enterprise plots with a high pollution probability theoretically contain 75% of the contaminated sites that

can be used to study contaminated sites in China’s urban area.

As can be seen in Table 3, there are large differences in the number and proportion of contaminated sites by industry division. The three

industries with the highest number of contaminated sites are the chemical (CM), electroplating (ET), and non-ferrous metal smelting (NFMS),

while the three industries with the highest proportion of contaminated sites are chemical APIs, papermaking, and non-ferrous metal mining

and dressing (NFMD).

Spatial variation of contaminated sites

Contaminated sites are very widespread and unevenly distributed across China, with significant spatial variation. The number and density of

contaminated sites by province varies from 29 to 7,405 sites and from 0.08 to 0.51 sites per square kilometer (Figure 2). China’s contaminated

Table 2. Comparison table of machine-learning model evaluation metrics

Machine-learning model AUC ACC Sensitivity value Specificity value Threshold value

BLR 0.86 0.78 0.75 0.82 0.60

RF 0.83 0.77 0.68 0.81 0.71

BP 0.86 0.77 0.78 0.78 0.56

SVM 0.86 0.78 0.76 0.81 0.59

Figure 1. BLR modeling results

(A) ROC curve.

(B) Sensitivity, specificity, accuracy, and Youden index plotted against cutoff.

(C) Influence coefficient of input variables in BLR.
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sites are mainly located in the eastern region, including Jiangsu, Zhejiang, Guangdong, and Shandong provinces, while the number of

contaminated sites in western China is relatively small (Figure 2). To explain this difference with statistical data, the eastern part of China

has 61.61% of the country’s contaminated sites, while the western part has only 13.12% (Table S3). 80% of the eastern provinces have

more contaminated sites than Sichuan province, which has the largest number of contaminated sites in western China (Table S3). The distri-

bution pattern of contaminated sites is similar to China’s economic development level, which decreases from the coast to the interior. How-

ever, according to the distribution density of contaminated sites in the urban area, the high density of contaminated sites is mainly concen-

trated in the southern regions of China, such as the provinces of Yunnan, Hunan, Guangxi, and Guizhou.

While contaminated sites are widely distributed in China’s urban areas, they aremostly concentrated in a few regions, showing remarkable

regional variation. As shown in Figure 3B, contaminated sites in seven developed urban agglomerations account for 53.41% of the coun-

try.37,38 The urban agglomeration with the highest number and density of contaminated sites is the Yangtze River Delta urban agglomeration

(YRD) with 11,916 sites and 0.48 sites per square kilometer. The number and density of contaminated sites show large spatial variations. The

degree of urbanization of the agglomeration is positively reflected in the number of contaminated sites, while the density is not. For example,

the number of contaminated sites in the Pearl River Delta urban agglomeration (PRD) is 4.29 times higher than in the Chang-Zhu-Tan (CZT),

while they have the same density of contaminated sites in the urban area (Figure 3B). This indicates that the number of contaminated sites is

more consistent with the level of urbanization than the density. Spatial variability exists not only between but also within urban agglomera-

tions. Taking the Mid-southern Liaoning urban agglomeration (MSL) as an example, the number of contaminated sites in Shenyang is 6.94

times higher than that in Tieling, and the density of contaminated sites in Benxi is 5.13 times higher than that in Dalian (Figure 3F).

Among the industry divisions of contaminated sites, CM, ET, and NFMS account for the largest number of three industrial types, covering

60.10% of the country (Figure 4A). Driven by resource endowment, labor force, market, related industries, and development history, the in-

dustry divisions of contaminated sites in the urban area also show remarkable spatial variation. For example, affected by both labor force and

domestic market, contaminated sites in CM, ET, and textile (TX), are the main polluting industries in the YRD and PRD, accounting for 77.5%

and 72.2%, respectively (Figures 4B and 4C). The rich non-ferrous metal mining resources in the Central Yunnan urban agglomeration (CY)

make the NFMD the main polluting industry (Figure 4G).

Temporal changes of contaminated sites

Massive urban expansion has led to a 3.25 times increase in contaminated sites from 1990 to 2018 (Table S3), but the urban area has expanded

6.55 times. The urban area was divided into four urban sub-areas (core urban, sub-core urban, new urban, and suburbs) which were built in

different periods (before 1990, 1991–2000, 2001–2010, and 2011–2018) to analyze the temporal changes of contaminated sites in the urban

area. The density of contaminated sites was used to represent changes between the four urban sub-areas. As can be seen from Figure 5A,

from a national perspective, the density of contaminated sites decreases from the core urban area to the suburbs and shows significant dif-

ferences (p < 0.05) between the four urban sub-areas. However, not all urban agglomerations exhibit this significant difference due to their

history of industrial development and urban expansion. For example, with the exception of the PRD, the density of contaminated sites in the

Table 3. Proportion of contaminated sites by industry division

Industry division

Number of

contaminated sites

Number of

uncontaminated sites

Proportion of

contaminated sites (%)

Oil mining (OM) 82 112 42.27

Ferrous metal ores mining and dressing (FMD) 1,367 962 58.69

Non-ferrous metal mining and dressing (NFMD) 1,876 1,163 61.73

Textile (TX) 2,568 6,375 28.72

Tanning of leather and fur (TLF) 1,531 1,143 57.26

Papermaking (PM) 207 125 62.35

Chemical (CM) 16,649 14,322 53.76

Chemical APIs (CAPIS) 1,777 1,069 62.44

Ferrous metal smelting (FMS) 3,237 2,111 60.53

Non-ferrous metal smelting (NFMS) 3,427 2,732 55.64

Electroplating (ET) 6,207 4,981 55.48

Refined petroleum products (RPP) 1,734 1,434 54.73

Coking (CK) 746 604 55.26

Battery (BT) 1,697 1,126 60.11

Waste disposal (WD) 571 1,563 26.76

Total 43,676 39,822 52.31
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core urban area of the other urban agglomerations is not significantly different from that in the sub-core urban area, indicating that urban

expansion is accompanied by the development of polluting enterprises during this period.

Compared to the general distribution of the contaminated sites in the four urban sub-areas, there are some differences by industry divi-

sions. For example, resource-dependent industries, such as oil mining, ferrous metal mining and dressing, ferrous metal smelting, and cook-

ing, which promoted the emergence and development of cities, tend to be distributed in the core urban area (Figure S1). Most of TX and ET

are located in the new urban area, where these enterprises can benefit from the labor force, energy, and upstream enterprises (Figure S1).

As shown in Figures 6 and 7, the status and changes in the number of polluting enterprises causing site pollution in the four urban sub-

areas vary considerably between 1990 and 2020. The number of new polluting enterprises has experienced three periods, namely accelerated

growth, decelerated growth, and slow growth (Figure 6A). Before 1998, during the period of accelerated growth, the growing number of new

polluting enterprises in the four urban sub-areas decreased from the inside out (Core > Sub-core > New > Suburbs). While the growth of

polluting enterprises in the new urban area and suburbs reached its maximum between 1998 and 2008, the four urban sub-areas generally

showed a decelerated growth trend, especially the core urban area. Since 2008, the number of new polluting enterprises has entered a period

of slow growth. Although the overall pattern of change in new polluting enterprises in each urban agglomeration is similar to that of the coun-

try, there are some differences in the four urban sub-areas due to their different industrial development histories. In the YRD and CY, most of

the new polluting enterprises were established in the new urban area, while in PRD they were in the sub-core area, and inMSL, Beijing-Tianjin-

Hebei urban agglomeration (BTH), andChengdu-Chongqing urban agglomeration (CC) they were in the core urban area (Figures 6B, 6C, and

6E–6H).

Overall, the number of shutdownenterprises continues to grow (Figure 7A). The cumulative number of shutdownenterprises has risen from

1,326 to 13,233 over the last two decades. The number of shutdownpolluting enterprises that have closed is highest in the core area, while the

Figure 2. Spatial pattern of contaminated sites in China

The darker map color indicates a higher density of contaminated sites in the urban area of the province. The height of the column indicates the number of

contaminated sites in the urban area of the province.

ll
OPEN ACCESS

iScience 26, 108124, November 17, 2023 5

iScience
Article



rate of shutdown polluting enterprises in the new urban area has accelerated in recent years and may exceed that of the core area next year

(Figure 7A). The pattern of change in the number of shutdown polluting enterprises between urban sub-areas of agglomerations is similar to

that of new polluting enterprises. These changing trends of fewer new polluting enterprises and more shutdown polluting enterprises have

led to a decrease in the number of contaminated sites in production since 2008.

Urban development has led to the relocation or decommissioning of polluting industries to the periphery of the city. As can be seen from

Figures 6A and 7A, after 1998, the new urban areas overtook the core urban areas to become the urban areas with the highest number of new

polluting enterprises. Meanwhile, the number of closed polluting enterprises in the core urban area remained the highest and showed an

Figure 3. Spatial pattern of contaminated sites in urban agglomerations

The darker map color indicates a higher density of contaminated sites in the urban area of the city. The height of the column indicates the number of

contaminated sites in the urban area of the city.

(A) Spatial distribution of major urban agglomerations in China.

(B) The left and right y axis show the number and density of contaminated sites in the urban area of the seven urban agglomerations, respectively.

(C) YRD = Yangtze River Delta urban agglomeration.

(D) PRD = Pearl River Delta urban agglomeration.

(E) CZT = Chang-Zhu-Tan urban agglomeration.

(F) MSL = Mid-southern Liaoning urban agglomeration.

(G) BTH = Beijing-Tianjin-Hebei urban agglomeration.

(H) CY = Central Yunnan urban agglomeration.

(I) CC = Chengdu-Chongqing urban agglomeration.
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accelerated growth. This indicates an accelerated transfer of contaminated sites from the core urban area to the new urban area. The vari-

ations in the number of active polluting enterprises between different urban sub-areas also confirmed this phenomenon (Figure S2A). Overall,

there is an initial increase and then a decrease in the number of active polluting enterprises in each urban sub-area. However, the rate of

growth is particularly rapid in the new urban areas, which overtook the core urban areas by 2005. From the perspective of agglomerations,

the rate at which polluting industries relocate to the periphery of cities is slower in areas with earlier economic development. For example, the

BTH and MSL are the earliest developed industrial bases in China, and as a result consistently have the highest number of active polluting

enterprises in their core urban areas (Figures S2E and S2F). In contrast, the YRD has consistently had the highest number of active polluting

enterprises in its new urban areas (Figure S2B).

DISCUSSION

BLR model uncertainty

The uncertainty of the regression coefficients of the BLRmodel is presented in Table S4. All of the coefficient estimates have p values less than

0.05, indicating that they are statistically significant. The t-values are relatively large for all variables, further supporting the significance of the

coefficient estimates. In addition, the standard errors are relatively small, suggesting that the coefficient estimates are reliable. The 95% con-

fidence intervals provide a range of plausible values for the coefficients. The narrower the confidence interval, themore precise the estimation

of the coefficient. In this case, the confidence intervals for all variables are relatively narrow, indicating a higher level of precision in the esti-

mation. Overall, the results suggest that the model coefficients are statistically significant and have reliable estimates.

The average AUC value across the 5-folds is 0.86, indicating a good overall performance of the model. However, it is also important to

assess the variability or uncertainty of the AUC values. The AUC values obtained from cross-validation provide an estimate of the model’s

performance on unseen data. A larger standard deviation implies that the model’s performance is less consistent across different samples,

Figure 4. Percentage of contaminated sites by industry division

(A) Country.

(B) YRD.

(C) PRD.

(D) CZT.

(E) MSL.

(F) BTH.

(G) CY.

(H) CC.
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indicating higher uncertainty. On the other hand, a smaller standard deviation suggests more consistent performance and lower uncertainty.

The standard deviation of the AUC values is 0.03, suggesting a low level of variability in the model’s performance across different folds. This

indicates that the performance of the model is consistent and stable.

Potential drivers of spatiotemporal variation of contaminated sites

Although the causes of the spatiotemporal variation of contaminated sites in the urban area are very complex, such differences are largely a

result of economic development level, resource endowment, urban expansion, production and operation status of the enterprise, and natural

conditions. Based on the results of our research, a discussion is presented on the drivers of spatiotemporal variation of polluting enterprises

and the main control factors of site pollution in the urban area.

The economic development level has a positive feedback relationship with the cumulative number of enterprises, especially enterprises

with high pollution and energy consumption.39,40 On the one hand, the economically developed regions provide convenient transportation,

Figure 5. Spatial variation of contaminated sites between the four urban sub-areas

The density of contaminated sites in the four urban sub-areas was plotted using boxplots and tested using the Mann-Whitney U test, with red markers indicating

no significant difference and black markers indicating a significant difference (p < 0.05).

(A) Country.

(B) YRD.

(C) PRD.

(D) CZT.

(E) MSL.

(F) BTH.

(G) CY.

(H) CC.
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complete production facilities, sufficient energy, and a broad market for the development of polluting enterprises. On the other hand,

polluting enterprises, as low-end manufacturing industries, are the main types of enterprises that promote economic development and

urbanization in regions and countries at the early stage of industrialization.41 As shown in Figures 5A and 6A, the construction of polluting

enterprises is earlier than that of urban areas. Different from the developed regions, resource endowment is the main driving factor for

the development of polluting enterprises in underdeveloped regions.42 For example, 51.43% of the contaminated sites in underdeveloped

western China are related to mineral-resource-processing enterprises, while developed eastern China only accounts for 13.30%.

Due to the diverse drivingmechanisms,43 the seven urban clusters showed differences in the spatiotemporal distribution characteristics of

contaminated sites. Because the YRD and PRD are themost developed region in China, it has become the area with the highest concentration

of contaminated sites.44,45 Convenient transportation, proximity to consumer markets, well-established industrial chains, abundant labor

force, and reform and opening-up policy have been significant factors contributing to the aggregation of polluting enterprises in the CM,

ET, and TX industries.33,46 Thewell-developedwater and rail transport systems, together with the comprehensive infrastructure, and proximity

to the YRD, provide favorable conditions for the development of manufacturing and CM industries in the CZT. In addition, the abundance of

mineral resources is the main reason for the concentration of non-ferrous metal and steel enterprises in the region.47,48 The BTH, being a

political, cultural, and early industrialization center in China, has attracted a significant number of manufacturing enterprises.49 Abundant re-

sources of oil, non-ferrous metals, and iron ore in the BTH require the establishment of numerous extraction and processing companies.50

Figure 6. The number change of new polluting enterprises causing site pollution in four urban sub-areas from 1978 to 2020

(A) Country.

(B) YRD.

(C) PRD.

(D) CZT.

(E) MSL.

(F) BTH.

(G) CY.

(H) CC.
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Similar to the BTH, theMSL serves as one of China’s historical industrial production bases and harbors abundant resources of oil, non-ferrous

metals, and iron ore.51,52 The CY, known as the ‘‘Non-Ferrous Kingdom,’’ has extensive contaminated sites, mainly due to the mining and

smelting of non-ferrous metals in the region.42 The CC serves as a manufacturing hub in western China, acting as an agglomeration area

for the production of chemicals, non-ferrous metals, pesticides, and steel.53

The spatial variation of polluting enterprises is the basis for the spatial variation of contaminated sites. According to our research, whether

they become contaminated sites is related to the production and operation status of the enterprise and the natural conditions. As shown in

Figure 1C, duration, starting time, industry class, violations, precipitation, and temperature are the main drivers of site pollution. The longer

the duration of industrial production, the more likely it is that the pollutants will accumulate on the enterprise plot by running, emitting, drip-

ping, and leaking.54 Polluting enterprises established in different periods have used different processes, and emissions have decreased as

science and technology have progressed.55 The raw materials, auxiliary materials, processes, products, and pollutant types vary widely

between enterprises in different industry classes.56–58 The number of enterprise environmental violations, such as the illegal discharge of

pollutants and environmental accidents, directly reflects the enterprise’s environmental management level. As a result of erosion and rainfall

run-off, pollutants in rawmaterials, wastewater, and solid waste enter the soil and groundwater through horizontal migration and infiltration.59

Through volatilization to the atmosphere and migration to the deeper soil, the temperature has a significant impact on the diffusion of soil

organic pollutants.60,61

Figure 7. The number change of shutdown polluting enterprises causing site pollution in four urban sub-areas from 1990 to 2020

(A) Country.

(B) YRD.

(C) PRD.

(D) CZT.

(E) MSL.

(F) BTH.

(G) CY.

(H) CC.
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Implications for urban environmental management

In this study, the trained BLR model, using only 6 publicly available variables, showed high accuracy in identifying contaminated sites (Fig-

ure 1A). These results support that the machine-learning method applied to identify contaminated sites is fast, efficient, and accurate, as

demonstrated by previous pollution researchers.33,62,63 Before the Chinese government has enoughmoney and time to investigate, evaluate,

and remediate the polluting enterprise plots,machine learning is a usefulmethod to rank the polluting enterprise plots and give priority to the

control andmanagement of enterprise plots with a high pollution probability. Moreover, advances in indicator selection and rankingmethods

using machine learning make it possible to simplify the index system and reduce the cost of the environmental risk assessment of polluting

enterprise plots used by the Chinese government.64 As can be seen from Figure S3, the kernel density analysis was used to rank the spatial

density of contaminated sites in the urban area. The hot zoneswith kernel density values higher than 0.01 sites per square kilometer are consis-

tent with the spatial distribution of heavy-metal-emitting enterprises43 and contaminated sites investigated in China (Figure S4). This result

has potential applications in demarcating the key areas for soil environmental management and industrial upgrading.

In addition to the spatial variation across China, our analysis shows that contaminated sites in the urban area have characteristics of tem-

poral change, which provides governors with some new ideas to improve themanagement efficiency of contaminated sites. For example, the

number of contaminated sites opened from 2011 to 2020 accounts for only 3.5% of the total number of contaminated sites, while the number

of contaminated sites opened from 1991 to 2000 accounts for 41.71% (Figure S5). The proportion of polluting sites opened between 2011 and

2020 is only 22.89%, compared with 66.66% between 1991 and 2000 (Figure S5). The longer a polluting enterprise has been in operation, the

more likely it is that its land will be contaminated (Figure 1C). When the operational duration of a polluting enterprise exceeds 15 years, the

probability of its land being contaminated increases rapidly (Figure S5). Due to the significant differences in the management strategies and

pollution characteristics between shutdown and in production polluting enterprises,31 more attention should be paid to the significant

changes over time in these enterprises in the four urban sub-areas. First, the environmental protection and industrial upgrading policies

in the past decade have turned rapid growth into low growth of contaminated sites, and this growth trend will continue. Second, the rapid

growth of the shutdown enterprises will bring great pressure to the investigation, risk assessment and control, restoration, and reuse of the

contaminated sites, especially in the core and new urban areas (Figure 7A). Third, the number of polluting enterprises in production with

contaminated sites will continue to decrease in the future through merging multiple enterprises and improving the production process (Fig-

ure S2). Therefore, different soil environment strategies should be adopted based on the production duration and status of polluting enter-

prises to improve efficiency.

Limitations of the study

Because of limited data availability, we collected information on 83,498 polluting enterprises in the urban area, which are the soil pollution

industries that managers focus on regulating. Under these conditions, the 43,676 contaminated sites identified by the machine-learning

model are likely to be smaller than the actual number. Although the trained BLR model achieved high accuracy by learning knowledge

from 2,005 samples, the accuracy of the model will improve if more samples are obtained from non-public government data. Furthermore,

four commonly used machine-learning models were employed for contaminated site identification. Future research could explore the utili-

zation of alternative models to further improve the model accuracy and apply the model to more polluting industry divisions.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information for data and code files should be directed to and will be fulfilled by the lead contact, Ranhao Sun (rhsun@rcees.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

DATA: The input dataset and simulation dataset have been deposited at Mendeley Data and are publicly available as of the date of publi-

cation. The DOI is listed in the key resources table.

CODE: All original code used for constructing themachine-learningmodels has been deposited atMendeley Data and is publicly available as

of the date of publication. The DOI is listed in the key resources table.

METHOD DETAILS

Data collection and processing

Sample of surveyed sites

As an input sample for the machine-learningmodel, the 2,005 surveyed sites were collected from public information including repaired plots,

risk control plots, surveyed plots, and studied sites from literature (Figure S6A). As shown in Tables S5 and S6, the data sources for this

information are official government websites, GreenData,Web of Science, andCNKI using web crawling andmanual searches. If the contam-

ination levels of the surveyed sites exceed the screening values for Class I land use,65 they are classified as contaminated sites.

Simulation data set

The simulation data set of the machine-learning model is 83,498 polluting enterprise plots, consisting of pollutant discharge permit enter-

prises, backward capacity enterprises, heavy metal emission enterprises in key industries, key supervision enterprises of soil environmental

pollution, and key pollutant discharge enterprises (Figure S6B). The official government websites are the main source of these data

(Tables S5 and S6).

Variable preparation for machine-learning modeling

Fourteen available variables from public information were selected as potential variables in the statistical modeling based on established or

presumed relationships with site pollution (Table S8). However, owing to the diversity of sample and simulation data, we supplemented the

missing attribute information by the open network to obtain information on these variables, such as the National Enterprise Credit Informa-

tion Publicity System, Institute of Public and Environmental Affairs, Tianyancha, and Green Data (Table S5), and then cleaned the incomplete

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Sample data set of surveyed sites Official government websites, Commercial websites https://doi.org/10.17632/r4y2vcpfmx.1

Simulation data set Official government websites, Commercial websites https://doi.org/10.17632/r4y2vcpfmx.1

Software and algorithms

BLR code Scikit-learn https://doi.org/10.17632/r4y2vcpfmx.1

RF code Scikit-learn https://doi.org/10.17632/r4y2vcpfmx.1

BP code Scikit-learn https://doi.org/10.17632/r4y2vcpfmx.1

SVM code Scikit-learn https://doi.org/10.17632/r4y2vcpfmx.1

ArcGIS ESRI https://www.arcgis.com/index.html

Origin 2021 OriginLab https://www.originlab.com/

OriginProLearning.aspx

Anaconda Continuum Analytics https://www.anaconda.com/
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and repeated data. The detailed situation of missing data and themethod of data completion are shown in Table S7. The complete attributes

of the sample and simulation data, including name, status, starting time, closed time, registered capital, industry class, number of environ-

mental violations, and production address, were obtained, and the sample data additionally contained the type and content of pollutants.

Furthermore, the geographical coordinates of the polluting enterprises in the sample and simulation data were translated using geographical

coding technology based on the production address attribute. The values of the natural variables were extracted from the associated GIS

data sets (Table S8) at each polluting enterprise. The detailed acquisition method and type of potential variables is shown in Table S8. As

shown in Table S9, the categorical variables are transformed into numerical variables to allow the model to read the variables.

Urban expansion data

A 30m resolution global urban boundary dataset (http://data.ess.tsinghua.edu.cn/) in seven representative years (i.e. 1990, 1995, 2000, 2005,

2010, 2015, and 2018) was used as urban expansion data in China. This dataset was generated by an automatic delineation framework using

30mglobal artificial impervious area (GAIA) data.2 The urban boundaries are consistent well with results derived fromnighttime light data and

human interpretation.

Methods

T-test and chi-square test

To eliminate spurious variables, reduce noise and training time, and avoid falling into local minima in the machine-learning process, the

appropriate variable screening methods of t-test and chi-square test were used to obtain the minimum number of independent variables

to ensure the model accuracy. The t-test was used for continuous variables and the chi-square test was used for categorical variables.

Binary logistic regression

Discrimination of contaminated sites is a binary classification problem inmachine-learning classification Compared with linear regression and

logarithmic regression, BLR is an algorithm specially used for the discontinuous or categorical dependent variable.66 The core algorithms of

BLR are the sigmoid function, maximum likelihood estimation, loss function, and gradient descent algorithm.We supposed that the variables

x1， x2， x3， x4...of the investigated site are a set of variables related to the dependent variable Y, and the value of Y is 1 (contaminated site)

or 0 (uncontaminated site). The regression model is as follows:

PðYi = 1Þ =

exp

 
b0+

Pk
j = 1

bjxji

!

1+exp

 
b0+

Pk
j = 1

bjxji

! (Equation 1)

logitPðYi = 1Þ = log

�
Pi

1 � Pi

�
= b0 +

Xk
j = 1

bjxji + e (Equation 2)

Pi = PðYi = 1Þ: the probability of site i pollution; k: the number of variables; b0: the constant term; bj : the regression coefficient corre-

sponding to explanatory variable xj ; e: the error term.

The ROC curve and ACC were used to evaluate the model performance. The ROC curve was plotted with sensitivity (TPR) as the ordinate

and 1-specificity (FPR) as the abscissa to produce the associated area under the ROC curve (AUC) value, which generally ranges between 0.5

(no predictive capability) and 1 (perfect predictive capability).67 TPR refers to the proportion of correct positive samples in all positive samples

and represents the discriminant ability of themodel to positive samples. FPR is the proportion of negative samples with wrong judgment in all

negative samples. The highest value of the Youden index is the threshold to balance sensitivity and specificity. ACC refers to the proportion of

correct judgments in all samples, which can be used to evaluate the overall accuracy rate. K-fold cross-validation was used to obtain k times

performance evaluation indicators to verify the accuracy and stability of model results.
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